molecules-logo

Journal Browser

Journal Browser

Metal-Based Molecular Photosensitizers: From Design to Applications

A special issue of Molecules (ISSN 1420-3049). This special issue belongs to the section "Organometallic Chemistry".

Deadline for manuscript submissions: 31 October 2025 | Viewed by 701

Special Issue Editor

Key Laboratory of Pesticides and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
Interests: analytical chemistry; organic chemistry; synthesis of metal-based agents; bioimaging and therapy
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

In the field of metal coordination chemistry, metal-based agents including molecular metal complexes (MMCs), metal-organic complexes (MOCs), and metal-organic frameworks (MOFs), are promising drugs for bioimaging and therapy in preclinical research and clinical applications owing to their versatile and controllable structures. As an emerging modality for disease treatment, photodynamic therapy (PDT) takes advantage of the cytotoxic activity of reactive oxygen species (ROS) that are generated by light irradiating photosensitizers (PSs). The introduction of metal ions to construct PSs might enhance intersystem crossing (ISC) to improve ROS yield during the PDT process, thus effectively improving therapeutic efficiency and stimulating the work of several research groups towards the development of metal-based photosensitizers.

This Special Issue aims to provide a broad survey of the most recent advances in metal-based molecular photosensitizers. Original research articles or reviews that discuss new design and methodologies for the synthesis and functionalization of molecular metal complexes, metal-organic complexes or metal-organic frameworks for photodynamic therapy, and their potential applications in different fields are welcome.

Dr. Yao Sun
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Molecules is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • photosensitizers
  • molecular metal complexes
  • metal-organic complexes
  • metal-organic frameworks
  • photodynamic therapy

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

13 pages, 3184 KiB  
Article
Furin-Triggered Peptide Self-Assembly Activates Coumarin Excimer Fluorescence for Precision Live-Cell Imaging
by Peiyao Chen, Liling Meng, Yuting Wang, Xiaoya Yan, Meiqin Li, Yun Deng and Yao Sun
Molecules 2025, 30(11), 2465; https://doi.org/10.3390/molecules30112465 - 4 Jun 2025
Viewed by 424
Abstract
Monomer-to-excimer transition has become a valuable technique in fluorescence imaging because of its ability to enhance imaging contrast. However, from a practical perspective, the accuracy of excimer formation at target sites warrants further exploration. Enzyme-triggered peptide self-assembly provides a promising solution to this [...] Read more.
Monomer-to-excimer transition has become a valuable technique in fluorescence imaging because of its ability to enhance imaging contrast. However, from a practical perspective, the accuracy of excimer formation at target sites warrants further exploration. Enzyme-triggered peptide self-assembly provides a promising solution to this limitation. As a proof-of-concept, in this study, we developed a furin-triggered peptide self-assembling fluorescent probe RF-Cou by coupling a coumarin dye 7-(diethylamino)-2-oxo-2H-chromene-3-carboxylic acid (Cou) with a furin-responsive peptide scaffold for precision live-cell imaging. Upon entering furin-overexpressing 4T1 tumor cells, RF-Cou underwent enzymatic cleavage, releasing an amphiphilic peptide motif and self-assembling into nanoparticles largely concentrated in the Golgi apparatus to confine the diffusion of Cou. During this process, the Cou excimers were formed and induced a red shift in the fluorescence emission, validating the feasibility of RF-Cou in efficient excimer imaging of furin-overexpressing tumor cells. We expect that our findings will highlight the potential of stimuli-responsive small molecular peptide probes to advance excimer-based imaging platforms, particularly for enzyme-specific cell imaging and therapeutic monitoring. Full article
(This article belongs to the Special Issue Metal-Based Molecular Photosensitizers: From Design to Applications)
Show Figures

Graphical abstract

Back to TopTop