Next Issue
Volume 22, January
Previous Issue
Volume 21, November
 
 

Mar. Drugs, Volume 21, Issue 12 (December 2023) – 48 articles

Cover Story (view full-size image): Chronic inflammation is a hallmark of autoimmune diseases, including rheumatoid arthritis (RA), the most common inflammatory arthropathy. Oxidative stress is a major pathogenic driver of RA and can be mitigated by dietary intervention. Photosynthetic microbes are natural producers of immunomodulatory and antioxidant metabolites with reported interference in the pro-inflammatory signaling pathways involved in RA pathogenesis, thus representing attractive sources of therapeutic food supplements. The characterization of new strains and of their metabolite profiles is thus paramount to advancing the clinical uses of microalgae. Moreover, their amenability to genetic manipulation affords the light-driven conversion of CO2 into high-added-value recombinant therapeutics, opening new avenues in the biotechnological exploitation of photosynthetic microorganisms. View this paper
  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
15 pages, 5294 KiB  
Article
Rapid Discovery of Substances with Anticancer Potential from Marine Fungi Based on a One Strain–Many Compounds Strategy and UPLC-QTOF-MS
Mar. Drugs 2023, 21(12), 646; https://doi.org/10.3390/md21120646 - 18 Dec 2023
Viewed by 1204
Abstract
The secondary metabolites of marine fungi with rich chemical diversity and biological activity are an important and exciting target for natural product research. This study aimed to investigate the fungal community in Quanzhou Bay, Fujian, and identified 28 strains of marine fungi. A [...] Read more.
The secondary metabolites of marine fungi with rich chemical diversity and biological activity are an important and exciting target for natural product research. This study aimed to investigate the fungal community in Quanzhou Bay, Fujian, and identified 28 strains of marine fungi. A total of 28 strains of marine fungi were screened for small-scale fermentation by the OSMAC (One Strain-Many Compounds) strategy, and 77 EtOAc crude extracts were obtained and assayed for cancer cell inhibition rate. A total of six strains of marine fungi (P-WZ-2, P-WZ-3-2, P-WZ-4, P-WZ-5, P56, and P341) with significant changes in cancer cell inhibition induced by the OSMAC strategy were analysed by UPLC-QTOF-MS. The ACD/MS Structure ID Suite software was used to predict the possible structures with inhibitory effects on cancer cells. A total of 23 compounds were identified, of which 10 compounds have been reported to have potential anticancer activity or cytotoxicity. In this study, the OSMAC strategy was combined with an untargeted metabolomics approach based on UPLC-QTOF-MS to efficiently analyse the effect of changes in culture conditions on anticancer potentials and to rapidly find active substances that inhibit cancer cell growth. Full article
Show Figures

Figure 1

13 pages, 1658 KiB  
Article
Six Undescribed Capnosane-Type Macrocyclic Diterpenoids from South China Sea Soft Coral Sarcophyton crassocaule: Structural Determination and Biological Evaluation
Mar. Drugs 2023, 21(12), 645; https://doi.org/10.3390/md21120645 - 18 Dec 2023
Viewed by 1241
Abstract
Six undescribed capnosane-type macrocyclic diterpenes sarcocrassolins A–F (16) and one related known analog pavidolide D (7) were isolated from Sarcophyton crassocaule, a soft coral collected off the Nansha Islands, in the South China Sea. Their complete [...] Read more.
Six undescribed capnosane-type macrocyclic diterpenes sarcocrassolins A–F (16) and one related known analog pavidolide D (7) were isolated from Sarcophyton crassocaule, a soft coral collected off the Nansha Islands, in the South China Sea. Their complete structures, relative configurations and absolute configurations were established through comprehensive spectroscopic analysis, quantum mechanical nuclear magnetic resonance (QM-NMR) and single-crystal X-ray diffraction. Sarcocrassolins D (4) and E (5) showed inhibitory activity against lipopolysaccharide (LPS)-stimulated inflammatory responses in RAW264.7 cells with IC50 values of 76.8 ± 8.0 μM and 93.0 ± 3.8 μM, respectively. Full article
Show Figures

Graphical abstract

19 pages, 2499 KiB  
Article
Acute Effects of Brevetoxin-3 Administered via Oral Gavage to Mice
Mar. Drugs 2023, 21(12), 644; https://doi.org/10.3390/md21120644 - 16 Dec 2023
Viewed by 1308
Abstract
Brevetoxins (BTXs) constitute a family of lipid-soluble toxic cyclic polyethers mainly produced by Karenia brevis, which is the main vector for a foodborne syndrome known as neurotoxic shellfish poisoning (NSP) in humans. To prevent health risks associated with the consumption of contaminated shellfish [...] Read more.
Brevetoxins (BTXs) constitute a family of lipid-soluble toxic cyclic polyethers mainly produced by Karenia brevis, which is the main vector for a foodborne syndrome known as neurotoxic shellfish poisoning (NSP) in humans. To prevent health risks associated with the consumption of contaminated shellfish in France, the French Agency for Food, Environmental and Occupational Health & Safety (ANSES) recommended assessing the effects of BTXs via an acute oral toxicity study in rodents. Here, we investigated the effect of a single oral administration in both male and female mice with several doses of BTX-3 (100 to 1,500 µg kg−1 bw) during a 48 h observation period in order to provide toxicity data to be used as a starting point for establishing an acute oral reference dose (ARfD). We monitored biological parameters and observed symptomatology, revealing different effects of this toxin depending on the sex. Females were more sensitive than males to the impact of BTX-3 at the lowest doses on weight loss. For both males and females, BTX-3 induced a rapid, transient and dose-dependent decrease in body temperature, and a transient dose-dependent reduced muscle activity. Males were more sensitive to BTX-3 than females with more frequent observations of failures in the grip test, convulsive jaw movements, and tremors. BTX-3’s impacts on symptomatology were rapid, appearing during the 2 h after administration, and were transient, disappearing 24 h after administration. The highest dose of BTX-3 administered in this study, 1,500 µg kg−1 bw, was more toxic to males, leading to the euthanasia of three out of five males only 4 h after administration. BTX-3 had no effect on water intake, and affected neither the plasma chemistry parameters nor the organs’ weight. We identified potential points of departure that could be used to establish an ARfD (decrease in body weight, body temperature, and muscle activity). Full article
(This article belongs to the Special Issue Emerging Toxins Accumulation in Shellfish)
Show Figures

Figure 1

16 pages, 1432 KiB  
Review
Dietary Astaxanthin: A Promising Antioxidant and Anti-Inflammatory Agent for Brain Aging and Adult Neurogenesis
Mar. Drugs 2023, 21(12), 643; https://doi.org/10.3390/md21120643 - 16 Dec 2023
Viewed by 1592
Abstract
Decreased adult neurogenesis, or the gradual depletion of neural stem cells in adult neurogenic niches, is considered a hallmark of brain aging. This review provides a comprehensive overview of the intricate relationship between aging, adult neurogenesis, and the potential neuroregenerative properties of astaxanthin, [...] Read more.
Decreased adult neurogenesis, or the gradual depletion of neural stem cells in adult neurogenic niches, is considered a hallmark of brain aging. This review provides a comprehensive overview of the intricate relationship between aging, adult neurogenesis, and the potential neuroregenerative properties of astaxanthin, a carotenoid principally extracted from the microalga Haematococcus pluvialis. The unique chemical structure of astaxanthin enables it to cross the blood–brain barrier and easily reach the brain, where it may positively influence adult neurogenesis. Astaxanthin can affect molecular pathways involved in the homeostasis, through the activation of FOXO3-related genetic pathways, growth, and regeneration of adult brain neurons, enhancing cell proliferation and the potency of stem cells in neural progenitor cells. Furthermore, astaxanthin appears to modulate neuroinflammation by suppressing the NF-κB pathway, reducing the production of pro-inflammatory cytokines, and limiting neuroinflammation associated with aging and chronic microglial activation. By modulating these pathways, along with its potent antioxidant properties, astaxanthin may contribute to the restoration of a healthy neurogenic microenvironment, thereby preserving the activity of neurogenic niches during both normal and pathological aging. Full article
Show Figures

