High-Precision GPU-Accelerated Simulation Algorithm for Targets under Non-Uniform Cluttered Backgrounds
Abstract
:1. Introduction
2. Principle of Rapid Simulation of Background Echoes under the Influence of Target Shadow
2.1. Spatial Geometric Model of SAR
2.2. Modeling Background Echo Signals
2.3. Achieving Shadow Region Segmentation
3. Principles of SAR Target Simulation for Video Applications
3.1. Ray Tracing Principle Explanation
3.2. Principle of Calculation for Backward Scattering Coefficient of Target
3.3. Simulation of the Raw Echo of a Target
4. Methodology for GPU-Based Acceleration Implementation
5. Numerical Simulation Results
5.1. Simulated Results of MSTAR Data
5.2. Simulation of Video SAR under Non-Uniform Background
6. Discussion
6.1. Simulated Results of MSTAR Data
6.2. Simulation of Video SAR under Non-Uniform Background
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yan, H.; Xu, X.; Jin, G.; Hou, Q.; Geng, Z.; Wang, L.; Zhang, J.; Zhu, D. Moving Targets Detection for Video SAR Surveillance Using Multilevel Attention Network Based on Shallow Feature Module. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5200518. [Google Scholar] [CrossRef]
- Zhong, C.; Ding, J.; Zhang, Y. Joint Tracking of Moving Target in Single-Channel Video SAR. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5212718. [Google Scholar] [CrossRef]
- Yang, C.; Chen, Z.; Deng, Y.; Wang, W.; Wang, P.; Zhao, F. Generation of Multiple Frames for High Resolution Video SAR Based on Time Frequency Sub-Aperture Technique. Remote Sens. 2023, 15, 264. [Google Scholar] [CrossRef]
- Chen, J.; An, D.; Wang, W.; Chen, L.; Feng, D.; Zhou, Z. A Novel Generation Method of High Quality Video Image for High Resolution Airborne ViSAR. Remote Sens. 2021, 13, 3706. [Google Scholar] [CrossRef]
- Fang, H.; Liao, G.; Liu, Y.; Zeng, C. Siam-Sort: Multi-Target Tracking in Video SAR Based on Tracking by Detection and Siamese Network. Remote Sens. 2022, 15, 146. [Google Scholar] [CrossRef]
- Bao, J.; Zhang, X.; Zhang, T.; Shi, J.; Wei, S. A Novel Guided Anchor Siamese Network for Arbitrary Target-of-Interest Tracking in Video-SAR. Remote Sens. 2021, 13, 4504. [Google Scholar] [CrossRef]
- He, Z.; Chen, X.; Yi, T.; He, F.; Dong, Z.; Zhang, Y. Moving Target Shadow Analysis and Detection for ViSAR Imagery. Remote Sens. 2021, 13, 3012. [Google Scholar] [CrossRef]
- Li, Q.; Zhang, Y.; Wang, Y.; Bai, Y.; Zhang, Y.; Li, X. Numerical Simulation of SAR Image for Sea Surface. Remote Sens. 2022, 14, 439. [Google Scholar] [CrossRef]
- Li, H.; Duan, J.; Song, D. Ground clutter simulation for airborne forward-looking multi-channel LFMCW radar. J. Eng. 2019, 2019, 7376–7380. [Google Scholar] [CrossRef]
- Zhang, S.; Sui, L.; Zhou, R.; Xun, Z.; Du, C.; Guo, X. Mountainous SAR Image Registration Using Image Simulation and an L2E Robust Estimator. Sustainability 2022, 14, 9315. [Google Scholar] [CrossRef]
- Zhang, Y.; Feng, N.; Zhu, J.; Xie, G.; Yang, L.; Huang, Z. Z -Transform-Based FDTD Implementations of Biaxial Anisotropy for Radar Target Scattering Problems. Remote Sens. 2022, 14, 2397. [Google Scholar] [CrossRef]
