Next Issue
Volume 30, June-2
Previous Issue
Volume 30, May-2
 
 
molecules-logo

Journal Browser

Journal Browser

Molecules, Volume 30, Issue 11 (June-1 2025) – 226 articles

Cover Story (view full-size image): Molecules (ISSN 1420-3049, CODEN: MOLEFW) provides an advanced forum for science of chemistry and all interfacing disciplines. Our aim is to provide rigorous peer review and enable rapid publication of cutting-edge research to educate and inspire the scientific community worldwide. Scientists are encouraged to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the maximum length of the papers. Full experimental details must be provided so that the results can be reproduced. In addition, the availability of compound samples is published and considered important information, and authors are encouraged to register or deposit their chemical samples.
  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
20 pages, 3639 KiB  
Article
Efficient Analytical Pretreatment of Cr(VI) in Ethylene Wastewater by Grafting g-C3N4 Material Based on Coupling Agent-Modified Basalt Matrix (Basalt–MTES/g-C3N4)
by Zheng Wang, Mingchang Jia, Yi Ren, Hongmin Ren, Shuhao Liang, Jiaru Sun, Siqi Hao, Jinchuan Li and He Li
Molecules 2025, 30(11), 2477; https://doi.org/10.3390/molecules30112477 - 5 Jun 2025
Viewed by 217
Abstract
This study presents a novel Basalt-based grafted graphitic carbon nitride composite (Basalt–MTES/g-C3N4) for the efficient pretreatment of Cr(VI) in ethylene wastewater. The composite was synthesized by the acid purification of natural Basalt, surface modification with hydroxymethyl triethoxysilane (MTES), and [...] Read more.
This study presents a novel Basalt-based grafted graphitic carbon nitride composite (Basalt–MTES/g-C3N4) for the efficient pretreatment of Cr(VI) in ethylene wastewater. The composite was synthesized by the acid purification of natural Basalt, surface modification with hydroxymethyl triethoxysilane (MTES), and the subsequent grafting of g-C3N4. Characterization confirmed the uniform distribution of nano-sized g-C3N4 particles on a Basalt surface with intact chemical bonding, where 82.63% of melamine participated in g-C3N4 crystallization. The material exhibited a high specific surface area (403.55 m2/g) and mesoporous structure (34.29 nm). Acidic conditions promoted the protonation of amino groups in g-C3N4, significantly enhancing Cr(VI) adsorption via ion exchange. Adsorption kinetics followed the pseudo-second-order model, while isotherm data fitted the Langmuir monolayer adsorption mechanism. The composite achieved 97% Cr(VI) recovery through chromatographic extraction and retained 96.87% removal efficiency after five regeneration cycles. This work demonstrates a cost-effective, recyclable green pretreatment material for high-sensitivity Cr(VI) monitoring in ethylene industry wastewater, offering dual benefits in environmental remediation and regulatory compliance. The design synergizes natural Basalt’s stability with g-C3N4’s adsorption affinity, showing practical potential for sustainable wastewater treatment technologies. Full article
Show Figures

Graphical abstract

16 pages, 694 KiB  
Article
Exploring Salivary Thiocyanate as a Novel Biomarker of Physical Activity Response
by Christoforos Chrimatopoulos, Kalliopi Papadopoulou, Theodora Tsilouli and Vasilios Sakkas
Molecules 2025, 30(11), 2476; https://doi.org/10.3390/molecules30112476 - 5 Jun 2025
Viewed by 181
Abstract
Salivary thiocyanate (SCN) has long been recognized for its role in mucosal defense and antioxidant function, yet its behavior during physical activity remains unexplored. This study aimed to investigate salivary thiocyanate as a novel salivary biomarker responsive to exercise. A standard [...] Read more.
Salivary thiocyanate (SCN) has long been recognized for its role in mucosal defense and antioxidant function, yet its behavior during physical activity remains unexplored. This study aimed to investigate salivary thiocyanate as a novel salivary biomarker responsive to exercise. A standard Vis–photometric method (thiocyanatoiron-complex formation) was utilized and validated for the rapid quantification of thiocyanate in saliva. The method was applied to two experimental setups: (i) a controlled treadmill protocol involving incremental running intensities (20%, 60%, and 90% VO2max-mL/kg/min), and (ii) field sampling of athletes from various sports before and after their typical training sessions, managing a total of 162 athletes. This work is the first to quantitatively investigate thiocyanate as an exercise-induced salivary biomarker, validated through both controlled and real-world settings. Additionally, subgroup analysis across sex and smoking status revealed inter-individual variation in salivary SCN profiles. Across both setups, during controlled exercise intensity increment and typical training routine, thiocyanate concentrations consistently decreased in response to physical exertion. These results were statistically significant and reflected in both male and female athletes. This is the very first study that determines salivary SCN during any kind of physical exercise and opens new pathways for non-invasive sampling and for monitoring physiological stress and immune response in athletic populations. Full article
(This article belongs to the Section Applied Chemistry)
Show Figures

Figure 1

16 pages, 1650 KiB  
Article
Application of VUV/Sulfite Defluorination System for the Simple Detection of Perfluoroalkyl Substances
by Shiyong Tao, Yilin Chen, Xiao Mei, Luyao Jin, Feng Wu and Jing Xu
Molecules 2025, 30(11), 2475; https://doi.org/10.3390/molecules30112475 - 5 Jun 2025
Viewed by 271
Abstract
This study investigated the defluorination of PFOA and PFOS using a vacuum ultraviolet (VUV)/sulfite system, and evaluated its potential application in quantifying individual perfluoroalkyl substances (PFAS). Results showed that 81.9% and 87.5% defluorination of PFOA and PFOS were achieved after 120 min of [...] Read more.
This study investigated the defluorination of PFOA and PFOS using a vacuum ultraviolet (VUV)/sulfite system, and evaluated its potential application in quantifying individual perfluoroalkyl substances (PFAS). Results showed that 81.9% and 87.5% defluorination of PFOA and PFOS were achieved after 120 min of photoreaction under conditions of pH 12 and 20 mM of sulfite. Higher pH and sulfite dosage facilitated the reaction, while competing ions could suppress the defluorination efficiency. Based on the optimized defluorination conditions for individual PFAS, the potential of fluoride release amount, as an indirect quantification indicator, was further assessed. A strong linearity between the fluoride release and initial PFAS concentration (R2 > 0.999) was observed in the PFAS concentration range of 2–100 μM, and such linearity was also shown in the presence of sediment leachates. This correlation enabled the estimation of individual PFAS concentrations by measuring fluoride release after defluorination treatment. The approach was further demonstrated in an adsorption experiment, where calculated distribution coefficients (Koc) for PFAS–sediment interactions were consistent with previously reported values, supporting the analytical validity of the method under controlled conditions. Overall, this work presents a simple and cost-effective indirect analytical strategy of applying a VUV/sulfite defluorination system for individual PFAS quantitative detection in complex environmental matrices. Full article
(This article belongs to the Section Green Chemistry)
Show Figures