Figure 1

21 pages, 3303 KiB  
Article
The Marine Natural Compound Dragmacidin D Selectively Induces Apoptosis in Triple-Negative Breast Cancer Spheroids
Mar. Drugs 2023, 21(12), 642; https://doi.org/10.3390/md21120642 - 15 Dec 2023
Viewed by 1317
Abstract
Cancer cells grown in 3D spheroid cultures are considered more predictive for clinical efficacy. The marine natural product dragmacidin D induces apoptosis in MDA-MB-231 and MDA-MB-468 triple-negative breast cancer (TNBC) spheroids within 24 h of treatment while showing no cytotoxicity against the same [...] Read more.
Cancer cells grown in 3D spheroid cultures are considered more predictive for clinical efficacy. The marine natural product dragmacidin D induces apoptosis in MDA-MB-231 and MDA-MB-468 triple-negative breast cancer (TNBC) spheroids within 24 h of treatment while showing no cytotoxicity against the same cells grown in monolayers and treated for 72 h. The IC50 for cytotoxicity based on caspase 3/7 cleavage in the spheroid assay was 8 ± 1 µM in MDA-MB-231 cells and 16 ± 0.6 µM in MDA-MB-468 cells at 24 h. No cytotoxicity was seen at all in 2D, even at the highest concentration tested. Thus, the IC50 for cytotoxicity in the MTT assay (2D) in these cells was found to be >75 µM at 72 h. Dragmacidin D exhibited synergy when used in conjunction with paclitaxel, a current treatment for TNBC. Studies into the signaling changes using a reverse-phase protein array showed that treatment with dragmacidin D caused significant decreases in histones. Differential protein expression was used to hypothesize that its potential mechanism of action involves acting as a protein synthesis inhibitor or a ribonucleotide reductase inhibitor. Further testing is necessary to validate this hypothesis. Dragmacidin D also caused a slight decrease in an invasion assay in the MDA-MB-231 cells, although this failed to be statistically significant. Dragmacidin D shows intriguing selectivity for spheroids and has the potential to be a treatment option for triple-negative breast cancer, which merits further research into understanding this activity. Full article
(This article belongs to the Special Issue Marine Natural Products and Signaling Pathways)
Show Figures

Figure 1

22 pages, 2870 KiB  
Article
Searching for Novel Sources of Hydrogen Sulfide Donors: Chemical Profiling of Polycarpa aurata Extract and Evaluation of the Anti-Inflammatory Effects
Mar. Drugs 2023, 21(12), 641; https://doi.org/10.3390/md21120641 - 15 Dec 2023
Viewed by 1096
Abstract
Hydrogen sulfide (H2S) is a signaling molecule endogenously produced within mammals’ cells that plays an important role in inflammation, exerting anti-inflammatory effects. In this view, the research has shown a growing interest in identifying natural H2S donors. Herein, for [...] Read more.
Hydrogen sulfide (H2S) is a signaling molecule endogenously produced within mammals’ cells that plays an important role in inflammation, exerting anti-inflammatory effects. In this view, the research has shown a growing interest in identifying natural H2S donors. Herein, for the first time, the potential of marine extract as a source of H2S-releasing agents has been explored. Different fractions obtained by the Indonesian ascidian Polycarpa aurata were evaluated for their ability to release H2S in solution. The main components of the most active fraction were then characterized by liquid chromatography–high-resolution mass spectrometry (LC-HRMS) and NMR spectroscopy. The ability of this fraction to release H2S was evaluated in a cell-free assay and J774 macrophages by a fluorimetric method, and its anti-inflammatory activity was evaluated in vitro and in vivo by using carrageenan-induced mouse paw edema. The anti-inflammatory effects were assessed by inhibiting the expression of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX2), and interleukin-6 (IL-6), coupled with a reduction in nitric oxide (NO) and IL-6 levels. Thus, this study defines the first example of a marine source able to inhibit inflammatory responses in vivo through the release of H2S. Full article
(This article belongs to the Section Synthesis and Medicinal Chemistry of Marine Natural Products)
Show Figures

Graphical abstract

12 pages, 2803 KiB  
Article
Streptinone, a New Indanone Derivative from a Marine-Derived Streptomyces massiliensis, Inhibits Particulate Matter-Induced Inflammation
Mar. Drugs 2023, 21(12), 640; https://doi.org/10.3390/md21120640 - 14 Dec 2023
Viewed by 1202
Abstract
Inflammatory diseases caused by air pollution, especially from particulate matter (PM) exposure, have increased daily. Accordingly, attention to treatment or prevention for these inflammatory diseases has grown. Natural products have been recognized as promising sources of cures and prevention for not only inflammatory [...] Read more.
Inflammatory diseases caused by air pollution, especially from particulate matter (PM) exposure, have increased daily. Accordingly, attention to treatment or prevention for these inflammatory diseases has grown. Natural products have been recognized as promising sources of cures and prevention for not only inflammatory but also diverse illnesses. As part of our ongoing study to discover bioactive compounds from marine microorganisms, we isolated streptinone, a new indanone derivative (1), along with three known diketopiperazines (24) and piericidin A (5), from a marine sediment-derived Streptomyces massiliensis by chromatographic methods. The structure of 1 was elucidated based on the spectroscopic data analysis. The relative and absolute configurations of 1 were determined by 1H-1H coupling constants, 1D NOESY, and ECD calculation. The anti-inflammatory activities of 1 were evaluated through enzyme-linked immunosorbent assay (ELISA), Western blot, and qPCR. Compound 1 suppressed the production of nitric oxide (NO), prostaglandin E2 (PGE2), and pro-inflammatory cytokines such as TNF-α, IL-6, and IL-1β, by inhibiting the Toll-like receptor (TLR)-mediated nuclear factor kappa B (NF-κB) signaling pathway. Therefore, compound 1 could potentially be used as an agent in the prevention and treatment of diverse inflammatory disorders caused by particulate matter. Full article
(This article belongs to the Special Issue Marine Natural Products with Anti-Inflammatory Effects)
Show Figures

Graphical abstract

21 pages, 2326 KiB  
Article
Novel BRICHOS-Related Antimicrobial Peptides from the Marine Worm Heteromastus filiformis: Transcriptome Mining, Synthesis, Biological Activities, and Therapeutic Potential
Mar. Drugs 2023, 21(12), 639; https://doi.org/10.3390/md21120639 - 14 Dec 2023
Viewed by 1297
Abstract
Marine polychaetes represent an extremely rich and underexplored source of novel families of antimicrobial peptides (AMPs). The rapid development of next generation sequencing technologies and modern bioinformatics approaches allows us to apply them for characterization of AMP-derived genes and the identification of encoded [...] Read more.
Marine polychaetes represent an extremely rich and underexplored source of novel families of antimicrobial peptides (AMPs). The rapid development of next generation sequencing technologies and modern bioinformatics approaches allows us to apply them for characterization of AMP-derived genes and the identification of encoded immune-related peptides with the aid of genome and transcriptome mining. Here, we describe a universal bioinformatic approach based on the conserved BRICHOS domain as a search query for the identification of novel structurally unique AMP families in annelids. In this paper, we report the discovery of 13 novel BRICHOS-related peptides, ranging from 18 to 91 amino acid residues in length, in the cosmopolitan marine worm Heteromastus filiformis with the assistance of transcriptome mining. Two characteristic peptides with a low homology in relation to known AMPs—the α-helical amphiphilic linear peptide, consisting of 28 amino acid residues and designated as HfBRI-28, and the 25-mer β-hairpin peptide, specified as HfBRI-25 and having a unique structure stabilized by two disulfide bonds—were obtained and analyzed as potential antimicrobials. Interestingly, both peptides showed the ability to kill bacteria via membrane damage, but mechanisms of their action and spectra of their activity differed significantly. Being non-cytotoxic towards mammalian cells and stable to proteolysis in the blood serum, HfBRI-25 was selected for further in vivo studies in a lethal murine model of the Escherichia coli infection, where the peptide contributed to the 100% survival rate in animals. A high activity against uropathogenic strains of E. coli (UPEC) as well as a strong ability to kill bacteria within biofilms allow us to consider the novel peptide HfBRI-25 as a promising candidate for the clinical therapy of urinary tract infections (UTI) associated with UPEC. Full article
(This article belongs to the Topic Antimicrobial Agents and Nanomaterials)
Show Figures

Figure 1

15 pages, 2185 KiB  
Article
High Structural Diversity of Aeruginosins in Bloom-Forming Cyanobacteria of the Genus Planktothrix as a Consequence of Multiple Recombination Events
Mar. Drugs 2023, 21(12), 638; https://doi.org/10.3390/md21120638 - 13 Dec 2023
Viewed by 1393
Abstract
Many compounds produced by cyanobacteria act as serine protease inhibitors, such as the tetrapeptides aeruginosins (Aer), which are found widely distributed. The structural diversity of Aer is intriguingly high. However, the genetic basis of this remains elusive. In this study, we explored the [...] Read more.
Many compounds produced by cyanobacteria act as serine protease inhibitors, such as the tetrapeptides aeruginosins (Aer), which are found widely distributed. The structural diversity of Aer is intriguingly high. However, the genetic basis of this remains elusive. In this study, we explored the genetic basis of Aer synthesis among the filamentous cyanobacteria Planktothrix spp. In total, 124 strains, isolated from diverse freshwater waterbodies, have been compared regarding variability within Aer biosynthesis genes and the consequences for structural diversity. The high structural variability could be explained by various recombination processes affecting Aer synthesis, above all, the acquisition of accessory enzymes involved in post synthesis modification of the Aer peptide (e.g., halogenases, glycosyltransferases, sulfotransferases) as well as a large-range recombination of Aer biosynthesis genes, probably transferred from the bloom-forming cyanobacterium Microcystis. The Aer structural composition differed between evolutionary Planktothrix lineages, adapted to either shallow or deep waterbodies of the temperate climatic zone. Thus, for the first time among bloom-forming cyanobacteria, chemical diversification of a peptide family related to eco-evolutionary diversification has been described. It is concluded that various Aer peptides resulting from the recombination event act in chemical defense, possibly as a replacement for microcystins. Full article
(This article belongs to the Special Issue Bioactive Product from Marine Cyanobacteria)
Show Figures

Graphical abstract

18 pages, 2185 KiB  
Article
n-Tuples on Scaffold Diversity Inspired by Drug Hybridisation to Enhance Drugability: Application to Cytarabine
Mar. Drugs 2023, 21(12), 637; https://doi.org/10.3390/md21120637 - 13 Dec 2023
Viewed by 1047
Abstract
A mathematical concept, n-tuples are originally applied to medicinal chemistry, especially with the creation of scaffold diversity inspired by the hybridisation of different commercial drugs with cytarabine, a synthetic arabinonucleoside derived from two marine natural products, spongouridine and spongothymidine. The new methodology explores [...] Read more.
A mathematical concept, n-tuples are originally applied to medicinal chemistry, especially with the creation of scaffold diversity inspired by the hybridisation of different commercial drugs with cytarabine, a synthetic arabinonucleoside derived from two marine natural products, spongouridine and spongothymidine. The new methodology explores the virtual chemical-factorial combination of different commercial drugs (immunosuppressant, antibiotic, antiemetic, anti-inflammatory, and anticancer) with the anticancer drug cytarabine. Real chemical combinations were designed and synthesised for 8-duples, obtaining a small representative library of interesting organic molecules to be biologically tested as proof of concept. The synthesised library contains classical molecular properties regarding the Lipinski rules and/or beyond rules of five (bRo5) and is represented by the covalent combination of the anticancer drug cytarabine with ibuprofen, flurbiprofen, folic acid, sulfasalazine, ciprofloxacin, bortezomib, and methotrexate. The insertion of specific nomenclature could be implemented into artificial intelligence algorithms in order to enhance the efficiency of drug-hunting programs. The novel methodology has proven useful for the straightforward synthesis of most of the theoretically proposed duples and, in principle, could be extended to any other central drug. Full article
(This article belongs to the Section Synthesis and Medicinal Chemistry of Marine Natural Products)
Show Figures

Graphical abstract

15 pages, 1775 KiB  
Article
The Salmon Oil OmeGo Reduces Viability of Colorectal Cancer Cells and Potentiates the Anti-Cancer Effect of 5-FU
Mar. Drugs 2023, 21(12), 636; https://doi.org/10.3390/md21120636 - 12 Dec 2023
Viewed by 1207
Abstract
Colorectal cancer (CRC) is one of the most common cancer types worldwide. Chemotherapy is toxic to normal cells, and combinatory treatment with natural well-tolerated products is being explored. Some omega-3 polyunsaturated fatty acids (n-3 PUFAs) and marine fish oils have anti-cancer effects on [...] Read more.
Colorectal cancer (CRC) is one of the most common cancer types worldwide. Chemotherapy is toxic to normal cells, and combinatory treatment with natural well-tolerated products is being explored. Some omega-3 polyunsaturated fatty acids (n-3 PUFAs) and marine fish oils have anti-cancer effects on CRC cells. The salmon oil OmeGo (Hofseth BioCare) contains a spectrum of fatty acids, including the n-3 PUFAs docosahexaenoic acid (DHA) and eicosahexaenoic acid (EPA). We explored a potential anti-cancer effect of OmeGo on the four CRC cell lines DLD-1, HCT-8, LS411N, and LS513, alone and in combination with the chemotherapeutic agent 5-Fluorouracil (5-FU). Screening indicated a time- and dose-dependent effect of OmeGo on the viability of the DLD-1 and LS513 CRC cell lines. Treatment with 5-FU and OmeGo (IC20–IC30) alone indicated a significant reduction in viability. A combinatory treatment with OmeGo and 5-FU resulted in a further reduction in viability in DLD-1 and LS513 cells. Treatment of CRC cells with DHA + EPA in a concentration corresponding to the content in OmeGo alone or combined with 5-FU significantly reduced viability of all four CRC cell lines tested. The lowest concentration of OmeGo reduced viability to a higher degree both alone and in combination with 5-FU compared to the corresponding concentrations of DHA + EPA in three of the cell lines. Results suggest that a combination of OmeGo and 5-FU could have a potential as an alternative anti-cancer therapy for patients with CRC. Full article
(This article belongs to the Special Issue Marine Natural Products as Anticancer Agents 3.0)
Show Figures