- Feng, N. Compact Matrix-Exponential-Based FDTD with Second-Order PML and Direct Z-Transform for Modeling Complex Subsurface Sensing and Imaging Problems. Remote Sens. 2021, 13, 94. [Google Scholar] [CrossRef]
- Wanjun, S.; Hou, Z. RCS Prediction of Objects Coated by Magnetized Plasma via Scale Model with FDTD. IEEE Trans. Microw. Theory Tech. 2017, 65, 1939–1945. [Google Scholar] [CrossRef]
- Lee, D.Y.; Lee, J.I.; Seo, D.W. RCS Estimation of Drone Motion Using Mesh-Element Rotation in MoM and Micro-Doppler Signatures. IEEE Trans. Antennas Propag. 2022, 70, 7344–7349. [Google Scholar] [CrossRef]
- Lee, D.; Lee, J.; Seo, D. Dynamic RCS Estimation according to Drone Movement Using the MoM and Far-Field Approximation. J. Electromagn. Eng. Sci. 2021, 21, 322–328. [Google Scholar] [CrossRef]
- Wang, X.; Gong, H.; Zhang, S.; Liu, Y.; Yang, R.; Liu, C. Efficient RCS Computation Over a Broad Frequency Band Using Subdomain MoM and Chebyshev Approximation Technique. IEEE Access 2020, 8, 33522–33531. [Google Scholar] [CrossRef]
- Huang, Y.; Zhao, Z.; Nie, Z.; Liu, Q.H. Dynamic Volume Equivalent SBR Method for Electromagnetic Scattering of Targets Moving on the Sea. IEEE Trans. Antennas Propag. 2023, 71, 3509–3519. [Google Scholar] [CrossRef]
- Tulgar, O.; Durgut, K.; Ergin, A.A. A Simple and Efficient SBR Implementation for RCS Calculation Using Target Scaling. IEEE Trans. Antennas Propag. 2022, 70, 3680–3687. [Google Scholar] [CrossRef]
- Meng, W.; Li, J.; Guo, L.X.; Yang, Q.J. An Accelerated SBR Method for RCS Prediction of Electrically Large Target. IEEE Antennas Wirel. Propag. Lett. 2022, 21, 1930–1934. [Google Scholar] [CrossRef]
- Bilal, A.; Hamza, S.M.; Taj, Z.; Salamat, S. Comparison of SBR and MLFMM techniques for the computation of RCS of a fighter aircraft. IET Radar Sonar Navig. 2019, 13, 1805–1810. [Google Scholar] [CrossRef]
- Li, H.; Wang, J.; Fan, Y.; Han, J. High-Fidelity Inhomogeneous Ground Clutter Simulation of Airborne Phased Array PD Radar Aided by Digital Elevation Model and Digital Land Classification Data. Sensors 2018, 18, 2925. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Wei, B.; Liu, H. A Fast Method for SBR-Based Multiaspect Radar Cross Section Simulation of Electrically Large Targets. IEEE Antennas Wirel. Propag. Lett. 2022, 21, 1920–1924. [Google Scholar] [CrossRef]
- Li, J.; Meng, W.; Chai, S.; Guo, L.; Xi, Y.; Wen, S.; Li, K. An Accelerated Hybrid Method for Electromagnetic Scattering of a Composite Target–Ground Model and Its Spotlight SAR Image. Remote Sens. 2022, 14, 6332. [Google Scholar] [CrossRef]
- Sofiani, R.; Heidar, H.M. An efficient raw data simulation algorithm for large complex marine targets and extended sea clutter in spotlight SAR. Microw. Opt. Technol. Lett. 2018, 60, 1223–1230. [Google Scholar] [CrossRef]
- Xia, W.; Qi, Y.; Huang, L.; Jin, X. Missile-Borne SAR Raw Signal Simulation for Maneuvering Target. Int. J. Antennas Propag. 2016, 2016, 2598024. [Google Scholar] [CrossRef]