Graphical abstract

16 pages, 5713 KiB  
Article
Enhancing Ion Transport in Polymer Electrolytes by Regulating Solvation Structure via Hydrogen Bond Networks
by Yuqing Gao, Yankui Mo, Shengguang Qi, Mianrui Li, Tongmei Ma and Li Du
Molecules 2025, 30(11), 2474; https://doi.org/10.3390/molecules30112474 - 5 Jun 2025
Viewed by 161
Abstract
Polymer electrolytes (PEs) provide enhanced safety for high–energy–density lithium metal batteries (LMBs), yet their practical application is hampered by intrinsically low ionic conductivity and insufficient electrochemical stability, primarily stemming from suboptimal Li+ solvation environments and transport pathways coupled with slow polymer dynamics. [...] Read more.
Polymer electrolytes (PEs) provide enhanced safety for high–energy–density lithium metal batteries (LMBs), yet their practical application is hampered by intrinsically low ionic conductivity and insufficient electrochemical stability, primarily stemming from suboptimal Li+ solvation environments and transport pathways coupled with slow polymer dynamics. Herein, we demonstrate a molecular design strategy to overcome these limitations by regulating the Li+ solvation structure through the synergistic interplay of conventional Lewis acid–base coordination and engineered hydrogen bond (H–bond) networks, achieved by incorporating specific H–bond donor functionalities (N,N′–methylenebis(acrylamide), MBA) into the polymer architecture. Computational modeling confirms that the introduced H–bonds effectively modulate the Li+ coordination environment, promote salt dissociation, and create favorable pathways for faster ion transport decoupled from polymer chain motion. Experimentally, the resultant polymer electrolyte (MFE, based on MBA) enables exceptionally stable Li metal cycling in symmetric cells (>4000 h at 0.1 mA cm−2), endows LFP|MFE|Li cells with long–term stability, achieving 81.0% capacity retention after 1400 cycles, and confers NCM622|MFE|Li cells with cycling endurance, maintaining 81.0% capacity retention after 800 cycles under a high voltage of 4.3 V at room temperature. This study underscores a potent molecular engineering strategy, leveraging synergistic hydrogen bonding and Lewis acid–base interactions to rationally tailor the Li+ solvation structure and unlock efficient ion transport in polymer electrolytes, paving a promising path towards high–performance solid–state lithium metal batteries. Full article
(This article belongs to the Special Issue Women’s Special Issue Series: Molecules)
Show Figures

Graphical abstract

16 pages, 4373 KiB  
Article
Identification, Geographical Traceability, and Thermal Oxidation and Photodegradation Studies of Camellia Oil Based on Raman Spectroscopy
by Boxue Chang, Jingyue Huang, Qingli Xie, Yinlan Ruan and Rukuan Liu
Molecules 2025, 30(11), 2473; https://doi.org/10.3390/molecules30112473 - 5 Jun 2025
Viewed by 207
Abstract
Camellia oil, rich in monounsaturated fatty acids, squalene, tocopherols, and polyphenols, is highly valued for its nutritional benefits. However, its high market value and regional variations have led to frequent adulteration, highlighting the need for rapid, non-destructive methods for authentication, geographical traceability, and [...] Read more.
Camellia oil, rich in monounsaturated fatty acids, squalene, tocopherols, and polyphenols, is highly valued for its nutritional benefits. However, its high market value and regional variations have led to frequent adulteration, highlighting the need for rapid, non-destructive methods for authentication, geographical traceability, and quality assessment. This study employed portable Raman spectroscopy combined with Partial Least Squares Discriminant Analysis (PLS-DA) and Multivariate Curve Resolution–Alternating Least Squares (MCR-ALS) to differentiate camellia oil from other edible oils and evaluate its thermal and photo-oxidative stability. PLS-DA, based on VIP-selected spectral variables, effectively distinguished camellia oil, with Raman bands near 1250 cm−1 and 1650 cm−1 contributing significantly. A unique peak at 1525 cm−1, observed in samples from Gongcheng, Guangxi, was associated with carotenoids and served as a potential marker for geographical traceability. MCR-ALS modeling revealed significant reductions in the 1650 cm−1 and 1525 cm−1 peaks when temperatures exceeded 150 °C, indicating degradation of unsaturated fatty acids and carotenoids. Under UV exposure, the 1525 cm−1 peak declined sharply and nearly disappeared after 24 h, suggesting rapid carotenoid degradation via photooxidation. Extended UV treatment also affected the 1650 cm−1 peak and led to oxidative product accumulation. Overall, this study demonstrates the feasibility of integrating Raman spectroscopy with chemometric analysis for efficient oil classification, traceability, and stability monitoring, offering a valuable tool for food quality control and market supervision. Full article
(This article belongs to the Special Issue Exclusive Feature Papers in Analytical Chemistry)
Show Figures

Figure 1

1 pages, 126 KiB  
Correction
Correction: Povo-Retana et al. Trabectedin and Lurbinectedin Modulate the Interplay between Cells in the Tumour Microenvironment—Progresses in Their Use in Combined Cancer Therapy. Molecules 2024, 29, 331
by Adrián Povo-Retana, Rodrigo Landauro-Vera, Carlota Alvarez-Lucena, Marta Cascante and Lisardo Boscá
Molecules 2025, 30(11), 2472; https://doi.org/10.3390/molecules30112472 - 5 Jun 2025
Viewed by 128
Abstract
In the published publication [...] Full article
22 pages, 3058 KiB  
Article
N-Alkylamino Stilbene Compounds as Amyloid β Inhibitors for Alzheimer’s Disease Research
by Citlali Gutiérrez, Liang Sun, Yiran Huang, Kai Gui, Karna Terpstra and Liviu M. Mirica
Molecules 2025, 30(11), 2471; https://doi.org/10.3390/molecules30112471 - 5 Jun 2025
Viewed by 241
Abstract
Alzheimer’s disease (AD) is an incurable neurodegenerative disorder that debilitates an overwhelming number of people in the aging population worldwide. The aggregated forms of the amyloid beta (Aβ) peptide play an important role in the onset of AD. Small molecules that can bind [...] Read more.
Alzheimer’s disease (AD) is an incurable neurodegenerative disorder that debilitates an overwhelming number of people in the aging population worldwide. The aggregated forms of the amyloid beta (Aβ) peptide play an important role in the onset of AD. Small molecules that can bind to Aβ are useful for in vitro assays, in vivo imaging, and in therapeutic research. Herein, a series of compounds that can target Aβ aggregates and inhibit their formation were developed. The interaction of several compounds with the Aβ peptide was found to modulate the formation of aggregates. These N-alkylamino stilbene compounds offer selectivity toward Aβ species against other in situ proteins and have potential for aiding the development of soluble Aβ aggregate selective AD probes. Full article
(This article belongs to the Section Chemical Biology)
Show Figures

Figure 1

18 pages, 701 KiB  
Article
The Influence of Ectoine on the Skin Parameters Damaged by a CO2 Laser
by Izabela Załęska, Urszula Goik, Tomasz Goik and Kinga Wilkus
Molecules 2025, 30(11), 2470; https://doi.org/10.3390/molecules30112470 - 5 Jun 2025
Viewed by 231
Abstract
Ectoine is a substance produced by extremophiles and is naturally used by them as protection against adverse environmental conditions in which they live. Scientific contributions discuss its excellent effect through cosmotropic properties, prevention of secondary messenger release in cells, and transcription factors. The [...] Read more.
Ectoine is a substance produced by extremophiles and is naturally used by them as protection against adverse environmental conditions in which they live. Scientific contributions discuss its excellent effect through cosmotropic properties, prevention of secondary messenger release in cells, and transcription factors. The influence on the lipid layer of the cell membrane and its preventive effect as a UV filter were also demonstrated. What is more, its anti-oxidative effect was established. Ectoine works as an immunostimulant and also has anti-inflammatory and anti-cancer properties. These attributes are dominating factors in the use of ectoine’s properties in skin fractionation treatment with a CO2 laser. In the following work, the influence of ectoine on skin parameters was described, focusing on redness, moisturization, and TEWL after the use of a CO2 laser (Załęska 2019). The rheological properties of preparations with ectoine addition were also tested. The yield point was determined, the viscosity changes of cosmetic preparations were measured with increasing shear rates, and oscillation tests were performed. With increasing percentages of ectoine and frequency of application, the occurrence of redness after CO2 therapy decreased. The highest moisture level values from 54.4 × 0.02 mg/cm2 to 72.5 × 0.02 mg/cm2 were obtained for preparation A applied twice a day; for the same preparation, a reduction in TEWL from 6.2 to 5.3 g/(m2·h) was obtained. The results of the tests of cosmetic emulsions allowed us to conclude that the preparations in the analyzed shear rate range at all tested temperatures are non-Newtonian liquids that are shear-thinning and have a flow limit. The obtained results of the conducted research prove the positive effect of dermocosmetics with ectoine content in the process of skin healing. Full article
(This article belongs to the Special Issue Multifunctional Natural Ingredients in Skin Protection and Care)
Show Figures

Figure 1

15 pages, 1615 KiB  
Article
Development of Xanthyletin-Loaded Nanoparticles for the Control of Leucoagaricus gongylophorus
by Cristiane de Melo Cazal, Moacir Rossi Forim, Ana Paula Terezan, Andreia Pereira Matos, Gracielle Oliveira Sabbag Cunha, Maria Fátima das Graças Fernandes da Silva, Paulo Cezar Vieira, Fernando Carlos Pagnocca and João Batista Fernandes
Molecules 2025, 30(11), 2469; https://doi.org/10.3390/molecules30112469 - 5 Jun 2025
Viewed by 224
Abstract
This study describes the development, characterization and in vitro evaluation of poly(ε-caprolactone) (PCL) nanoparticles loaded with xanthyletin for the control of Atta sexdens rubropilosa through the inhibition of its symbiotic fungus Leucoagaricus gongylophorus. Nanoparticles were prepared via interfacial polymer deposition, with formulation [...] Read more.
This study describes the development, characterization and in vitro evaluation of poly(ε-caprolactone) (PCL) nanoparticles loaded with xanthyletin for the control of Atta sexdens rubropilosa through the inhibition of its symbiotic fungus Leucoagaricus gongylophorus. Nanoparticles were prepared via interfacial polymer deposition, with formulation NC5 selected based on optimal physicochemical properties. NC5 exhibited an encapsulation efficiency of 98.0%, average particle size of 304 nm and zeta potential of −29.3 mV. Scanning electron microscopy confirmed spherical morphology and the absence of crystalline residues. The formulation remained physically stable for four months at 4 °C. In vitro release showed biphasic behavior, with an initial burst followed by sustained release. Under UV exposure, NC5 enhanced xanthyletin photostability by 15.4-fold compared to the free compound. Fungicidal assays revealed 76% inhibition of fungal growth with NC5, compared to 85% with free xanthyletin. These results support the potential application of xanthyletin-loaded PCL nanoparticles as a stable and controlled delivery system for the biological control of leaf-cutting ants by targeting their fungal mutualist. Further in vivo studies are recommended to assess efficacy under field conditions. Full article
Show Figures

Graphical abstract

15 pages, 512 KiB  
Article
Antitrypanosomal and Antileishmanial Activities of Tacca leontopetaloides Tubers and Zanthoxylum zanthoxyloides Stem Bark
by Elizabeth O. Agbo, John V. Anyam, Cyprian T. Agber, Christie A. Adah, Christopher Agbo, Augustina O. Ijeomah, Terrumun A. Tor-Anyiin, Hamed E. Alkhalaf, Aditya Sarode, Jamal I. Asseri, Alexander I. Gray, John O. Igoli and Harry P. De Koning
Molecules 2025, 30(11), 2468; https://doi.org/10.3390/molecules30112468 - 5 Jun 2025
Viewed by 205
Abstract
The phytochemical screening of extracts of Tacca leontopetaloides tubers has afforded the isolation of two novel chalcones, tarkalynins A and B, along with taccalonolide A and its 12-propanoate. The screening of Zanthoxylum zanthoxyloides stem bark yielded taraxerol acetate, dihydrochelerythrin and fagaramide. These compounds [...] Read more.
The phytochemical screening of extracts of Tacca leontopetaloides tubers has afforded the isolation of two novel chalcones, tarkalynins A and B, along with taccalonolide A and its 12-propanoate. The screening of Zanthoxylum zanthoxyloides stem bark yielded taraxerol acetate, dihydrochelerythrin and fagaramide. These compounds were obtained through column and thin-layer chromatography and identified using NMR and LC-HRMS. The compounds were tested against Trypanosoma brucei brucei s427 and its multi-drug-resistant clone B48, against Trypanosoma evansi, Trypanosoma equiperdum and Trypanosoma congolense, and against Leishmania mexicana. Cytotoxicity was tested against the human HEK293 cell line. The highest activities were observed with dihydrochelerythrin and fagaramide against T. b. brucei s427 and B48, T. evansi, and L. mexicana, with EC50 values of 1.37, 2.559, 1.09, and 5.44 µM and 17.8, 10.9, 10.9, and 13.3 µM, respectively. In addition, tarkalynin A and taraxerol acetate displayed promising activity against T. equiperdum (EC50 = 21.4 and 21.3 µM, respectively). None of these compounds showed significant cross-resistance with existing trypanocides (RF ≈ 1; p > 0.05). The compounds displayed low toxicity to human cells, with most exhibiting no growth inhibition at concentrations of 100, or even 300 µM. This report provides further evidence of the potential use of natural products for combating parasitic diseases. Full article
Show Figures

Figure 1

15 pages, 1994 KiB  
Article
Modeling of the General Trends of Reactivity and Regioselectivity in Cyclopentadiene–Nitroalkene Diels–Alder Reactions
by Adrianna Fałowska, Stanisław Grzybowski, Daniel Kapuściński, Karol Sambora and Agnieszka Łapczuk
Molecules 2025, 30(11), 2467; https://doi.org/10.3390/molecules30112467 - 4 Jun 2025
Viewed by 428
Abstract
This study presents a theoretical investigation of the electronic properties of mono- and pentasubstituted cyclopentadiene analogs and variously substituted conjugated nitroalkenes bearing electron-donating and electron-withdrawing groups. Conceptual Density Functional Theory (CDFT) and Electron Localization Function (ELF) analyses were employed to characterize the global [...] Read more.
This study presents a theoretical investigation of the electronic properties of mono- and pentasubstituted cyclopentadiene analogs and variously substituted conjugated nitroalkenes bearing electron-donating and electron-withdrawing groups. Conceptual Density Functional Theory (CDFT) and Electron Localization Function (ELF) analyses were employed to characterize the global and local reactivity indices of the reactants. The obtained data provided insights into the nucleophilic and electrophilic nature of the investigated systems, allowing for the prediction of their reactivity patterns in Diels–Alder reactions. A reactivity model for conjugated alkenes toward cyclopentadienes was developed based on correlation analysis using Hammett substituent constants. This approach enabled the prediction of reaction polarity in (4+2) cycloaddition processes, providing insight into how the electronic effects of substituents influence the reaction course. These findings contribute to a deeper understanding of structure–reactivity relationships in Diels–Alder processes. Full article
(This article belongs to the Special Issue Cyclization Reactions in Organic Synthesis: Recent Developments)
Show Figures

Figure 1

18 pages, 8733 KiB  
Article
Bio-Based Polyurethane Asphalt Binder with Continuous Polymer-Phase Structure: Critical Role of Isocyanate Index in Governing Thermomechanical Performance and Phase Morphology
by Haocheng Yang, Suzhou Cao, Chengwei Wu, Zhonghua Xi, Jun Cai, Zuanru Yuan, Junsheng Zhang and Hongfeng Xie
Molecules 2025, 30(11), 2466; https://doi.org/10.3390/molecules30112466 - 4 Jun 2025
Viewed by 254
Abstract
Polyurethane asphalt (PUA) has attracted considerable attention in the field of pavement engineering. However, traditional PUA systems typically exhibit low concentrations of polyurethane (PU), leading to a continuous bitumen-dominated phase that adversely affects mechanical properties. Furthermore, the non-renewable nature of raw materials raises [...] Read more.
Polyurethane asphalt (PUA) has attracted considerable attention in the field of pavement engineering. However, traditional PUA systems typically exhibit low concentrations of polyurethane (PU), leading to a continuous bitumen-dominated phase that adversely affects mechanical properties. Furthermore, the non-renewable nature of raw materials raises environmental concerns. To address these limitations, this study developed an eco-friendly and cost-efficient bio-based PUA binder (PUAB) featuring a continuous high-biomass PU matrix (over 70% biomass) and a high bitumen content (60 wt%). The effects of the isocyanate index (NCO/OH ratio) on the cure kinetics, rheological behavior (rotational viscosity over time), viscoelasticity, damping capacity, phase morphology, thermal stability, and mechanical performance were systematically investigated using Fourier-transform infrared spectroscopy, dynamic mechanical analysis, laser-scanning confocal microscopy, and tensile testing. Key findings revealed that while the rotational viscosity of PUABs increased with a higher isocyanate index, all formulations maintained a longer allowable construction time. Specifically, the time to reach 1 Pa·s for all PUABs at 120 °C exceeded 60 min. During curing, higher isocyanate indices reduced final conversions but enhanced the storage modulus and glass transition temperatures, indicating improved rigidity and thermal resistance. Phase structure analysis demonstrated that increasing NCO/OH ratios reduced bitumen domain size while improving dispersion uniformity. Notably, the PUAB with the NCO/OH ratio of 1.3 achieved a tensile strength of 1.27 MPa and an elongation at break of 238%, representing a 49% improvement in toughness compared to the counterpart with an NCO/OH ratio = 1.1. These results demonstrate the viability of bio-based PUAB as a sustainable pavement material, offering a promising solution for environmentally friendly infrastructure development. Full article
(This article belongs to the Special Issue Exclusive Feature Papers in Macromolecular Chemistry)
Show Figures

Figure 1

13 pages, 3184 KiB  
Article
Furin-Triggered Peptide Self-Assembly Activates Coumarin Excimer Fluorescence for Precision Live-Cell Imaging
by Peiyao Chen, Liling Meng, Yuting Wang, Xiaoya Yan, Meiqin Li, Yun Deng and Yao Sun
Molecules 2025, 30(11), 2465; https://doi.org/10.3390/molecules30112465 - 4 Jun 2025
Viewed by 258
Abstract
Monomer-to-excimer transition has become a valuable technique in fluorescence imaging because of its ability to enhance imaging contrast. However, from a practical perspective, the accuracy of excimer formation at target sites warrants further exploration. Enzyme-triggered peptide self-assembly provides a promising solution to this [...] Read more.
Monomer-to-excimer transition has become a valuable technique in fluorescence imaging because of its ability to enhance imaging contrast. However, from a practical perspective, the accuracy of excimer formation at target sites warrants further exploration. Enzyme-triggered peptide self-assembly provides a promising solution to this limitation. As a proof-of-concept, in this study, we developed a furin-triggered peptide self-assembling fluorescent probe RF-Cou by coupling a coumarin dye 7-(diethylamino)-2-oxo-2H-chromene-3-carboxylic acid (Cou) with a furin-responsive peptide scaffold for precision live-cell imaging. Upon entering furin-overexpressing 4T1 tumor cells, RF-Cou underwent enzymatic cleavage, releasing an amphiphilic peptide motif and self-assembling into nanoparticles largely concentrated in the Golgi apparatus to confine the diffusion of Cou. During this process, the Cou excimers were formed and induced a red shift in the fluorescence emission, validating the feasibility of RF-Cou in efficient excimer imaging of furin-overexpressing tumor cells. We expect that our findings will highlight the potential of stimuli-responsive small molecular peptide probes to advance excimer-based imaging platforms, particularly for enzyme-specific cell imaging and therapeutic monitoring. Full article
(This article belongs to the Special Issue Metal-Based Molecular Photosensitizers: From Design to Applications)
Show Figures

Graphical abstract

31 pages, 5237 KiB  
Article
A Detailed Thermodynamic Description of Ion Pair Binding by a Calix[4]arene Derivative Containing Urea and Amide Functionalities
by Marija Cvetnić, Tamara Rinkovec, Robert Vianello, Gordan Horvat, Nikola Bregović and Vladislav Tomišić
Molecules 2025, 30(11), 2464; https://doi.org/10.3390/molecules30112464 - 4 Jun 2025
Viewed by 171
Abstract
Receptors capable of binding both positive and negative ions are an important domain of supramolecular chemistry with valuable application potential. A Complete thermodynamic description of the equilibria related to ion pair recognition is beneficial in developing the optimized receptor systems, although it represents [...] Read more.
Receptors capable of binding both positive and negative ions are an important domain of supramolecular chemistry with valuable application potential. A Complete thermodynamic description of the equilibria related to ion pair recognition is beneficial in developing the optimized receptor systems, although it represents a difficult task that is rarely resolved due to various coupled processes. Here, we present a comprehensive study of ion pair (NaCl, NaHSO4, and NaH2PO4) binding by a ureido–amide calix[4]arene host in acetonitrile using a series of experimental techniques and molecular dynamics simulations. We devoted particular attention to characterizing the side processes (ion association and salt precipitation) and included them in the models describing ion pair complex formation. For this purpose, a multimethod approach (potentiometry, conductometry, ITC, flame AES) was employed, generating reliable data which provided insight into the thermodynamic effect of each included equilibrium. Positive cooperativity was observed in the context of NaCl and NaHSO4 binding by the studied calixarene. Computational results related to the NaCl complex in acetonitrile revealed that favorable Coulombic interactions, changes in affinity for solvent molecule inclusion, and intramolecular hydrogen bonding contributed to cation-induced cooperativity. Full article
Show Figures

Graphical abstract

16 pages, 2229 KiB  
Article
Investigation of the Effect of Molecules Containing Sulfonamide Moiety Adsorbed on the FAPbI3 Perovskite Surface: A First-Principles Study
by Shiyan Yang, Yu Zhuang, Youbo Dou, Jianjun Wang, Hongwen Zhang, Wenjing Lu, Qiuli Zhang, Xihua Zhang, Yuan Wu and Xianfeng Jiang
Molecules 2025, 30(11), 2463; https://doi.org/10.3390/molecules30112463 - 4 Jun 2025
Viewed by 209
Abstract
First-principles calculations were conducted to examine the impact of three sulfonamide-containing molecules (H4N2O2S, CH8N4O3S, and C2H2N6O4S) adsorbed on the FAPbI3(001) perovskite [...] Read more.
First-principles calculations were conducted to examine the impact of three sulfonamide-containing molecules (H4N2O2S, CH8N4O3S, and C2H2N6O4S) adsorbed on the FAPbI3(001) perovskite surface, aiming to establish a significant positive correlation between the molecular structures and their regulatory effects on the perovskite surface. A systematic comparison was conducted to evaluate the adsorption stability of the three molecules on the two distinct surface terminations. The results show that all three molecules exhibit strong adsorption on the FAPbI3(001) surface, with C2H12N6O4S demonstrating the most favorable binding stability due to its extended frameworks and multiple electron-donating/withdrawing groups. Simpler molecules lacking carbon skeletons exhibit weaker adsorption and less dependence on surface termination. Ab initio molecular dynamics simulations (AIMD) further corroborated the thermal stability of the stable adsorption configurations at elevated temperatures. Electronic structure analysis reveals that molecular adsorption significantly reconstructs the density of states (DOS) on the PbI2-terminated surface, inducing shifts in band-edge states and enhancing energy-level coupling between molecular orbitals and surface states. In contrast, the FAI-terminated surface shows weaker interactions. Charge density difference (CDD) analysis indicates that the molecules form multiple coordination bonds (e.g., Pb–O, Pb–S, and Pb–N) with uncoordinated Pb atoms, facilitated by –SO2–NH2 groups. Bader charge and work function analyses indicate that the PbI2-terminated surface exhibits more pronounced electronic coupling and interfacial charge transfer. The C2H12N6O4S adsorption system demonstrates the most substantial reduction in work function. Optical property calculations show a distinct red-shift in the absorption edge along both the XX and YY directions for all adsorption systems, accompanied by enhanced absorption intensity and broadened spectral range. These findings suggest that sulfonamide-containing molecules, particularly C2H12N6O4S with extended carbon skeletons, can effectively stabilize the perovskite interface, optimize charge transport pathways, and enhance light-harvesting performance. Full article
Show Figures

Figure 1

19 pages, 1937 KiB  
Review
Current Approaches to Microplastics Detection and Plastic Biodegradation
by Paula Przygoda-Kuś, Katarzyna E. Kosiorowska, Aneta K. Urbanek and Aleksandra M. Mirończuk
Molecules 2025, 30(11), 2462; https://doi.org/10.3390/molecules30112462 - 4 Jun 2025
Viewed by 211
Abstract
Environmental concerns about the widespread use of non-biodegradable plastic have generated interest in developing quick and effective methods to degrade synthetic polymers. With millions of tons of plastic waste generated annually, biodegradation by microorganisms presents a promising and eco-friendly solution. However, a bottleneck [...] Read more.
Environmental concerns about the widespread use of non-biodegradable plastic have generated interest in developing quick and effective methods to degrade synthetic polymers. With millions of tons of plastic waste generated annually, biodegradation by microorganisms presents a promising and eco-friendly solution. However, a bottleneck has arisen due to the lack of standardized methods for verification of the biodegradation process. Based on this literature review, he techniques most commonly employed for this purpose currently include measuring mass loss, examining the surface of plastic fragments by scanning electron microscopy (SEM) and atomic force microscopy (AFM), and using analytical methods such as Fourier transform infrared spectroscopy (FTIR), pyrolysis–gas chromatography–mass spectrometry (Pyr-GC/MS) or high-performance liquid chromatography (HPLC). Each of these methods has its advantages and disadvantages. Nevertheless, currently, there is no universal approach to accurately assess the ability of individual microorganisms to degrade plastics. In this review, we summarize the latest advances in techniques for detecting biodegradation of synthetic polymers and future directions in the development of sustainable strategies for mitigating plastic pollution. Full article
Show Figures

Graphical abstract

24 pages, 1387 KiB  
Review
Sustainable Recovery of Critical Minerals from Wastes by Green Biosurfactants: A Review
by Bita Deravian and Catherine N. Mulligan
Molecules 2025, 30(11), 2461; https://doi.org/10.3390/molecules30112461 - 4 Jun 2025
Viewed by 310
Abstract
Biosurfactants have emerged as promising agents for environmental remediation due to their ability to complex, chelate, and remove heavy metals from contaminated environments. This review evaluates their potential for recovering critical minerals from waste materials to support renewable energy production, emphasizing the role [...] Read more.
Biosurfactants have emerged as promising agents for environmental remediation due to their ability to complex, chelate, and remove heavy metals from contaminated environments. This review evaluates their potential for recovering critical minerals from waste materials to support renewable energy production, emphasizing the role of biosurfactant–metal interactions in advancing green recovery technologies and enhancing resource circularity. Among biosurfactants, rhamnolipids demonstrate a high affinity for metals such as lead, cadmium, and copper due to their strong stability constants and functional groups like carboxylates, with recovery efficiencies exceeding 75% under optimized conditions. Analytical techniques, including Inductively Coupled Plasma Mass Spectrometry (ICP-MS), Fourier-Transform Infrared spectroscopy (FTIR), and Scanning Electron Microscopy (SEM), are instrumental in assessing recovery efficiency and interaction mechanisms. The review introduces a Green Chemistry Metrics Framework for evaluating biosurfactant-based recovery processes, revealing 70–85% lower Environmental Factors compared to conventional methods. Significant research gaps exist in applying biosurfactants for extraction of metals like lithium and cobalt from batteries and other waste materials. Advancing biosurfactant-based technologies hold promise for efficient, sustainable metal recovery and resource circularity, addressing both resource scarcity and environmental protection challenges simultaneously. Full article
(This article belongs to the Special Issue Green Chemistry Approaches to Analysis and Environmental Remediation)
Show Figures

Graphical abstract

45 pages, 3084 KiB  
Review
Phytochemistry, Pharmacological Potential, and Ethnomedicinal Relevance of Achillea nobilis and Its Subspecies: A Comprehensive Review
by Anastassiya Shevchenko, Aiman Аkhelova, Shamshabanu Nokerbek, Aigul Kaldybayeva, Lyazzat Sagyndykova, Karlygash Raganina, Raushan Dossymbekova, Aliya Meldebekova, Akerke Amirkhanova, Yerbol Ikhsanov, Gulzhan Sauranbayeva, Manshuk Kamalova and Aidana Toregeldieva
Molecules 2025, 30(11), 2460; https://doi.org/10.3390/molecules30112460 - 4 Jun 2025
Viewed by 349
Abstract
Achillea nobilis and its subspecies (A. nobilis subsp. neilreichii and A. nobilis subsp. sipylea) have been traditionally used in various ethnomedical systems across Eurasia. However, comprehensive studies on their phytochemical composition and pharmacological properties are still insufficient. This review aims to [...] Read more.
Achillea nobilis and its subspecies (A. nobilis subsp. neilreichii and A. nobilis subsp. sipylea) have been traditionally used in various ethnomedical systems across Eurasia. However, comprehensive studies on their phytochemical composition and pharmacological properties are still insufficient. This review aims to provide a critical synthesis of current knowledge regarding the botanical characteristics, geographic distribution, traditional applications, chemical constituents, and pharmacological effects of A. nobilis A structured search was conducted using eight scientific platforms, including Scopus, PubMed, Web of Science, Google Scholar, Science.gov, ScienceDirect, JSTOR, and BASE. Keywords related to phytochemistry, pharmacology, and ethnomedicine were applied, and a total of 28,000 records were initially retrieved. After a multi-stage screening process based on inclusion and exclusion criteria, 167 peer-reviewed publications from 1952 to 2023 were selected for detailed evaluation. Findings reveal a diverse range of bioactive compounds, such as flavonoids, monoterpenes, sesquiterpenes, and sesquiterpene lactones, which demonstrate antioxidant, antimicrobial, anti-inflammatory, antinociceptive, antispasmodic, and anticonvulsant activities. Most studies have focused on aerial parts and water-based extracts, while the root chemistry and organ-specific metabolite profiles remain largely unexplored. This review highlights the therapeutic potential of A. nobilis and underscores the need for future studies using multi-omics and advanced analytical techniques to support its development in pharmaceutical and nutraceutical applications. Full article
Show Figures

Figure 1

12 pages, 3968 KiB  
Article
Bridged Mesoporous Oxo-Phosphonates: A General Strategy Toward Functional, Hybrid Materials
by Elodie Gioan, Zijie Su, Yanhui Wang, Jeremy Rodriguez, Karim Bouchmella and Johan G. Alauzun
Molecules 2025, 30(11), 2459; https://doi.org/10.3390/molecules30112459 - 4 Jun 2025
Viewed by 249
Abstract
Combining the properties of organic and inorganic components with high surface areas and large pore volumes opens up countless possibilities for designing materials tailored to a wide range of advanced applications. As the majority of mesoporous hybrid materials are siliceous, the development of [...] Read more.
Combining the properties of organic and inorganic components with high surface areas and large pore volumes opens up countless possibilities for designing materials tailored to a wide range of advanced applications. As the majority of mesoporous hybrid materials are siliceous, the development of cost-effective synthetic approaches to produce water-stable hybrids with controlled porosity and functionality remains essential. Herein, we describe an original strategy for the synthesis of bridged mesoporous titania–bisphosphonate hybrids based on a one-step, template-free, non-hydrolytic sol–gel process. The reaction between Ti(OiPr)4 and several flexible or rigid bisphosphonate esters, in the presence of acetic anhydride (Ac2O) leads to the formation of TiO2 anatase nanorods interconnected by fully condensed bisphosphonate groups. The general method that we depict is quantitative and low cost. All materials are mesoporous with very high specific surface areas (up to 520 m2·g⁻1) and pore volumes (up to 0.93 cm3·g⁻1). Full article
Show Figures

Graphical abstract

16 pages, 278 KiB  
Article
Antioxidant Activity, Total Polyphenol Content, and Cytotoxicity of Various Types of Starch with the Addition of Different Polyphenols
by Dominika Kwaśny, Barbara Borczak, Paweł Zagrodzki, Joanna Kapusta-Duch, Ewelina Prochownik and Ivo Doskočil
Molecules 2025, 30(11), 2458; https://doi.org/10.3390/molecules30112458 - 4 Jun 2025
Viewed by 264
Abstract
Given the high incidence of diet-related diseases, including type 2 diabetes and cancer, there is a growing need to explore new strategies for their prevention. Although polyphenols are known to reduce starch digestibility and lower the in vitro glycemic index, their antioxidant capacity [...] Read more.
Given the high incidence of diet-related diseases, including type 2 diabetes and cancer, there is a growing need to explore new strategies for their prevention. Although polyphenols are known to reduce starch digestibility and lower the in vitro glycemic index, their antioxidant capacity and cytotoxic properties, when complexed with starches, remain underexplored. Therefore, this study aimed to investigate the antioxidant activity, total polyphenol content, and cytotoxic potential of polyphenol–starch complexes formed using common dietary polyphenols—(+)-catechin, epigallocatechin gallate, hesperidin, naringenin, trans-ferulic acid, p-coumaric acid, quercetin, and kaempferol—and widely consumed starches from wheat, rice, potato, and maize. Antioxidant activity (FRAP and DPPH) together with the total polyphenols content (Folin–Ciocalteu) were tested: (1) before (undigested) enzymatic hydrolysis of the tested sample; (2) after (digested) enzymatic hydrolysis of the tested sample and (3) after hydrolysis of the sample and its centrifugation (supernatant). Cytotoxicity against colon cancer (Caco-2, HT29) and normal colon (CCD 841CoN) cell lines were determined in vitro by the MTT method. In undigested samples, the highest antioxidant activity was obtained with the addition of quercetin to wheat, rice, and maize starch (6735.8 µmol Fe2+/g d.m., 678.8, 539.4 µmol Trolox/g d.m., respectively), and epigallocatechin gallate to wheat, rice, potato, and maize starch (692.1, 538.0, 625.8, 573.6 µmol Trolox/g d.m., respectively). In digested samples, the highest antioxidant activity was obtained with the addition of quercetin to wheat and rice starch (2104.5 µmol Fe2+/g d.m., 742.1 µmol Trolox/g d.m., respectively). In the case of the natant of the digested samples, the highest value was recorded for the addition of (+)-catechin to potato starch and trans-ferulic acid to maize starch (823.7 µmol Fe2+/g d.m., 245.1 µmol Trolox/g d.m., respectively). The addition of quercetin to wheat and rice starch and (+)-catechin to potato starch (0.239, 0.151, 0.085 g gallic acid/g d.m., respectively) resulted in the highest total polyphenol content. Furthermore, quercetin demonstrated the most significant level of cytotoxic activity against the tumor cell line Caco-2 (IC50 = 275.6 µg/mL; potato starch). Overall, quercetin was identified as the most significant or one of the most significant for all parameters evaluated. Full article
(This article belongs to the Special Issue Analyses and Applications of Phenolic Compounds in Food—2nd Edition)
21 pages, 1523 KiB  
Article
Anticancer Effects of Withanolides: In Silico Prediction of Pharmacological Properties
by Gustavo Werneck de Souza e Silva, André Mesquita Marques and André Luiz Franco Sampaio
Molecules 2025, 30(11), 2457; https://doi.org/10.3390/molecules30112457 - 4 Jun 2025
Viewed by 287
Abstract
Withanolides are a class of naturally occurring C-28 ergostane steroidal lactones with an abundance of biological activities, and their members are promising candidates for antineoplastic drug development. The ADMET properties of withanolides are still largely unknown, and in silico predictions can play a [...] Read more.
Withanolides are a class of naturally occurring C-28 ergostane steroidal lactones with an abundance of biological activities, and their members are promising candidates for antineoplastic drug development. The ADMET properties of withanolides are still largely unknown, and in silico predictions can play a crucial role highlighting these characteristics for drug development, shortening time and resources spent on the development of a drug lead. In this work, ADMET properties of promising antitumoral withanolides were assessed. Each chemical structure was submitted to the prediction tools: SwissADME, pkCSM–pharmacokinetics, admetSAR v2.0, and Molinspiration Cheminformatics. The results indicate a good gastrointestinal absorption rate, inability to cross the blood–brain barrier, CYP3A4 metabolization, without inhibition of other P450 cytochromes, high interaction with nuclear receptors, and a low toxicity. It was also predicted for the inhibition of pharmacokinetics transporters and some ecotoxicity. This demonstrates a viability for oral drug development, with low probabilities of side effects. Full article
(This article belongs to the Special Issue Natural Products with Pharmaceutical Activities)
Show Figures

Figure 1

24 pages, 2536 KiB  
Article
The Interplay of Inter- and Intramolecular Hydrogen Bonding in Ether Alcohols Related to n-Octanol
by Markus M. Hoffmann, Troy N. Smith and Gerd Buntkowsky
Molecules 2025, 30(11), 2456; https://doi.org/10.3390/molecules30112456 - 4 Jun 2025
Viewed by 313
Abstract
n-Octanol and related ether alcohols are studied via molecular dynamics (MD) simulations using the two classical all-atom force fields OPLS-AA and CHARMM. The ether alcohols studied possess one ether functionality separated by varying n carbon atoms from the hydroxy group to elucidate how [...] Read more.
n-Octanol and related ether alcohols are studied via molecular dynamics (MD) simulations using the two classical all-atom force fields OPLS-AA and CHARMM. The ether alcohols studied possess one ether functionality separated by varying n carbon atoms from the hydroxy group to elucidate how the positioning of the ether functionality affects intra- and intermolecular hydrogen bonding and, in turn, the physical properties of the studied alcohols. Important general trends observed from simulations with both force fields include the following: Intramolecular hydrogen bonding is majorly present in 3-butoxypropanol and 4-propoxybutanol (n = 3 and 4) while being only marginally present for 5-ethoxypentanol and 6-methoxyhexanol (n = 5 and 6) and absent in 1-hexyloxymethanol and 2-pentyloxyethanol (n = 1 and 2). The intramolecular hydrogen bonds formed by 3-butoxypropanol and 4-propoxybutanol are among the most stable ones of all present hydrogen bonds. Intermolecular hydrogen bonding is stronger between hydroxy groups (OH-OH) than between hydroxy and ether groups (OH-OE). An increased temperature causes a reduction in intermolecular OH-OH and OH-OE hydrogen bonding but a slight increase in intramolecular hydrogen bonding. A reduction in end-to-end distances at a higher temperature is also observed for all studied alcohols, which is likely a reflection of increased dihedral bond rotations. Hydrogen bonding extends mostly between just two molecules while hydrogen bonding networks are rare but do exist, involving, in some instances, up to 30 hydrogen bonds. Regardless of force field and temperature, the obtained radial distribution functions (RDFs) mostly show the same features at same distances that only vary in their intensity. 1-hexyloxymethanol forms a very specific and stable intermolecular double OH-OE hydrogen-bonded dimer. Similar double-hydrogen-bonded dimers can be found for the ether alcohols but are only significantly present for 2-pentyloxyethanol. Overall, the main difference between OPLS-AA and CHARMM is their quantitative prediction of the present hydrogen bonding speciation largely due to the stiffer dihedral potentials in OPLS-AA compared to the CHARMM force field. The simulations indicate that (a) the variations in densities are correlated to the reduced packing efficiency caused by intramolecular hydrogen bonding, (b) self-diffusion correlates with the stability of the intermolecular hydrogen bonds, and (c) the presence of hydrogen-bonded networks, although small in numbers, affect the viscosity. Full article
(This article belongs to the Section Physical Chemistry)
Show Figures

Graphical abstract

75 pages, 15988 KiB  
Review
Tailoring Polymer Properties Through Lignin Addition: A Recent Perspective on Lignin-Derived Polymer Modifications
by Nawoda L. Kapuge Dona and Rhett C. Smith
Molecules 2025, 30(11), 2455; https://doi.org/10.3390/molecules30112455 - 3 Jun 2025
Viewed by 189
Abstract
Lignin, an abundant and renewable biopolymer, has gained significant attention as a sustainable modifier and building block in polymeric materials. Recent advancements highlight its potential to tailor mechanical, thermal, and barrier properties of polymers while offering a greener alternative to petroleum-based additives. This [...] Read more.
Lignin, an abundant and renewable biopolymer, has gained significant attention as a sustainable modifier and building block in polymeric materials. Recent advancements highlight its potential to tailor mechanical, thermal, and barrier properties of polymers while offering a greener alternative to petroleum-based additives. This review provides an updated perspective on the incorporation of lignin into various polymer matrices, focusing on lignin modification techniques, structure–property relationships, and emerging applications. Special emphasis is given to recent innovations in lignin functionalization and its role in developing high-performance, biodegradable, and recyclable materials such as polyurethanes, epoxy resins, phenol-formaldehyde resins, lignin-modified composites, and lignin-based films, coatings, elastomers, and adhesives. These lignin-based materials are gaining attention for potential applications in construction, automated industries, packaging, textiles, wastewater treatment, footwear, supporting goods, automobiles, printing rollers, sealants, and binders. Full article
(This article belongs to the Special Issue Advances in Polymer Materials Based on Lignocellulosic Biomass)
Show Figures

Figure 1

19 pages, 1798 KiB  
Article
Elucidating Semiconducting Properties and Photocatalytic Performance of Surface-Decorated BiVO4 for the Removal of Contaminants of Emerging Concern
by Marin Popović, Suresh Kumar Pandey, Josipa Papac Zjačić, Vladimir Dananić, Marijana Kraljić Roković, Marin Kovačić, Hrvoje Kušić, Andraž Šuligoj, Urška Lavrenčič Štangar and Ana Lončarić Božić
Molecules 2025, 30(11), 2454; https://doi.org/10.3390/molecules30112454 - 3 Jun 2025
Viewed by 197
Abstract
Photocatalysis has been shown to be a promising and ecofriendly approach to the removal of contaminants of emerging concern (CECs). However, preventing the recombination of photogenerated charge carriers and achievement of suitable band edge positions are still major challenges to ensuring better performance. [...] Read more.
Photocatalysis has been shown to be a promising and ecofriendly approach to the removal of contaminants of emerging concern (CECs). However, preventing the recombination of photogenerated charge carriers and achievement of suitable band edge positions are still major challenges to ensuring better performance. Herein, we report the preparation of surface-decorated BiVO4 with both a noble metal (Ag) and transition metal (Fe). The structural, morphological, and semiconducting features of the material were examined employing various techniques (XRD, SEM, UV-DRS, PL, and photoelectrochemical tests). The band gap of surface-modified BiVO4 is slightly narrower compared to pristine material, which is further validated by HOMO-LUMO gaps obtained through theoretical modeling approaches. The recombination of photogenerated charges was successfully reduced in the case of Ag–Fe–BiVO4, as proven by lower PL intensity and increased current density. The comparative photocatalytic degradation of the CECs ciprofloxacin (CIP) and perfluorooctanoic acid (PFOA) was conducted employing pristine BiVO4 and its two surface-modified analogues (Ag–BiVO4, and Ag–Fe–BiVO4) under solar light. Ag–Fe–BiVO4 was shown to be the most efficient; however, its effectiveness differed depending on CEC type. Under the same process conditions, degradation of CIP reached 93.9%, while PFOA was degraded only partially (22.9%). Full article
Show Figures

Figure 1

21 pages, 11870 KiB  
Review
Evolution of the Defense Compounds Against Biotic Stressors in the Invasive Plant Species Leucaena leucocephala
by Hisashi Kato-Noguchi and Midori Kato
Molecules 2025, 30(11), 2453; https://doi.org/10.3390/molecules30112453 - 3 Jun 2025
Viewed by 316
Abstract
Leucaena leucocephala (Lam.) de Wit is listed in the world’s 100 worst alien invasive species because of the risks it poses to native plant communities. Life history traits, such as high growth and reproductive rates, and a high capacity to adapt to different [...] Read more.
Leucaena leucocephala (Lam.) de Wit is listed in the world’s 100 worst alien invasive species because of the risks it poses to native plant communities. Life history traits, such as high growth and reproductive rates, and a high capacity to adapt to different environmental conditions may contribute to its invasive properties. Biotic stressors, such as herbivores, pathogens, and competing plant species are known to exert significant selective pressure on the plant’s survival, distribution, and abundance. L. leucocephala has been reported to contain several compounds involved in the defense functions against these biotic stressors. A large amount of L-mimosine, a non-protein amino acid, was found in all plant parts of L. leucocephala, including its flowers. L-Mimosine is toxic to herbivorous mammals and insects, parasitic nematodes, pathogenic fungi, and neighboring competing plant species by inactivating various essential enzymes and blocking DNA replication, and/or inducing oxidative stress conditions. Several flavonoids, polyphenolic compounds, and/or derivatives of benzoic and cinnamic acids are toxic to parasitic nematodes, pathogenic fungi and bacteria, and competing plant species by disrupting plasma membrane structures and functions, and various metabolic processes. These compounds may represent the invasive traits of L. leucocephala that have undergone natural selection during the evolution of the species. They may contribute to the defense functions against the biotic stressors, and increase its survival, distribution, and abundance in the introduced ranges. This is the first review to focus on the compounds involved in the defense functions against biotic stressors. Full article
Show Figures

Figure 1

22 pages, 2687 KiB  
Article
Isomeric 3-Pyridinylmethylcoumarins Differ in Erk1/2-Inhibition and Modulation of BV2 Microglia-Mediated Neuroinflammation
by Rami Schulzki, Matthias Apweiler, Caroline Röttger, Christoph W. Grathwol, Nora Struchtrup, Sophia Abou El Mirate, Claus Normann, Stefan Bräse and Bernd L. Fiebich
Molecules 2025, 30(11), 2452; https://doi.org/10.3390/molecules30112452 - 3 Jun 2025
Viewed by 225
Abstract
Coumarins are known for their multiple biological effects and have been established as anti-coagulative drugs for years. Furthermore, some coumarins can promote anti-inflammatory effects via the GPR55 receptor, and dual target coumarins have been synthesized. Anti-inflammatory drugs might be beneficial in the treatment [...] Read more.
Coumarins are known for their multiple biological effects and have been established as anti-coagulative drugs for years. Furthermore, some coumarins can promote anti-inflammatory effects via the GPR55 receptor, and dual target coumarins have been synthesized. Anti-inflammatory drugs might be beneficial in the treatment of neuropsychiatric disorders, as the inflammatory hypothesis suggests. For the current study, we compared isomeric 3-pyridinylmethylcoumarins with altered N-atom position regarding their effects on cytokine and chemokine synthesis and expression in LPS-stimulated BV2 microglial cells. The 3-pyridin-4-yl-methylcoumarin showed the most potent anti-inflammatory effects, followed by the 3-pyridin-2-ylmethylcoumarin analog. The observed effects might be mediated by an inhibition of ERK phosphorylation. Full article
Show Figures

Graphical abstract

32 pages, 7375 KiB  
Article
An Innovative Strategy for Untargeted Mass Spectrometry Data Analysis: Rapid Chemical Profiling of the Medicinal Plant Terminalia chebula Using Ultra-High-Performance Liquid Chromatography Coupled with Q/TOF Mass Spectrometry–Key Ion Diagnostics–Neutral Loss Filtering
by Jia Yu, Xinyan Zhao, Yuqi He, Yi Zhang and Ce Tang
Molecules 2025, 30(11), 2451; https://doi.org/10.3390/molecules30112451 - 3 Jun 2025
Viewed by 206
Abstract
Structural characterization of natural products in complex herbal extracts remains a major challenge in phytochemical analysis. In this study, we present a novel post-acquisition data-processing strategy—key ion diagnostics–neutral loss filtering (KID-NLF)—combined with ultra-high-performance liquid chromatography–quadrupole time-of-flight mass spectrometry (UPLC-Q/TOF-MS) for systematic profiling of [...] Read more.
Structural characterization of natural products in complex herbal extracts remains a major challenge in phytochemical analysis. In this study, we present a novel post-acquisition data-processing strategy—key ion diagnostics–neutral loss filtering (KID-NLF)—combined with ultra-high-performance liquid chromatography–quadrupole time-of-flight mass spectrometry (UPLC-Q/TOF-MS) for systematic profiling of the medicinal plant Terminalia chebula. The strategy consists of four main steps. First, untargeted data are acquired in negative electrospray ionization (ESI) mode. Second, a genus-specific diagnostic ion database is constructed by leveraging characteristic fragment ions (e.g., gallic acid, chebuloyl, and HHDP groups) and conserved substructures. Third, MS/MS data are high-resolution filtered using key ion diagnostics and neutral loss patterns (302 Da for HHDP; 320 Da for chebuloyl). Finally, structures are elucidated via detailed spectral analysis. The methanol extract of T. chebula was separated on a C18 column using a gradient of acetonitrile and 0.1% aqueous formic acid within 33 min. This separation enabled detection of 164 compounds, of which 47 were reported for the first time. Based on fragmentation pathways and diagnostic ions (e.g., m/z 169 for gallic acid, m/z 301 for ellagic acid, and neutral losses of 152, 302, and 320 Da), the compounds were classified into three major groups: gallic acid derivatives, ellagitannins (containing HHDP, chebuloyl, or neochebuloyl moieties), and triterpenoid glycosides. KID-NLF overcomes key limitations of conventional workflows—namely, isomer discrimination and detection of low-abundance compounds—by exploiting genus-specific structural signatures. This strategy demonstrates high efficiency in resolving complex polyphenolic and triterpenoid profiles and enables rapid annotation of both known and novel metabolites. This study highlights KID-NLF as a robust framework for phytochemical analysis in species with high chemical complexity. It also paves the way for applications in quality control, drug discovery, and mechanistic studies of medicinal plants. Full article
Show Figures

Graphical abstract

54 pages, 2337 KiB  
Review
Anti-Inflammatory Activity of Thymol and Thymol-Rich Essential Oils: Mechanisms, Applications, and Recent Findings
by Custódia Gago, Ana Serralheiro and Maria da Graça Miguel
Molecules 2025, 30(11), 2450; https://doi.org/10.3390/molecules30112450 - 3 Jun 2025
Viewed by 208
Abstract
Thymol, a monoterpenoid phenol present in the essential oils of several aromatic plants, has attracted considerable attention for its anti-inflammatory effects, often in combination with other bioactive compounds. This work explores the mechanisms behind the anti-inflammatory activity of thymol and thymol-rich essential oils, [...] Read more.
Thymol, a monoterpenoid phenol present in the essential oils of several aromatic plants, has attracted considerable attention for its anti-inflammatory effects, often in combination with other bioactive compounds. This work explores the mechanisms behind the anti-inflammatory activity of thymol and thymol-rich essential oils, summarizing recent experimental findings. Inflammation, a key factor in numerous chronic diseases, can be modulated by targeting essential molecular pathways, such as MAPK, NF-κB, JAK/STAT, and arachidonic acid signaling. Thymol has been shown to influence these pathways, reducing the production of pro-inflammatory cytokines and mediators. Beyond its anti-inflammatory effects, thymol also exhibits a broad range of biological activities, including antimicrobial, antioxidant, and anticancer properties. The applications of thymol and thymol-containing essential oils in therapeutic formulations, food additives, and veterinary medicine are also reviewed. Despite promising preclinical results, challenges such as low bioavailability and toxicity at high doses limit their clinical use. Recent developments in drug delivery systems, such as encapsulation in micro- and nanoparticles, are suggested as strategies to enhance efficacy. Additionally, the synergistic effects of thymol with other natural products are examined, offering the potential for improved therapeutic outcomes. Full article
(This article belongs to the Special Issue Anti-inflammatory Activities of Natural Products—Third Edition)
Show Figures

Figure 1

22 pages, 1817 KiB  
Article
Umbrella Refinement of Ensembles—An Alternative View of Ensemble Optimization
by Johannes Stöckelmaier, Tümay Capraz and Chris Oostenbrink
Molecules 2025, 30(11), 2449; https://doi.org/10.3390/molecules30112449 - 3 Jun 2025
Viewed by 165
Abstract
The elucidation of protein dynamics, especially in the context of intrinsically disordered proteins, is challenging and requires cooperation between experimental studies and computational analysis. Molecular dynamics simulations are an essential investigation tool but often struggle to accurately quantify the conformational preferences of flexible [...] Read more.
The elucidation of protein dynamics, especially in the context of intrinsically disordered proteins, is challenging and requires cooperation between experimental studies and computational analysis. Molecular dynamics simulations are an essential investigation tool but often struggle to accurately quantify the conformational preferences of flexible proteins. To create a quantitatively validated conformational ensemble, such simulations may be refined with experimental data using Bayesian and maximum entropy methods. In this study, we present a method to optimize a conformational ensemble using Bayes’ theorem in connection with a methodology derived from Umbrella Sampling. The resulting method, called the Umbrella Refinement of Ensembles (URE), reduces the number of parameters to be optimized in comparison to the classical Bayesian Ensemble Refinement and remains methodologically suitable for use with the forward formulated Kullback–Leibler divergence. The method is validated using two established systems, an alanine–alanine zwitterion and the chignolin peptide, using nuclear magnetic resonance data from the literature. Full article
Show Figures

Graphical abstract

17 pages, 669 KiB  
Article
Chemical Markers for Differentiating Yellow Prickly Pear (Opuntia ficus-indica) from Southern Greece: Insights from Physicochemical Parameters, Elemental Composition, Antioxidants, and Vitamins
by Artemis P. Louppis, Michael G. Kontominas, Michalis S. Constantinou, Ioanna S. Kosma, Anastasia V. Badeka and Georgios Stamatakos
Molecules 2025, 30(11), 2448; https://doi.org/10.3390/molecules30112448 - 3 Jun 2025
Viewed by 240
Abstract
This study presents an innovative approach to differentiate Southern Greek yellow prickly pear samples according to geographical origin based on physicochemical parameters, mineral composition, and bioactive compounds using advanced chemometrics. A total of 56 yellow prickly pear samples were collected from four distinct [...] Read more.
This study presents an innovative approach to differentiate Southern Greek yellow prickly pear samples according to geographical origin based on physicochemical parameters, mineral composition, and bioactive compounds using advanced chemometrics. A total of 56 yellow prickly pear samples were collected from four distinct Greek regions (Crete, Paros, Symi, Peloponnese) during the 2019 and 2020 harvest seasons. A multi-platform analytical strategy was employed, combining classical physicochemical analyses and UV spectrophotometry for total antioxidant activity with cutting-edge techniques such as UPLC-MS/MS for precise quantification of vitamins and antioxidants, and ICP-MS for mineral profiling. In total, thirteen physicochemical parameters, nineteen macro-, micro-, and trace elements, nine vitamins, and seven antioxidants were identified and quantified. Application of MANOVA and Linear discriminant analysis (LDA) revealed that eight physicochemical parameters, ten mineral elements, and sixteen bioactive compounds played a crucial role in sample geographical differentiation. The classification success rates using the cross-validation method were 82.1% for physicochemical parameters, 75.0% for minerals, and an impressive 96.4% for vitamins and antioxidants highlighting the robust tool for the geographical differentiation of Southern Greek yellow prickly pears. Full article
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop