Preparation and Antioxidant Activity of New Carboxymethyl Chitosan Derivatives Bearing Quinoline Groups
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemical Synthesis and Characterization
2.1.1. Yields and DS Analysis
2.1.2. FTIR Spectra Analysis
2.1.3. 1H NMR Spectra Analysis
2.2. Antioxidant Activity
2.3. Cytotoxicity Analysis
3. Materials and Methods
3.1. Materials
3.2. Preparation of Chitosan Derivatives
3.2.1. Synthesis of O-Carboxymethyl Chitosan (O-CMCS)
3.2.2. Synthesis of N-Carboxymethyl Chitosan (N-CMCS)
3.2.3. Synthesis of N, O-Carboxymethyl Chitosan (N, O-CMCS)
3.2.4. Synthesis of N, N, N-Trimethyl-O-Carboxymethyl Chitosan (N-TM-O-CMCS)
3.2.5. Synthesis of Carboxymethyl Chitosan Derivatives Bearing Quinoline Groups (1a–1d, 2a–2d, 3a–3d, and 4a–4d)
3.3. Analytical Methods
3.3.1. Fourier Transform Infrared Spectroscopy (FTIR)
3.3.2. 1H Nuclear Magnetic Resonance Spectroscopy (1H NMR)
3.3.3. Degrees of Substitution (DS)
3.4. Antioxidant Assay In Vitro
3.4.1. DPPH Radical Scavenging Activity
3.4.2. Superoxide Anion Radical Scavenging Activity
3.4.3. Hydroxyl Radical Scavenging Activity
3.4.4. Ferric-Reducing Antioxidant Power
3.5. Cytotoxicity Assay
3.5.1. Cell Preparation and Culturing
3.5.2. Cell Viability Assay
3.6. Statistical Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cardoso, M.A.; Gonçalves, H.M.R.; Davis, F. Reactive oxygen species in biological media are they friend or foe? Major In vivo and In vitro sensing challenges. Talanta 2023, 260, 124648. [Google Scholar] [CrossRef]
- MohanKumar, S.M.J.; Murugan, A.; Palaniyappan, A.; MohanKumar, P.S. Role of cytokines and reactive oxygen species in brain aging. Mech. Ageing Dev. 2023, 214, 111855. [Google Scholar] [CrossRef]
- Rosa, C.P.; Belo, T.C.A.; Santos, N.C.d.M.; Silva, E.N.; Gasparotto, J.; Corsetti, P.P.; de Almeida, L.A. Reactive oxygen species trigger inflammasome activation after intracellular microbial interaction. Life Sci. 2023, 331, 122076. [Google Scholar] [CrossRef]
- Chasara, R.S.; Ajayi, T.O.; Leshilo, D.M.; Poka, M.S.; Witika, B.A. Exploring novel strategies to improve anti-tumour efficiency: The potential for targeting reactive oxygen species. Heliyon 2023, 9, e19896. [Google Scholar] [CrossRef]
- Zhou, X.; Chen, Q.; Chen, L.; Liao, X.; Wang, Z.; Zhu, F. The effect of reactive oxygen species (ROS) in immunity and WSSV infection of Scylla paramamosain. Fish Shellfish Immunol. 2023, 141, 109075. [Google Scholar] [CrossRef]
- Ali, M.M.A.; Suriyan, G.U.; Surya, K.J.; Mani, K.S. Synthesis of bioactive quinoline appended spiro pyrrolidines as antioxidants. J. Heterocycl. Chem. 2023, 60, 1558–1564. [Google Scholar] [CrossRef]
- Harry, N.A.; Ujwaldev, S.M.; Anilkumar, G. Recent advances and prospects in the metal-free synthesis of quinolines. Org. Biomol. Chem. 2020, 18, 9775–9790. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, J.; Yong, S.; Zhao, Y. Acid/base-co-catalyzed cyclization of ketones with o-amino-benzylamines: Direct synthesis of quinoline compounds. Tetrahedron Lett. 2023, 128, 154700. [Google Scholar] [CrossRef]