- Kim, H.L.W. An Integrated Raw Data Simulator for Airborne Spotlight ECCM SAR. Remote Sens. 2022, 14, 3897. [Google Scholar] [CrossRef]
- Jing, G.; Zhang, Y.; Li, Z.; Sun, G.; Xing, M.; Bao, Z. Efficient realiazation of SAR echo simulation based on GPU. Syst. Eng. Electron. 2016, 38, 2493–2498. [Google Scholar] [CrossRef]
- Tao, Y.; Lin, H.; Bao, H. GPU-Based Shooting and Bouncing Ray Method for Fast RCS Prediction. IEEE Trans. Antennas Propag. 2010, 58, 494–502. [Google Scholar] [CrossRef]
- Ling, H.; Chou, R.C.; Lee, S.W. Shooting and bouncing rays: Calculating the RCS of an arbitrarily shaped cavity. IEEE Trans. Antennas Propag. 1989, 37, 194–205. [Google Scholar] [CrossRef]
- Baldauf, J.; Lee, S.W.; Lin, L.; Jeng, S.K.; Scarborough, S.; Yu, C. High frequency scattering from trihedral corner reflectors and other benchmark targets: SBR versus experiment. IEEE Trans. Antennas Propag. 1991, 39, 1345–1351. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
Carrier frequency | 9.6 GHz |
Signal pulse duration | 1 s |
Sampling frequency | 591 MHz |
Pulse repetition frequency | 1 KHz |
Velocity | 150 m/s |
Height | 1500 m |
Elevation Angle | 15 |
CPI | 2 s |
Polarization | HH |
Parameter | Value |
---|---|
Carrier frequency | 10 GHz |
Scene size (Range × Azimuth) | 0.4 Km × 0.7 Km |
The size of the flat terrain scene | 0.2 Km × 0.3 Km |
The resolution in range domain | 0.25 m |
The resolution in Azimuth domain | 0.125 m |
Polarization | HV |
Parameter | Value |
---|---|
Carrier frequency | 10 GHz |
Signal bandwidth | 500 MHz |
Signal pulse duration | 2 s |
Pulse repetition frequency | 1 KHz |
Beam angle | 20 |
Velocity | 75 m/s |
Height | 1500 m |
Start of the flight path | (−1500,−150,1500) |
End of the flight path | (−1500,150,1500) |
BW | BW | BW | BW | |
---|---|---|---|---|
Similarity | 0.927 | 0.930 | 0.932 | 0.933 |
Concentric Circles | Time-Domain Simulation Method | |
---|---|---|
time (s) | 340.744 | 28,876.527 |
Concentric Circles | Time-Domain Simulation Method | |
---|---|---|
cosine similarity | 0.918 | 0.932 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Zhou, J.; Song, Z.; Zhou, K. High-Precision GPU-Accelerated Simulation Algorithm for Targets under Non-Uniform Cluttered Backgrounds. Remote Sens. 2023, 15, 4664. https://doi.org/10.3390/rs15194664
Zhang Y, Zhou J, Song Z, Zhou K. High-Precision GPU-Accelerated Simulation Algorithm for Targets under Non-Uniform Cluttered Backgrounds. Remote Sensing. 2023; 15(19):4664. https://doi.org/10.3390/rs15194664
Chicago/Turabian StyleZhang, Yongqiang, Jianxiong Zhou, Zhiyong Song, and Kaixin Zhou. 2023. "High-Precision GPU-Accelerated Simulation Algorithm for Targets under Non-Uniform Cluttered Backgrounds" Remote Sensing 15, no. 19: 4664. https://doi.org/10.3390/rs15194664
APA StyleZhang, Y., Zhou, J., Song, Z., & Zhou, K. (2023). High-Precision GPU-Accelerated Simulation Algorithm for Targets under Non-Uniform Cluttered Backgrounds. Remote Sensing, 15(19), 4664. https://doi.org/10.3390/rs15194664