Graphical abstract

13 pages, 2224 KiB  
Article
Fucoxanthin Abrogates Ionizing Radiation-Induced Inflammatory Responses by Modulating Sirtuin 1 in Macrophages
Mar. Drugs 2023, 21(12), 635; https://doi.org/10.3390/md21120635 - 12 Dec 2023
Viewed by 1097
Abstract
Ionizing radiation (IR) triggers an overproduction of reactive oxygen species (ROS), disrupting the normal function of both immune and metabolic systems, leading to inflammation and metabolic disturbances. To address the pressing requirement for protection against IR, fucoxanthin (FX), a naturally occurring compound extracted [...] Read more.
Ionizing radiation (IR) triggers an overproduction of reactive oxygen species (ROS), disrupting the normal function of both immune and metabolic systems, leading to inflammation and metabolic disturbances. To address the pressing requirement for protection against IR, fucoxanthin (FX), a naturally occurring compound extracted from algae, was utilized as an efficient radioprotective agent in macrophages. In this study, we cultured murine RAW 264.7 macrophages and treated them with FX, along with agents influencing the activity of sirtuin 1 (SIRT1) and estrogen receptor α (ERα), to investigate their impact on IR-induced cellular responses. FX significantly attenuated IR-induced upregulation of pro-inflammatory genes (Il1b, Tnf, and Ccl2) and inhibited macrophage polarization toward the pro-inflammatory M1 phenotype. Additionally, FX regulated IR-induced metabolic genes mediating glycolysis and mitochondrial biogenesis. The ability of FX to mitigate IR-induced inflammation and glycolysis was ascribed to the expression and activity of SIRT1 and ERα in macrophages. This study not only uncovers the underlying mechanisms of FX's radioprotective properties but also highlights its potential as a protective agent against the detrimental effects of IR, thus offering new opportunities for enhancing radiation protection in the future. Full article
(This article belongs to the Special Issue Advances in Marine-Derived Fucoxanthin Studies)
Show Figures

Figure 1

15 pages, 2539 KiB  
Article
New Eremophilane-Type Sesquiterpenes from the Marine Sediment-Derived Fungus Emericellopsis maritima BC17 and Their Cytotoxic and Antimicrobial Activities
Mar. Drugs 2023, 21(12), 634; https://doi.org/10.3390/md21120634 - 11 Dec 2023
Cited by 1 | Viewed by 1699
Abstract
The fungal strain BC17 was isolated from sediments collected in the intertidal zone of the inner Bay of Cadiz and characterized as Emericellopsis maritima. On the basis of the one strain–many compounds (OSMAC) approach, four new eremophilane-type sesquiterpenes (14 [...] Read more.
The fungal strain BC17 was isolated from sediments collected in the intertidal zone of the inner Bay of Cadiz and characterized as Emericellopsis maritima. On the basis of the one strain–many compounds (OSMAC) approach, four new eremophilane-type sesquiterpenes (14), together with thirteen known derivatives (517) and two reported diketopiperazines (18, 19), were isolated from this strain. The chemical structures and absolute configurations of the new compounds were determined through extensive NMR and HRESIMS spectroscopic studies and ECD calculation. Thirteen of the isolated eremophilanes were examined for cytotoxic and antimicrobial activities. PR toxin (16) exhibited cytotoxic activity against HepG2, MCF-7, A549, A2058, and Mia PaCa-2 human cancer cell lines with IC50 values ranging from 3.75 to 33.44 µM. (+)-Aristolochene (10) exhibited selective activity against the fungal strains Aspergillus fumigatus ATCC46645 and Candida albicans ATCC64124 at 471 µM. Full article
(This article belongs to the Special Issue Marine Drugs Research in Spain 2nd Edition)
Show Figures

Graphical abstract

20 pages, 5632 KiB  
Review
Biotechnological Potential of Macroalgae during Seasonal Blooms for Sustainable Production of UV-Absorbing Compounds
Mar. Drugs 2023, 21(12), 633; https://doi.org/10.3390/md21120633 - 08 Dec 2023
Viewed by 1556
Abstract
Marine macroalgae (seaweeds) are important primary global producers, with a wide distribution in oceans around the world from polar to tropical regions. Most of these species are exposed to variable environmental conditions, such as abiotic (e.g., light irradiance, temperature variations, nutrient availability, salinity [...] Read more.
Marine macroalgae (seaweeds) are important primary global producers, with a wide distribution in oceans around the world from polar to tropical regions. Most of these species are exposed to variable environmental conditions, such as abiotic (e.g., light irradiance, temperature variations, nutrient availability, salinity levels) and biotic factors (e.g., grazing and pathogen exposure). As a result, macroalgae developed numerous important strategies to increase their adaptability, including synthesizing secondary metabolites, which have promising biotechnological applications, such as UV-absorbing Mycosporine-Like Amino Acid (MAAs). MAAs are small, water-soluble, UV-absorbing compounds that are commonly found in many marine organisms and are characterized by promising antioxidative, anti-inflammatory and photoprotective properties. However, the widespread use of MAAs by humans is often restricted by their limited bioavailability, limited success in heterologous expression systems, and low quantities recovered from the natural environment. In contrast, bloom-forming macroalgal species from all three major macroalgal clades (Chlorophyta, Phaeophyceae, and Rhodophyta) occasionally form algal blooms, resulting in a rapid increase in algal abundance and high biomass production. This review focuses on the bloom-forming species capable of producing pharmacologically important compounds, including MAAs, and the application of proteomics in facilitating macroalgal use in overcoming current environmental and biotechnological challenges. Full article
Show Figures

Figure 1

19 pages, 6775 KiB  
Article
Structural Characterization and Anticoagulant Activities of a Keratan Sulfate-like Polysaccharide from the Sea Cucumber Holothuria fuscopunctata
Mar. Drugs 2023, 21(12), 632; https://doi.org/10.3390/md21120632 - 08 Dec 2023
Cited by 1 | Viewed by 1195
Abstract
A sulfated polysaccharide (AG) was extracted and isolated from the sea cucumber H. fuscopunctata, consisting of GlcNAc, GalNAc, Gal, Fuc and lacking any uronic acid residues. Importantly, several chemical depolymerization methods were used to elucidate the structure of the AG through a [...] Read more.
A sulfated polysaccharide (AG) was extracted and isolated from the sea cucumber H. fuscopunctata, consisting of GlcNAc, GalNAc, Gal, Fuc and lacking any uronic acid residues. Importantly, several chemical depolymerization methods were used to elucidate the structure of the AG through a bottom-up strategy. A highly sulfated galactose (oAG-1) and two disaccharides labeled with 2,5-anhydro-D-mannose (oAG-2, oAG-3) were obtained from the deaminative depolymerized product along with the structures of the disaccharide derivatives (oAG-4~oAG-6) identified from the free radical depolymerized product, suggesting that the repeating building blocks in a natural AG should comprise the disaccharide β-D-GalS-1,4-D-GlcNAc6S. The possible disaccharide side chains (bAG-1) were obtained with mild acid hydrolysis. Thus, a natural AG may consist of a keratan sulfate-like (KS-like) glycosaminoglycan with diverse modifications, including the sulfation types of the Gal residue and the possible disaccharide branches α-D-GalNAc4S6S-1,2-α/β-L-Fuc3S linked to the KS-like chain. Additionally, the anticoagulant activities of the AG and its depolymerized products (dAG1-9) were evaluated in vitro using normal human plasma. The AG could prolong activated partial thromboplastin time (APTT) in a dose-dependent manner, and the activity potency was positively related to the chain length. The AG and dAG1-dAG3 could prolong thrombin time (TT), while they had little effect on prothrombin time (PT). The results indicate that the AG could inhibit the intrinsic and common coagulation pathways. Full article
(This article belongs to the Section Structural Studies on Marine Natural Products)
Show Figures

Figure 1

12 pages, 2634 KiB  
Article
Cytosporones with Anti-Inflammatory Activities from the Mangrove Endophytic Fungus Phomopsis sp. QYM-13
Mar. Drugs 2023, 21(12), 631; https://doi.org/10.3390/md21120631 - 07 Dec 2023
Viewed by 1055
Abstract
Six previously undescribed cytosporone derivatives (phomotones A-E (15) and phomotone F (13)), two new spiro-alkanol phombistenes A-B (1415), and seven known analogs (612) were isolated from the mangrove endophytic [...] Read more.
Six previously undescribed cytosporone derivatives (phomotones A-E (15) and phomotone F (13)), two new spiro-alkanol phombistenes A-B (1415), and seven known analogs (612) were isolated from the mangrove endophytic fungus Phomopsis sp. QYM-13. The structures of these compounds were elucidated using spectroscopic data analysis, electronic circular dichroism (ECD), and 13C NMR calculations. Compound 14 features an unprecedented 1,6-dioxaspiro[4.5]decane ring system. All isolates were evaluated for their inhibitory effect on nitric oxide (NO) in LPS-induced RAW264.7 cells. The results showed that compounds 1, 6, 8, and 11 exhibited potent bioactivities by comparing with positive control. Then, compound 1 displayed the anti-inflammatory effect by inhibiting the MAPK/NF-κB signaling pathways. Molecular docking further revealed the possible mechanism of compound 1 interaction with ERK protein. Full article
Show Figures

Figure 1

27 pages, 1666 KiB  
Review
The Clinical Promise of Microalgae in Rheumatoid Arthritis: From Natural Compounds to Recombinant Therapeutics
Mar. Drugs 2023, 21(12), 630; https://doi.org/10.3390/md21120630 - 07 Dec 2023
Viewed by 4026
Abstract
Rheumatoid arthritis (RA) is an invalidating chronic autoimmune disorder characterized by joint inflammation and progressive bone damage. Dietary intervention is an important component in the treatment of RA to mitigate oxidative stress, a major pathogenic driver of the disease. Alongside traditional sources of [...] Read more.
Rheumatoid arthritis (RA) is an invalidating chronic autoimmune disorder characterized by joint inflammation and progressive bone damage. Dietary intervention is an important component in the treatment of RA to mitigate oxidative stress, a major pathogenic driver of the disease. Alongside traditional sources of antioxidants, microalgae—a diverse group of photosynthetic prokaryotes and eukaryotes—are emerging as anti-inflammatory and immunomodulatory food supplements. Several species accumulate therapeutic metabolites—mainly lipids and pigments—which interfere in the pro-inflammatory pathways involved in RA and other chronic inflammatory conditions. The advancement of the clinical uses of microalgae requires the continuous exploration of phytoplankton biodiversity and chemodiversity, followed by the domestication of wild strains into reliable producers of said metabolites. In addition, the tractability of microalgal genomes offers unprecedented possibilities to establish photosynthetic microbes as light-driven biofactories of heterologous immunotherapeutics. Here, we review the evidence-based anti-inflammatory mechanisms of microalgal metabolites and provide a detailed coverage of the genetic engineering strategies to enhance the yields of endogenous compounds and to develop innovative bioproducts. Full article
(This article belongs to the Section Marine Biotechnology Related to Drug Discovery or Production)
Show Figures

Graphical abstract

18 pages, 1974 KiB  
Article
Polar Lipids of Marine Microalgae Nannochloropsis oceanica and Chlorococcum amblystomatis Mitigate the LPS-Induced Pro-Inflammatory Response in Macrophages
Mar. Drugs 2023, 21(12), 629; https://doi.org/10.3390/md21120629 - 06 Dec 2023
Viewed by 1225
Abstract
Microalgae are recognized as a relevant source of bioactive compounds. Among these bioactive products, lipids, mainly glycolipids, have been shown to present immunomodulatory properties with the potential to mitigate chronic inflammation. This study aimed to evaluate the anti-inflammatory effect of polar lipids isolated [...] Read more.
Microalgae are recognized as a relevant source of bioactive compounds. Among these bioactive products, lipids, mainly glycolipids, have been shown to present immunomodulatory properties with the potential to mitigate chronic inflammation. This study aimed to evaluate the anti-inflammatory effect of polar lipids isolated from Nannochloropsis oceanica and Chlorococcum amblystomatis. Three fractions enriched in (1) digalactosyldiacylglycerol (DGDG) and sulfoquinovosyldiacylglycerol (SQDG), (2) monogalactosyldiacylglycerol (MGDG), and (3) diacylglyceryl-trimethylhomoserine (DGTS) and phospholipids (PL) were obtained from the total lipid extracts (TE) of N. oceanica and C. amblystomatis, and their anti-inflammatory effect was assessed by analyzing their capacity to counteract nitric oxide (NO) production and transcription of pro-inflammatory genes Nos2, Ptgs2, Tnfa, and Il1b in lipopolysaccharide (LPS)-activated macrophages. For both microalgae, TE and Fractions 1 and 3 strongly inhibited NO production, although to different extents. A strong reduction in the LPS-induced transcription of Nos2, Ptgs2, Tnfa, and Il1b was observed for N. oceanica and C. amblystomatis lipids. The most active fractions were the DGTS-and-PL-enriched fraction from N. oceanica and the DGDG-and-SQDG-enriched fraction from C. amblystomatis. Our results reveal that microalgae lipids have strong anti-inflammatory capacity and may be explored as functional ingredients or nutraceuticals, offering a natural solution to tackle chronic inflammation-associated diseases. Full article
(This article belongs to the Special Issue Marine Lipids 2023)
Show Figures

Figure 1

17 pages, 2229 KiB  
Article
Extending the Structural Diversity of Labdane Diterpenoids from Marine-Derived Fungus Talaromyces sp. HDN151403 Using Heterologous Expression
Mar. Drugs 2023, 21(12), 628; https://doi.org/10.3390/md21120628 - 03 Dec 2023
Viewed by 1469
Abstract
Heterologous biosynthesis has become an effective means to activate fungal silent biosynthetic gene clusters (BGCs) and efficiently utilize fungal genetic resources. Herein, thirteen labdane diterpene derivatives, including five undescribed ones named talarobicins A–E (37), were discovered via heterologous expression [...] Read more.
Heterologous biosynthesis has become an effective means to activate fungal silent biosynthetic gene clusters (BGCs) and efficiently utilize fungal genetic resources. Herein, thirteen labdane diterpene derivatives, including five undescribed ones named talarobicins A–E (37), were discovered via heterologous expression of a silent BGC (labd) in Aspergillus nidulans. Their structures with absolute configurations were elucidated using extensive MS and NMR spectroscopic methods, as well as electronic circular dichroism (ECD) calculations. These labdanes belong to four skeleton types, and talarobicin B (4) is the first 3,18-dinor-2,3:4,18-diseco-labdane diterpene with the cleavage of the C2–C3 bond in ring A and the decarboxylation at C-3 and C-18. Talarobicin B (4) represents the key intermediate in the biosynthesis of penioxalicin and compound 13. The combinatorial heterologous expression and feeding experiments revealed that the cytochrome P450 enzymes LabdC, LabdE, and LabdF were responsible for catalyzing various chemical reactions, such as oxidation, decarboxylation, and methylation. All of the compounds are noncytotoxic, and compounds 2 and 8 displayed inhibitory effects against methicillin-resistant coagulase-negative staphylococci (MRCNS) and Bacillus cereus. Full article
Show Figures

Figure 1

32 pages, 49487 KiB  
Article
Simplified Synthesis of Renieramycin T Derivatives to Target Cancer Stem Cells via β-Catenin Proteasomal Degradation in Human Lung Cancer
Mar. Drugs 2023, 21(12), 627; https://doi.org/10.3390/md21120627 - 30 Nov 2023
Viewed by 1344
Abstract
Cancer stem cells (CSCs) found within cancer tissue play a pivotal role in its resistance to therapy and its potential to metastasize, contributing to elevated mortality rates among patients. Significant strides in understanding the molecular foundations of CSCs have led to preclinical investigations [...] Read more.
Cancer stem cells (CSCs) found within cancer tissue play a pivotal role in its resistance to therapy and its potential to metastasize, contributing to elevated mortality rates among patients. Significant strides in understanding the molecular foundations of CSCs have led to preclinical investigations and clinical trials focused on CSC regulator β-catenin signaling targeted interventions in malignancies. As part of the ongoing advancements in marine-organism-derived compound development, it was observed that among the six analogs of Renieramycin T (RT), a potential lead alkaloid from the blue sponge Xestospongia sp., the compound DH_32, displayed the most robust anti-cancer activity in lung cancer A549, H23, and H292 cells. In various lung cancer cell lines, DH_32 exhibited the highest efficacy, with IC50 values of 4.06 ± 0.24 μM, 2.07 ± 0.11 μM, and 1.46 ± 0.06 μM in A549, H23, and H292 cells, respectively. In contrast, parental RT compounds had IC50 values of 5.76 ± 0.23 μM, 2.93 ± 0.07 μM, and 1.52 ± 0.05 μM in the same order. Furthermore, at a dosage of 25 nM, DH_32 showed a stronger ability to inhibit colony formation compared to the lead compound, RT. DH_32 was capable of inducing apoptosis in lung cancer cells, as demonstrated by increased PARP cleavage and reduced levels of the proapoptotic protein Bcl2. Our discovery confirms that DH_32 treatment of lung cancer cells led to a reduced level of CD133, which is associated with the suppression of stem-cell-related transcription factors like OCT4. Moreover, DH_32 significantly suppressed the ability of tumor spheroids to form compared to the original RT compound. Additionally, DH_32 inhibited CSCs by promoting the degradation of β-catenin through ubiquitin–proteasomal pathways. In computational molecular docking, a high-affinity interaction was observed between DH_32 (grid score = −35.559 kcal/mol) and β-catenin, indicating a stronger binding interaction compared to the reference compound R9Q (grid score = −29.044 kcal/mol). In summary, DH_32, a newly developed derivative of the right-half analog of RT, effectively inhibited the initiation of lung cancer spheroids and the self-renewal of lung cancer cells through the upstream process of β-catenin ubiquitin–proteasomal degradation. Full article
(This article belongs to the Special Issue Synthesis and Discovery of Marine Antitumor Molecules)
Show Figures

Figure 1

16 pages, 5520 KiB  
Article
A Multifaceted Computational Approach to Understanding the MERS-CoV Main Protease and Brown Algae Compounds’ Interaction
Mar. Drugs 2023, 21(12), 626; https://doi.org/10.3390/md21120626 - 30 Nov 2023
Cited by 1 | Viewed by 1182
Abstract
Middle East Respiratory Syndrome (MERS) is a viral respiratory disease caused b a special type of coronavirus called MERS-CoV. In the search for effective substances against the MERS-CoV main protease, we looked into compounds from brown algae, known for their medicinal benefits. From [...] Read more.
Middle East Respiratory Syndrome (MERS) is a viral respiratory disease caused b a special type of coronavirus called MERS-CoV. In the search for effective substances against the MERS-CoV main protease, we looked into compounds from brown algae, known for their medicinal benefits. From a set of 1212 such compounds, our computer-based screening highlighted four—CMNPD27819, CMNPD1843, CMNPD4184, and CMNPD3156. These showed good potential in how they might attach to the MERS-CoV protease, comparable to a known inhibitor. We confirmed these results with multiple computer tests. Studies on the dynamics and steadiness of these compounds with the MERS-CoV protease were performed using molecular dynamics (MD) simulations. Metrics like RMSD and RMSF showed their stability. We also studied how these compounds and the protease interact in detail. An analysis technique, PCA, showed changes in atomic positions over time. Overall, our computer studies suggest brown algae compounds could be valuable in fighting MERS. However, experimental validation is needed to prove their real-world effectiveness. Full article
(This article belongs to the Special Issue Marine Compounds and Research of the Middle East 2nd Edition)
Show Figures

Figure 1

22 pages, 6213 KiB  
Article
Blood Coagulation Activities of Cotton–Alginate–Copper Composites
Mar. Drugs 2023, 21(12), 625; https://doi.org/10.3390/md21120625 - 30 Nov 2023
Viewed by 1204
Abstract
Alginate-based materials have gained significant attention in the medical industry due to their biochemical properties. In this article, we aimed to synthesize Cotton–Alginate–Copper Composite Materials (COT-Alg(−)Cu(2+)). The main purpose of this study was to assess the biochemical properties of [...] Read more.
Alginate-based materials have gained significant attention in the medical industry due to their biochemical properties. In this article, we aimed to synthesize Cotton–Alginate–Copper Composite Materials (COT-Alg(−)Cu(2+)). The main purpose of this study was to assess the biochemical properties of new composites in the area of blood plasma coagulation processes, including activated partial thromboplastin time (aPTT), prothrombin time (PT), and thrombin time (TT). This study also involved in vitro antimicrobial activity evaluation of materials against representative colonies of Gram-positive and Gram-negative bacteria and antifungal susceptibility tests. The materials were prepared by immersing cotton fibers in an aqueous solution of sodium alginate, followed by ionic cross-linking of alginate chains within the fibers with Cu(II) ions to yield antimicrobial activity. The results showed that the obtained cotton–alginate–copper composites were promising materials to be used in biomedical applications, e.g., wound dressing. Full article
(This article belongs to the Special Issue Alginate-Based Biomaterials and Drug Delivery 2nd Edition)
Show Figures

