Topic Editors

School of Chemistry and Chemical Engineering, Guizhou University, Guiyang, China
School of Chemistry, Monash University, Caulfield East, Melbourne, VIC, Australia

Application of Chromatography-Mass Spectrometry and Related Techniques, 2nd Edition

Abstract submission deadline
28 February 2026
Manuscript submission deadline
30 April 2026
Viewed by
1451

Topic Information

Dear Colleagues,

This Topic “Application of Chromatography-Mass Spectrometry and Related Techniques, 2nd Edition”, presents new methods or techniques for detecting and quantifying various xenobiotics in different matrices. Mass spectrometry is an analytical technique that allows the precise measurement of an ion's mass to electric charge ratio, where with a known charge of the ion, it is possible to calculate the mass with the accuracy of single atoms. The combination of chromatography and mass spectrometry is a powerful tool for determining different compounds or their groups in biological samples, pharmacokinetic studies, and identifying and monitoring contaminants in food or environmental matrices. Additionally, it is an important tool not only in the detection and determination of parent compounds but also in their metabolites. The MDPI open access journals Analytica, Foods, Molecules, Sensors, and Separations are combining to produce a special topic edition on "Application of Chromatography-Mass Spectrometry and Related Techniques, 2nd Edition". All forms of chromatography will be covered, including simple column LC, GC, HPLC, IC, TLC, SEC Capillary Electrochromatography, and Supercritical Fluid Chromatography. It should be made clear that all forms of Combined Technologies are included, e.g., ICP-MS, MS-MS, LC-MS, LC-MS/MS, LC-NMR, 2D LC, 2D GC, and GC-MS.

Dr. Chao Kang
Dr. Ronald Beckett
Topic Editors

Keywords

  • ICP-MS
  • MS-MS
  • LC-MS
  • LC-MS/MS
  • LC-NMR
  • 2D LC
  • 2D GC
  • GC-MS

Participating Journals

Journal Name Impact Factor CiteScore Launched Year First Decision (median) APC
Analytica
analytica
- 3.7 2020 17.9 Days CHF 1000 Submit
Foods
foods
4.7 8.7 2012 14.5 Days CHF 2900 Submit
Molecules
molecules
4.2 8.6 1996 15.1 Days CHF 2700 Submit
Processes
processes
2.8 5.5 2013 14.9 Days CHF 2400 Submit
Separations
separations
2.5 4.5 2014 15.1 Days CHF 2600 Submit
Chemosensors
chemosensors
3.7 7.3 2013 20.1 Days CHF 2000 Submit

Preprints.org is a multidisciplinary platform offering a preprint service designed to facilitate the early sharing of your research. It supports and empowers your research journey from the very beginning.

MDPI Topics is collaborating with Preprints.org and has established a direct connection between MDPI journals and the platform. Authors are encouraged to take advantage of this opportunity by posting their preprints at Preprints.org prior to publication:

  1. Share your research immediately: disseminate your ideas prior to publication and establish priority for your work.
  2. Safeguard your intellectual contribution: Protect your ideas with a time-stamped preprint that serves as proof of your research timeline.
  3. Boost visibility and impact: Increase the reach and influence of your research by making it accessible to a global audience.
  4. Gain early feedback: Receive valuable input and insights from peers before submitting to a journal.
  5. Ensure broad indexing: Web of Science (Preprint Citation Index), Google Scholar, Crossref, SHARE, PrePubMed, Scilit and Europe PMC.

Published Papers (3 papers)

Order results
Result details
Journals
Select all
Export citation of selected articles as:
32 pages, 7375 KiB  
Article
An Innovative Strategy for Untargeted Mass Spectrometry Data Analysis: Rapid Chemical Profiling of the Medicinal Plant Terminalia chebula Using Ultra-High-Performance Liquid Chromatography Coupled with Q/TOF Mass Spectrometry–Key Ion Diagnostics–Neutral Loss Filtering
by Jia Yu, Xinyan Zhao, Yuqi He, Yi Zhang and Ce Tang
Molecules 2025, 30(11), 2451; https://doi.org/10.3390/molecules30112451 - 3 Jun 2025
Viewed by 133
Abstract
Structural characterization of natural products in complex herbal extracts remains a major challenge in phytochemical analysis. In this study, we present a novel post-acquisition data-processing strategy—key ion diagnostics–neutral loss filtering (KID-NLF)—combined with ultra-high-performance liquid chromatography–quadrupole time-of-flight mass spectrometry (UPLC-Q/TOF-MS) for systematic profiling of [...] Read more.
Structural characterization of natural products in complex herbal extracts remains a major challenge in phytochemical analysis. In this study, we present a novel post-acquisition data-processing strategy—key ion diagnostics–neutral loss filtering (KID-NLF)—combined with ultra-high-performance liquid chromatography–quadrupole time-of-flight mass spectrometry (UPLC-Q/TOF-MS) for systematic profiling of the medicinal plant Terminalia chebula. The strategy consists of four main steps. First, untargeted data are acquired in negative electrospray ionization (ESI) mode. Second, a genus-specific diagnostic ion database is constructed by leveraging characteristic fragment ions (e.g., gallic acid, chebuloyl, and HHDP groups) and conserved substructures. Third, MS/MS data are high-resolution filtered using key ion diagnostics and neutral loss patterns (302 Da for HHDP; 320 Da for chebuloyl). Finally, structures are elucidated via detailed spectral analysis. The methanol extract of T. chebula was separated on a C18 column using a gradient of acetonitrile and 0.1% aqueous formic acid within 33 min. This separation enabled detection of 164 compounds, of which 47 were reported for the first time. Based on fragmentation pathways and diagnostic ions (e.g., m/z 169 for gallic acid, m/z 301 for ellagic acid, and neutral losses of 152, 302, and 320 Da), the compounds were classified into three major groups: gallic acid derivatives, ellagitannins (containing HHDP, chebuloyl, or neochebuloyl moieties), and triterpenoid glycosides. KID-NLF overcomes key limitations of conventional workflows—namely, isomer discrimination and detection of low-abundance compounds—by exploiting genus-specific structural signatures. This strategy demonstrates high efficiency in resolving complex polyphenolic and triterpenoid profiles and enables rapid annotation of both known and novel metabolites. This study highlights KID-NLF as a robust framework for phytochemical analysis in species with high chemical complexity. It also paves the way for applications in quality control, drug discovery, and mechanistic studies of medicinal plants. Full article
Show Figures

Graphical abstract

21 pages, 15391 KiB  
Article
Geochemical Study of Bitumen Residues on Potsherds from the al-Qusur Monastery (7th–9th c. CE): Composition and Origin
by Jacques Connan, Julie Bonnéric, Rémi Perrogon, Michael H. Engel, Renaud Gley, Alex Zumberge and Philippe Schaeffer
Molecules 2025, 30(9), 2006; https://doi.org/10.3390/molecules30092006 - 30 Apr 2025
Viewed by 233
Abstract
Geochemical and isotopic analysis of bitumen lining potsherds from the al-Qusur monastery (second half of the 7th c. CE and the middle of the 9th c. CE), at the central part of Failaka Island (Kuwait Bay), confirms the presence of two distinct compositional [...] Read more.
Geochemical and isotopic analysis of bitumen lining potsherds from the al-Qusur monastery (second half of the 7th c. CE and the middle of the 9th c. CE), at the central part of Failaka Island (Kuwait Bay), confirms the presence of two distinct compositional categories that can be matched to contemporary sources from two different areas of Iran: the Kermanshah province on one side, and the Khuzestan–Fars–Busher provinces on the other side. Potsherds comprise different types: TORP-S amphorae, TORP-C amphorae, SPORC storage jar, turquoise alkaline-glazed jar (TURQ.T), and CREAC jar. There is no relationship between the type of potsherd and the origin of bitumen. The bitumen coating SPORC jar, first identified as a kind of juice strainer to filter the «garum-like juice», was examined in greater details to try to identify traces of fish sauce mentioned in the Arabic kitchen books as ‘murri’, and quite similar to the Roman garum. The mineralogical analysis exhibits the classical minerals of archaeological mixtures (quartz, calcite, dolomite) and no halite. Hydrocarbons, alcohols, and methyl esters show a typical biodegraded bitumen signature but no fatty acids and terpenoids. It seems that the bitumen matrix has not adsorbed any molecules from the presumed «garum» filtered in the basin. Full article
Show Figures

Figure 1

11 pages, 1503 KiB  
Article
Differential Analysis of Anthocyanins in Red and Yellow Hawthorn (Crataegus pinnatifida) Peel Based on Ultra-High Performance Liquid Chromatography-Electrospray Ionization Tandem Mass Spectrometry
by Dongsheng Wang, Beibei Cheng, Liyang Yu, Guomei Yuan, Yate Ma, Jijun Zhang and Furong Lin
Molecules 2025, 30(5), 1149; https://doi.org/10.3390/molecules30051149 - 3 Mar 2025
Viewed by 682
Abstract
Anthocyanins constitute the primary pigment components in hawthorn (Crataegus pinnatifida) peel, yet their specific composition and concentration profiles remain poorly characterized. This study employed ultra-performance liquid chromatography–electrospray ionization–tandem mass spectrometry (UPLC-ESI-MS/MS)-based metabolomics to systematically compare anthocyanin profiles between red-peel (CPR) and [...] Read more.
Anthocyanins constitute the primary pigment components in hawthorn (Crataegus pinnatifida) peel, yet their specific composition and concentration profiles remain poorly characterized. This study employed ultra-performance liquid chromatography–electrospray ionization–tandem mass spectrometry (UPLC-ESI-MS/MS)-based metabolomics to systematically compare anthocyanin profiles between red-peel (CPR) and yellow-peel (CPY) hawthorn cultivars. Our analysis identified 26 anthocyanin metabolites in CPR and 24 in CPY, with cyanidin-3-O-galactoside and cyanidin-3-O-arabinoside being the predominant compounds in both. Multivariate analysis revealed seven significantly differential metabolites, including cyanidin-3-O-galactoside, cyanidin-3-O-arabinoside, pelargonidin-3-O-galactoside, pelargonidin-3-O-glucoside, pelargonidin-3-O-arabinoside, and peonidin-3-O-galactoside. Notably, all the differential metabolites exhibited reductions in CPY compared to CPR. Chromatic analysis demonstrated that CPR possessed highly significantly lower hue angle values (hab) than CPY (47.7093 ± 4.1706, 83.6427 ± 1.4604, p < 0.01), showing strong negative correlations with key anthocyanins. These findings enhance the scientific understanding of anthocyanin biosynthesis in hawthorn peel and provide a certain reference for the development and utilization of anthocyanins in hawthorn peel. Full article
Show Figures

Figure 1

Back to TopTop