- Ambatkar, M.P.; Rarokar, N.R.; Khedekar, P.B. Clinical Use of COX-2 Inhibitors Containing Quinoline Heterocycle as a Selective Therapeutic Agents for Complementary Medicine. Clin. Complement. Med. Pharmacol. 2023, 3, 100102. [Google Scholar] [CrossRef]
- Douadi, K.; Chafaa, S.; Douadi, T.; Al-Noaimi, M.; Kaabi, I. Azoimine quinoline derivatives: Synthesis, classical and electrochemical evaluation of antioxidant, anti-inflammatory, antimicrobial activities and the DNA / BSA binding. J. Mol. Struct. 2020, 1217, 128305. [Google Scholar] [CrossRef]
- Mahajan, P.; Nikam, M.; Asrondkar, A.; Bobade, A.; Gill, C. Synthesis, Antioxidant, and Anti-Inflammatory Evaluation of Novel Thiophene-Fused Quinoline Based β-Diketones and Derivatives. J. Heterocycl. Chem. 2016, 54, 1415–1422. [Google Scholar] [CrossRef]
- Bandiwadekar, C.R.; Jagdale, A.D.; Durge, A.S.; Pachpor, T.A.; Tupe, R.S. Evaluation of different sugars for glycation modifications of chitosan to improve its functionality for food preservation. Food Hydrocoll. 2023, 145, 109104. [Google Scholar] [CrossRef]
- Kritchenkov, A.S.; Egorov, A.R.; Volkova, O.V.; Artemjev, A.A.; Kurliuk, A.V.; Anh Le, T.; Hieu Truong, H.; Le-Nhat-Thuy, G.; Van Tran Thi, T.; Van Tuyen, N.; et al. Novel biopolymer-based nanocomposite food coatings that exhibit active and smart properties due to a single type of nanoparticles. Food Chem. 2021, 343, 128676. [Google Scholar] [CrossRef]
- Kang, H.; Jiang, B.; Song, C.; Huang, J.; Chu, L. Synthesis and fluorescent property of carboxymethyl chitosan with different degrees of carboxymethylation and its application for fluorescence turn-on detection of Cd(II) ion. Int. J. Biol. Macromol. 2023, 250, 126252. [Google Scholar] [CrossRef]
- Nawaz, A.; Atif, M.; Naz, I.; Khan, A.; Naz, F.; Ali, N. Comparative robustness and sustainability of in-situ prepared antimony nanoarchitectonics in chitosan/synthesized carboxymethyl chitosan in environmental remediation perspective. Int. J. Biol. Macromol. 2023, 235, 123591. [Google Scholar] [CrossRef]
- Fu, Y.; Li, C.; Xue, M.; Cao, Y.; Zhang, W.; Li, D. Liquid handling properties of carboxymethyl modified chitosan nonwovens for medical dressings. J. Mol. Struct. 2023, 1292, 136118. [Google Scholar] [CrossRef]
- Geng, Y.; Xue, H.; Zhang, Z.; Panayi, A.C.; Knoedler, S.; Zhou, W.; Mi, B.; Liu, G. Recent advances in carboxymethyl chitosan-based materials for biomedical applications. Carbohydr. Polym. 2023, 305, 120555. [Google Scholar] [CrossRef]
- Zidan, N.; Albalawi, M.A.; Alalawy, A.I.; Al-Duais, M.A.; Alzahrani, S.; Kasem, M.; Tayel, A.A.; Nagib, R.M. Active and smart antimicrobial food packaging film composed of date palm kernels extract loaded carboxymethyl chitosan and carboxymethyl starch composite for prohibiting foodborne pathogens during fruits preservation. Eur. Polym. J. 2023, 197, 112353. [Google Scholar] [CrossRef]
- Al-Hashmi, S.; Vakilian, S.; Jamshidi-adegani, F.; Al-Kindi, J.; Al-Fahdi, F.; Al-Hatmi, A.M.S.; Al-Jahdhami, H.; Anwar, M.U.; Al-Wahaibi, N.; Shalaby, A.; et al. Development of a Tacrolimus-loaded carboxymethyl chitosan scaffold as an effective 3D-printed wound dressing. J. Drug Delivery Sci. Technol. 2023, 86, 104707. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, R.; Liu, Y.; Song, L.; Gao, Z.; Li, Z.; Peng, X.; Wang, P. An injectable, self-healable, antibacterial, and pro-healing oxidized pullulan polysaccharide/carboxymethyl chitosan hydrogel for early protection of open abdominal wounds. Int. J. Biol. Macromol. 2023, 250, 126282. [Google Scholar] [CrossRef]
- Liu, W.; Kang, S.; Xue, J.; Chen, S.; Yang, W.; Yan, B.; Liu, D. Self-assembled carboxymethyl chitosan/zinc alginate composite film with excellent water resistant and antimicrobial properties for chilled meat preservation. Int. J. Biol. Macromol. 2023, 247, 125752. [Google Scholar] [CrossRef]
- Sela, A.; Shkuri, N.; Tish, N.; Vinokur, Y.; Rodov, V.; Poverenov, E. Carboxymethyl chitosan-quercetin conjugate: A sustainable one-step synthesis and use for food preservation. Carbohydr. Polym. 2023, 316, 121084. [Google Scholar] [CrossRef]
- Zhang, Z.; Abidi, N.; Lucia, L. Smart superabsorbent alginate/carboxymethyl chitosan composite hydrogel beads as efficient biosorbents for methylene blue dye removal. J. Mater. Sci. Technol. 2023, 159, 81–90. [Google Scholar] [CrossRef]
- Cai, M.; Duan, Y.; Shi, T.; Su, J.; Chen, K.; Ma, D.; Wang, F.; Qin, J.; Wei, S.; Gao, Z. Multiple effects achieved with a single agent of O-carboxymethyl chitosan exhibiting cross-linking and antibacterial properties. Prog. Org. Coat. 2023, 175, 107345. [Google Scholar] [CrossRef]
- Jiang, Z.; Han, B.; Li, H.; Li, X.; Yang, Y.; Liu, W. Preparation and anti-tumor metastasis of carboxymethyl chitosan. Carbohydr. Polym. 2015, 125, 53–60. [Google Scholar] [CrossRef]
- Wei, Q.; Wang, Y.; Wang, H.; Qiao, L.; Jiang, Y.; Ma, G.; Zhang, W.; Hu, Z. Photo-induced adhesive carboxymethyl chitosan-based hydrogels with antibacterial and antioxidant properties for accelerating wound healing. Carbohydr. Polym. 2022, 278, 119000. [Google Scholar] [CrossRef]
- Mi, Y.; Zhang, J.; Chen, Y.; Sun, X.; Tan, W.; Li, Q.; Guo, Z. New synthetic chitosan derivatives bearing benzenoid/heterocyclic moieties with enhanced antioxidant and antifungal activities. Carbohydr. Polym. 2020, 249, 116847. [Google Scholar] [CrossRef]
- Chen, S.; Wu, Y.; Mi, F.; Lin, Y.; Yu, L.; Sung, H. A novel pH-sensitive hydrogel composed of N,O-carboxymethyl chitosan and alginate cross-linked by genipin for protein drug delivery. J. Control. Release 2004, 96, 285–300. [Google Scholar] [CrossRef]
- Chang, J.; Liu, W.; Han, B.; Peng, S.; He, B.; Gu, Z. Investigation of the skin repair and healing mechanism of N-carboxymethyl chitosan in second-degree burn wounds. Wound Repair Regen. 2013, 21, 113–121. [Google Scholar] [CrossRef]
- Hamdan, Y.A.; Elouali, S.; Eladlani, N.; Lefeuvre, B.; Oudadesse, H.; Rhazi, M. Investigation on Akis granulifera (Coleoptera, Sahlberg, 1823) as a potential source of chitin and chitosan: Extraction, characterization and hydrogel formation. Int. J. Biol. Macromol. 2023, 252, 126292. [Google Scholar] [CrossRef]
- Hamodin, A.G.; Elgammal, W.E.; Eid, A.M.; Ibrahim, A.G. Synthesis, characterization, and biological evaluation of new chitosan derivative bearing diphenyl pyrazole moiety. Int. J. Biol. Macromol. 2023, 243, 125180. [Google Scholar] [CrossRef]
- Bai, R.; Yong, H.; Zhang, X.; Liu, J.; Liu, J. Structural characterization and protective effect of gallic acid grafted O-carboxymethyl chitosan against hydrogen peroxide-induced oxidative damage. Int. J. Biol. Macromol. 2020, 143, 49–59. [Google Scholar] [CrossRef]
- Zheng, J.; Li, K.; Li, Y.; Jiang, G. Preparation and characterization of carboxymethyl chitosan/κ-carrageenan/silver nanoparticles sponge for wound dressing. Mater. Today Commun. 2023, 35, 105818. [Google Scholar] [CrossRef]
- Gu, H.; Chen, P.; Liu, X.; Lian, Y.; Xi, J.; Li, J.; Song, J.; Li, X. Trimethylated chitosan-coated flexible liposomes with resveratrol for topical drug delivery to reduce blue-light-induced retinal damage. Int. J. Biol. Macromol. 2023, 252, 126480. [Google Scholar] [CrossRef]
- Zhang, J.; Tan, W.; Wang, G.; Yin, X.; Li, Q.; Dong, F.; Guo, Z. Synthesis, characterization, and the antioxidant activity of N,N,N-trimethyl chitosan salts. Int. J. Biol. Macromol. 2018, 118, 9–14. [Google Scholar] [CrossRef]
- Wennman, M.; Pinon, A.C.; Svagan, A.J.; Hellberg, M.; Hedenqvist, M.S. A biobased binder of carboxymethyl cellulose, citric acid, chitosan and wheat gluten for nonwoven and paper. Carbohydr. Polym. 2024, 323, 121430. [Google Scholar] [CrossRef]
- Janeoo, S.; Reenu; Saroa, A.; Kumar, R.; Kaur, H. Computational investigation of bioactive 2,3-diaryl quinolines using DFT method: FT-IR, NMR spectra, NBO, NLO, HOMO-LUMO transitions, and quantum-chemical properties. J. Mol. Struct. 2022, 1253, 132285. [Google Scholar] [CrossRef]
- Khotele, N.B.; Dahule, H.K.; Dhoble, S.J. Synthesis and Characterization Red Emitting Iridium (III) Complex with 2-(4-cynophenyl)-4 Phenyl quinoline for PhOLEDs. Mater. Today Proc. 2018, 5, 22163–22170. [Google Scholar] [CrossRef]
- Song, Z.; Chen, S.; Du, S.; Fan, C. Construction of high-performance LiMn0.8Fe0.2PO4/C cathode by using quinoline soluble substance from coal pitch as carbon source for lithium ion batteries. J. Alloys Compd. 2022, 927, 166921. [Google Scholar] [CrossRef]
- Lei, M.; Huang, W.; Sun, J.; Shao, Z.; Duan, W.; Wu, T.; Wang, Y. Synthesis, characterization, and performance of carboxymethyl chitosan with different molecular weight as additive in water-based drilling fluid. J. Mol. Liq. 2020, 310, 113135. [Google Scholar] [CrossRef]
- Kumru, M.; Altun, A.; Kocademir, M.; Küçük, V.; Bardakçı, T.; Şaşmaz, İ. Combined experimental and quantum chemical studies on spectroscopic (FT-IR, FT-Raman, UV–Vis, and NMR) and structural characteristics of quinoline-5-carboxaldehyde. J. Mol. Struct. 2016, 1125, 302–309. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, L.; Tan, W.; Li, Q.; Dong, F.; Guo, Z. Preparation of chitosan-rosmarinic acid derivatives with enhanced antioxidant and anti-inflammatory activities. Carbohydr. Polym. 2022, 296, 119943. [Google Scholar] [CrossRef]
- Ma, B.; Zhang, J.; Mi, Y.; Miao, Q.; Tan, W.; Guo, Z. Preparation of imidazole acids grafted chitosan with enhanced antioxidant, antibacterial and antitumor activities. Carbohydr. Polym. 2023, 315, 120978. [Google Scholar] [CrossRef]
- Li, Q.; Li, Q.; Tan, W.; Zhang, J.; Guo, Z. Phenolic-containing chitosan quaternary ammonium derivatives and their significantly enhanced antioxidant and antitumor properties. Carbohydr. Res. 2020, 498, 108169. [Google Scholar] [CrossRef]
- Li, Q.; Mi, Y.; Tan, W.; Guo, Z. Highly efficient free radical-scavenging property of phenolic-functionalized chitosan derivatives: Chemical modification and activity assessment. Int. J. Biol. Macromol. 2020, 164, 4279–4288. [Google Scholar] [CrossRef]
- Cui, J.; Sun, Y.; Wang, L.; Tan, W.; Guo, Z. Preparation of chitosan derivatives containing aromatic five-membered heterocycles for efficient antimicrobial and antioxidant activities. Int. J. Biol. Macromol. 2023, 247, 125850. [Google Scholar] [CrossRef]
Compounds | Yields (%) | Elemental Analyses (%) | Degrees of Substitution (%) | Deacetylation (%) | ||
---|---|---|---|---|---|---|
C | N | C/N | ||||
CS | 34.86 | 6.13 | 5.68 | 68.67 | ||
O-CMCS | 70.23 | 35.96 | 5.57 | 6.46 | 45.00 | |
N-CMCS | 77.73 | 32.36 | 4.62 | 7.00 | 76.33 | |
N, O-CMCS | 51.37 | 33.62 | 3.55 | 9.48 | 87.75 | |
N-TM-O-CMCS | 62.37 | 37.27 | 4.65 | 8.01 | 60.17 | |
1a | 45.36 | 34.76 | 6.30 | 5.52 | 28.35 | |
1b | 31.22 | 38.63 | 6.77 | 5.70 | 20.70 | |
1c | 42.86 | 38.67 | 6.64 | 5.83 | 16.38 | |
1d | 25.51 | 39.75 | 6.90 | 5.76 | 18.47 | |
2a | 41.25 | 34.82 | 5.37 | 6.48 | 9.80 | |
2b | 35.27 | 35.38 | 5.64 | 6.27 | 14.89 | |
2c | 40.16 | 35.62 | 5.79 | 6.16 | 18.28 | |
2d | 32.71 | 42.21 | 7.13 | 5.91 | 26.25 | |
3a | 25.64 | 38.15 | 5.23 | 7.29 | 15.84 | |
3b | 30.85 | 37.88 | 5.18 | 7.31 | 15.63 | |
3c | 16.79 | 39.11 | 5.35 | 7.31 | 15.63 | |
3d | 26.41 | 33.96 | 4.89 | 6.95 | 20.57 | |
4a | 26.15 | 42.02 | 6.04 | 6.95 | 16.85 | |
4b | 16.84 | 41.85 | 5.40 | 7.74 | 3.42 | |
4c | 33.14 | 38.82 | 5.28 | 7.36 | 9.31 | |
4d | 45.26 | 40.70 | 5.42 | 7.51 | 6.81 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, L.; Guo, R.; Liang, X.; Ji, Y.; Zhang, J.; Gai, G.; Guo, Z. Preparation and Antioxidant Activity of New Carboxymethyl Chitosan Derivatives Bearing Quinoline Groups. Mar. Drugs 2023, 21, 606. https://doi.org/10.3390/md21120606
Wang L, Guo R, Liang X, Ji Y, Zhang J, Gai G, Guo Z. Preparation and Antioxidant Activity of New Carboxymethyl Chitosan Derivatives Bearing Quinoline Groups. Marine Drugs. 2023; 21(12):606. https://doi.org/10.3390/md21120606
Chicago/Turabian StyleWang, Linqing, Rui Guo, Xiaorui Liang, Yuting Ji, Jingjing Zhang, Guowei Gai, and Zhanyong Guo. 2023. "Preparation and Antioxidant Activity of New Carboxymethyl Chitosan Derivatives Bearing Quinoline Groups" Marine Drugs 21, no. 12: 606. https://doi.org/10.3390/md21120606
APA StyleWang, L., Guo, R., Liang, X., Ji, Y., Zhang, J., Gai, G., & Guo, Z. (2023). Preparation and Antioxidant Activity of New Carboxymethyl Chitosan Derivatives Bearing Quinoline Groups. Marine Drugs, 21(12), 606. https://doi.org/10.3390/md21120606