Figure 1

16 pages, 4281 KiB  
Article
Laminarin Reduces Cholesterol Uptake and NPC1L1 Protein Expression in High-Fat Diet (HFD)-Fed Mice
Mar. Drugs 2023, 21(12), 624; https://doi.org/10.3390/md21120624 - 29 Nov 2023
Viewed by 1235
Abstract
Aberrantly high dietary cholesterol intake and intestinal cholesterol uptake lead to dyslipidemia, one of the risk factors for cardiovascular diseases (CVDs). Based on previous studies, laminarin, a polysaccharide found in brown algae, has hypolipidemic activity, but its underlying mechanism has not been elucidated. [...] Read more.
Aberrantly high dietary cholesterol intake and intestinal cholesterol uptake lead to dyslipidemia, one of the risk factors for cardiovascular diseases (CVDs). Based on previous studies, laminarin, a polysaccharide found in brown algae, has hypolipidemic activity, but its underlying mechanism has not been elucidated. In this study, we investigated the effect of laminarin on intestinal cholesterol uptake in vitro, as well as the lipid and morphological parameters in an in vivo model of high-fat diet (HFD)-fed mice, and addressed the question of whether Niemann–Pick C1-like 1 protein (NPC1L1), a key transporter mediating dietary cholesterol uptake, is involved in the mechanistic action of laminarin. In in vitro studies, BODIPY-cholesterol-labeled Caco-2 cells were examined using confocal microscopy and a fluorescence reader. The results demonstrated that laminarin inhibited cholesterol uptake into Caco-2 cells in a concentration-dependent manner (EC50 = 20.69 μM). In HFD-fed C57BL/6J mice, laminarin significantly reduced the serum levels of total cholesterol (TC), total triglycerides (TG), and low-density lipoprotein cholesterol (LDL-C). It also decreased hepatic levels of TC, TG, and total bile acids (TBA) while promoting the excretion of fecal cholesterol. Furthermore, laminarin significantly reduced local villous damage in the jejunum of HFD mice. Mechanistic studies revealed that laminarin significantly downregulated NPC1L1 protein expression in the jejunum of HFD-fed mice. The siRNA-mediated knockdown of NPC1L1 attenuated the laminarin-mediated inhibition of cholesterol uptake in Caco-2 cells. This study suggests that laminarin significantly improves dyslipidemia in HFD-fed mice, likely by reducing cholesterol uptake through a mechanism that involves the downregulation of NPC1L1 expression. Full article
(This article belongs to the Collection Marine Drugs in the Management of Metabolic Diseases)
Show Figures

Figure 1

18 pages, 25300 KiB  
Article
Alcalase-Assisted Mytilus edulis Hydrolysate: A Nutritional Approach for Recovery from Muscle Atrophy
Mar. Drugs 2023, 21(12), 623; https://doi.org/10.3390/md21120623 - 29 Nov 2023
Viewed by 1197
Abstract
Muscle atrophy is a complex physiological condition caused by a variety of reasons, including muscle disuse, aging, malnutrition, chronic diseases, immobilization, and hormonal imbalance. Beyond its effect on physical appearance, this condition significantly reduces the quality of human life, thus warranting the development [...] Read more.
Muscle atrophy is a complex physiological condition caused by a variety of reasons, including muscle disuse, aging, malnutrition, chronic diseases, immobilization, and hormonal imbalance. Beyond its effect on physical appearance, this condition significantly reduces the quality of human life, thus warranting the development of preventive strategies. Although exercising is effective in managing this condition, it is applicable only for individuals who can engage in physical activities and are not bedridden. A combination of exercise and nutritional supplementation has emerged as a more advantageous approach. Here, we evaluated the effects of enzyme-assisted hydrolysates of Mytilus edulis prepared using Protamex (PMH), Alcalase (AMH), or Flavourzyme (FMH) in protecting against muscle atrophy in a dexamethasone (Dex)-induced muscular atrophy model in vitro and in vitro. Alcalase-assisted M. edulis hydrolysate (AMH) was the most efficient among the tested treatments and resulted in higher protein recovery (57.06 ± 0.42%) and abundant amino acid composition (43,158 mg/100 g; 43.16%). AMH treatment also escalated the proliferation of C2C12 cells while increasing the total number of nuclei, myotube coverage, and myotube diameter. These results were corroborated by a successful reduction in the levels of proteins responsible for muscle atrophy, including E3 ubiquitin ligases, and an increase in the expression of proteins associated with muscle hypertrophy, including myogenin and MyHC. These results were further solidified by the successful enhancement of locomotor ability and body weight in zebrafish following AMH treatment. Thus, these findings highlight the potential of AMH in recovery from muscle atrophy. Full article
Show Figures

Figure 1

13 pages, 4424 KiB  
Article
Resistomycin Inhibits Wnt/β-Catenin Signaling to Induce the Apoptotic Death of Human Colorectal Cancer Cells
Mar. Drugs 2023, 21(12), 622; https://doi.org/10.3390/md21120622 - 29 Nov 2023
Viewed by 1118
Abstract
Resistomycin is a natural antibiotic related to quinone that has been shown to exhibit robust antitumor activity. To further characterize the mechanistic basis for such activity, human colorectal cancer (CRC) cells were selected as a model to explore the role of Wnt/β-catenin signaling [...] Read more.
Resistomycin is a natural antibiotic related to quinone that has been shown to exhibit robust antitumor activity. To further characterize the mechanistic basis for such activity, human colorectal cancer (CRC) cells were selected as a model to explore the role of Wnt/β-catenin signaling in the ability of resistomycin to induce apoptotic cell death. These analyses revealed that resistomycin was able to suppress β-catenin, TCF4, and GSK-3β expression, together with that of the downstream targets c-Myc and survivin. This coincided with elevated cleaved caspase-3 and Bax protein levels and a decline in Bcl-2 content. When β-catenin was silenced, this further enhanced the ability of resistomycin to induce apoptotic CRC cell death, whereas this apoptotic process was partially ablated when cells were treated using lithium chloride to activate Wnt/β-catenin signaling. Overall, these results support a model wherein resistomycin inhibits Wnt/β-catenin signaling within CRC cells, thereby inducing apoptotic death. Further research may be warranted to better clarify the potential utility of this compound as a candidate drug for use in the treatment of patients suffering from this form of cancer. Full article
(This article belongs to the Special Issue Marine Drugs in Cell Signaling Pathways 2nd Edition)
Show Figures

Figure 1

15 pages, 2128 KiB  
Article
Ectoine Globally Hypomethylates DNA in Skin Cells and Suppresses Cancer Proliferation
Mar. Drugs 2023, 21(12), 621; https://doi.org/10.3390/md21120621 - 29 Nov 2023
Viewed by 1195
Abstract
Epigenetic modifications, mainly aberrant DNA methylation, have been shown to silence the expression of genes involved in epigenetic diseases, including cancer suppression genes. Almost all conventional cancer therapeutic agents, such as the DNA hypomethylation drug 5-aza-2-deoxycytidine, have insurmountable side effects. To investigate the [...] Read more.
Epigenetic modifications, mainly aberrant DNA methylation, have been shown to silence the expression of genes involved in epigenetic diseases, including cancer suppression genes. Almost all conventional cancer therapeutic agents, such as the DNA hypomethylation drug 5-aza-2-deoxycytidine, have insurmountable side effects. To investigate the role of the well-known DNA protectant (ectoine) in skin cell DNA methylation and cancer cell proliferation, comprehensive methylome sequence analysis, 5-methyl cytosine (5mC) analysis, proliferation and tumorigenicity assays, and DNA epigenetic modifications-related gene analysis were performed. The results showed that extended ectoine treatment globally hypomethylated DNA in skin cells, especially in the CpG island (CGIs) element, and 5mC percentage was significantly reduced. Moreover, ectoine mildly inhibited skin cell proliferation and did not induce tumorigenicity in HaCaT cells injected into athymic nude mice. HaCaT cells treated with ectoine for 24 weeks modulated the mRNA expression levels of Dnmt1, Dnmt3a, Dnmt3b, Dnmt3l, Hdac1, Hdac2, Kdm3a, Mettl3, Mettl14, Snrpn, and Mest. Overall, ectoine mildly demethylates DNA in skin cells, modulates the expression of epigenetic modification-related genes, and reduces cell proliferation. This evidence suggests that ectoine is a potential anti-aging agent that prevents DNA hypermethylation and subsequently activates cancer-suppressing genes. Full article
Show Figures

Graphical abstract

25 pages, 1176 KiB  
Review
Exploring the Potential of Using Marine-Derived Ingredients: From the Extraction to Cutting-Edge Cosmetics
Mar. Drugs 2023, 21(12), 620; https://doi.org/10.3390/md21120620 - 29 Nov 2023
Viewed by 1793
Abstract
The growing understanding and knowledge of the potential of marine species, as well as the application of “blue biotechnology” have been motivating new innovative solutions in cosmetics. It is widely noted that that marine species are important sources of compounds with several biological [...] Read more.
The growing understanding and knowledge of the potential of marine species, as well as the application of “blue biotechnology” have been motivating new innovative solutions in cosmetics. It is widely noted that that marine species are important sources of compounds with several biological activities that are yet to be discovered. This review explores various biological properties of marine-derived molecules and briefly outlines the main extraction methods. Alongside these, it is well known the legislative and normative framework of cosmetics is increasingly being developed. In this research segment, there is a growing concern with sustainability. In this sense, “blue biotechnology”, together with the use of invasive species or marine waste products to obtain new active ingredients, haven been emerging as innovative and sustainable solutions for the future’s cosmetics industry. This review also examines the regulatory framework and focus on the recent advancements in “blue biotechnology” and its relevance to the sustainable development of innovative cosmetics. Full article
(This article belongs to the Special Issue Characterization of Bioactive Components in Edible Algae 3rd Edition)
Show Figures

Graphical abstract

17 pages, 2094 KiB  
Article
Improving Determination of Pigment Contents in Microalgae Suspension with Absorption Spectroscopy: Light Scattering Effect and Bouguer–Lambert–Beer Law
Mar. Drugs 2023, 21(12), 619; https://doi.org/10.3390/md21120619 - 29 Nov 2023
Viewed by 1157
Abstract
The Bouguer–Lambert–Beer (BLB) law serves as the fundamental basis for the spectrophotometric determination of pigment content in microalgae. Although it has been observed that the applicability of the BLB law is compromised by the light scattering effect in microalgae suspensions, in-depth research concerning [...] Read more.
The Bouguer–Lambert–Beer (BLB) law serves as the fundamental basis for the spectrophotometric determination of pigment content in microalgae. Although it has been observed that the applicability of the BLB law is compromised by the light scattering effect in microalgae suspensions, in-depth research concerning the relationship between the light scattering effect and the accuracy of spectrophotometric pigment determination remains scarce. We hypothesized that (1) the precision of spectrophotometric pigment content determination using the BLB law would diminish with increasing nonlinearity of absorbance, and (2) employing the modified version of the BLB (mBLB) law would yield superior performance. To assess our hypotheses, we cultivated Phaeodactylum tricornutum under varying illumination conditions and nitrogen supplies in controlled indoor experiments, resulting in suspensions with diverse pigment contents. Subsequently, P. tricornutum samples were diluted into subsamples, and spectral measurements were conducted using different combinations of biomass concentrations and path lengths. This was carried out to assess the applicability of the BLB law and the nonlinearity of absorbance. The chlorophyll a and fucoxanthin contents in the samples were analyzed via high-performance liquid chromatography (HPLC) and subsequently used in our modeling. Our findings confirm our hypotheses, showing that the modified BLB law outperforms the original BLB law in terms of the normalized root mean square error (NRMSE): 6.3% for chlorophyll a and 5.8% for fucoxanthin, compared to 8.5% and 7.9%, respectively. Full article
(This article belongs to the Special Issue Novel Biotechnology of Microalgae)
Show Figures

Graphical abstract

17 pages, 5421 KiB  
Article
Biocosmetics Made with Saccharina latissima Fractions from Sustainable Treatment: Physicochemical and Thermorheological Features
Mar. Drugs 2023, 21(12), 618; https://doi.org/10.3390/md21120618 - 29 Nov 2023
Viewed by 1134
Abstract
This work deals with the formulation of natural cosmetics enriched with antioxidant fractions from the ultrasound treatment (US) of the brown seaweed Saccharina latissima. The challenge was the development of a cosmetic matrix without jeopardizing the thermorheological features of the creams, adding [...] Read more.
This work deals with the formulation of natural cosmetics enriched with antioxidant fractions from the ultrasound treatment (US) of the brown seaweed Saccharina latissima. The challenge was the development of a cosmetic matrix without jeopardizing the thermorheological features of the creams, adding microparticles containing the antioxidant fractions using two different carriers, mannitol and alginate. The fundamental chemical characteristics of seaweed and the extracts obtained via sonication, as well as the antioxidant properties of the latter, were analyzed. The highest TEAC (Trolox equivalent antioxidant capacity) value was identified for the extracts subjected to the longest processing time using ultrasound-assisted extraction (240 min). A similar yield of microparticle formulation (around 60%) and load capacity (about 85%) were identified with mannitol and alginate as carriers. Color testing of the creams exhibited small total color differences. The rheological results indicated that the testing temperature, from 5 to 45 °C, notably influenced the apparent viscosity of the matrices. All creams were adequately fitted with the two parameters of the Ostwald–de Waele model, with the flow consistency index following an Arrhenius dependency with the testing temperature. Neither hysteresis nor water syneresis was observed in the proposed cosmetics during 6 months of cold storage at 4–6 °C. Full article
(This article belongs to the Special Issue Marine Cosmeceuticals)
Show Figures

Figure 1

19 pages, 5274 KiB  
Article
Potentiating TRPA1 by Sea Anemone Peptide Ms 9a-1 Reduces Pain and Inflammation in a Model of Osteoarthritis
Mar. Drugs 2023, 21(12), 617; https://doi.org/10.3390/md21120617 - 28 Nov 2023
Cited by 1 | Viewed by 1168
Abstract
Progressive articular surface degradation during arthritis causes ongoing pain and hyperalgesia that lead to the development of functional disability. TRPA1 channel significantly contributes to the activation of sensory neurons that initiate neurogenic inflammation and mediates pain signal transduction to the central nervous system. [...] Read more.
Progressive articular surface degradation during arthritis causes ongoing pain and hyperalgesia that lead to the development of functional disability. TRPA1 channel significantly contributes to the activation of sensory neurons that initiate neurogenic inflammation and mediates pain signal transduction to the central nervous system. Peptide Ms 9a-1 from the sea anemone Metridium senile is a positive allosteric modulator of TRPA1 and shows significant anti-inflammatory and analgesic activity in different models of pain. We used a model of monosodium iodoacetate (MIA)-induced osteoarthritis to evaluate the anti-inflammatory properties of Ms 9a-1 in comparison with APHC3 (a polypeptide modulator of TRPV1 channel) and non-steroidal anti-inflammatory drugs (NSAIDs) such as meloxicam and ibuprofen. Administration of Ms 9a-1 (0.1 mg/kg, subcutaneously) significantly reversed joint swelling, disability, thermal and mechanical hypersensitivity, and grip strength impairment. The effect of Ms 9a-1 was equal to or better than that of reference drugs. Post-treatment histological analysis revealed that long-term administration of Ms9a-1 could reduce inflammatory changes in joints and prevent the progression of cartilage and bone destruction at the same level as meloxicam. Peptide Ms 9a-1 showed significant analgesic and anti-inflammatory effects in the model of MIA-induced OA, and therefore positive allosteric modulators could be considered for the alleviation of OA symptoms. Full article
(This article belongs to the Section Marine Pharmacology)
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop