Chemical Markers for Differentiating Yellow Prickly Pear (Opuntia ficus-indica) from Southern Greece: Insights from Physicochemical Parameters, Elemental Composition, Antioxidants, and Vitamins
Abstract
:1. Introduction
2. Results and Discussion
2.1. Conventional Physicochemical Parameters Including Color and Sugar Content of Yellow Prickly Pears
2.2. Minerals of Yellow Prickly Pear
2.3. Individual Vitamin and Antioxidant Content, TPC, TFC, and Antioxidant Activity of Yellow Prickly Pear
3. Geographical Differentiation of Yellow Prickly Pears
3.1. Differentiation of Yellow Prickly Based on Physicochemical Parameters
3.2. Differentiation of Yellow Prickly Based on Elemental Composition
3.3. Differentiation of Yellow Prickly Based on Antioxidants and Vitamins
4. Materials and Methods
4.1. Sample Collection
4.2. Chemicals and Reagents
4.3. Determination of Conventional Physicochemical Parameter Values
4.4. Determination of Color Parameters (L, α, b)
4.5. Determination of Sugars Using UPLC-MS/MS
4.6. Determination of Individual Vitamins Using UPLC-MS/MS
4.7. Determination of Individual Antioxidants Using UPLC-MS/MS
4.8. Determination of Total Phenolic Content (TPC), Total Flavonoid Content (TFC), and Antioxidant Activity
4.9. Determination of Minerals Using ICP-MS
4.10. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mizrahi, Y.; Nerd, A.; Nobel, P.S. Cacti as crops. In Horticultural Reviews; Janick, J., Ed.; Wiley: New York, NY, USA, 1997; Volume 18, pp. 291–346. [Google Scholar] [CrossRef]
- Anderson, E.F. The Cactus Family; Timber Press: Portland, OR, USA, 2001. [Google Scholar]
- Kiesling, R. Origen, domesticación y distribución de Opuntia ficus-indica. J. Prof. Assoc. Cactus Dev. 1998, 3, 50–60. [Google Scholar]
- Griffith, M.P. The origins of an important cactus crop, Opuntia ficus-indica (Cactaceae): New molecular evidence. Am. J. Bot. 2004, 91, 1915–1921. [Google Scholar] [CrossRef] [PubMed]
- Feugang, J.M.; Konarski, P.; Zou, D.; Stintzing, F.C.; Zou, C. Nutritional and medicinal use of cactus pear (Opuntia spp.) cladodes and fruits. Front. Biosci. 2006, 11, 2574–2589. [Google Scholar] [CrossRef] [PubMed]
- Stintzing, F.C.; Carle, R. Cactus stems (Opuntia spp.): A review on their chemistry, technology, and uses. Mol. Nutr. Food Res. 2005, 49, 175–194. [Google Scholar] [CrossRef]
- Cronk, Q.C.B.; Fuller, J.L. Plant Invaders. The Threat to Natural Ecosystems; Chapman and Hall: London, UK, 1995. [Google Scholar] [CrossRef]
- Casas, A.; Barbera, G. Mesoamerican domestication and diffusion. In Cacti: Biology and Uses; Nobel, P., Ed.; University of California Press: Berkeley, CA, USA; Los Angeles, CA, USA, 2002; pp. 143–162. [Google Scholar] [CrossRef]
- Vila, M.; Burriel, J.A.; Pino, J.; Chamizow, J.; Llachw, E.; Porterias, M.; Vives, M. Association between Opuntia species invasion and changes in land cover in the Mediterranean region. Glob. Change Biol. 2003, 9, 1234–1239. [Google Scholar] [CrossRef]
- Guevara, J.; Yahia, E.M. Pre- and postharvest technology of cactus stems, the nopal. In Crops: Growth, Quality and Biotechnology; Dris, R., Ed.; WFL Publisher: Helsinki, Finland, 2005; pp. 592–617. [Google Scholar]
- Yahia, E.M. Prickly pear, Chapter 13. In Perishables; Rees, D., Farrell, G., Orchard, J.E., Eds.; Crop Postharvest: Science and Technology; Wiley-Blackwell Publishing: Oxford, UK, 2011; Volume 3. [Google Scholar]
- Boto, I.; Phillips, S.; Fay, F.; Vassilakis, G. The Geography of Food: Reconnecting with Origin in the Food System, Briefing no. 31, Brussels. 2013. Available online: https://brusselsbriefings.files.wordpress.com/2013/05/cta-reader-31-eng.pdf (accessed on 19 March 2025).
- Gomez-Ariza, J.L.; Villegas-Portero, M.J.; Bernal-Daza, V. Characterization and analysis of amino acids in orange juice by HPLC-MS/MS for authenticity assessment. Anal. Chim. Acta 2005, 540, 221–230. [Google Scholar] [CrossRef]
- Ehling, S.; Cole, S. Analysis of organic acids in fruit juices by liquid chromatography-mass spectrometry: An enhanced tool for authenticity testing. J. Agric. Food Chem. 2011, 59, 2229–2234. [Google Scholar] [CrossRef] [PubMed]
- Muntean, E. Simultaneous carbohydrate chromatography and unsuppressed ion chromatography in detecting fruit juices adulteration. Chromatographia 2010, 71, 69–74. [Google Scholar] [CrossRef]
- Saavedra, L.; Ruperez, F.J.; Barbas, C. Capillary electrophoresis for evaluating orange juice authenticity: A study on Spanish oranges. J. Agric. Food Chem. 2001, 49, 9–13. [Google Scholar] [CrossRef]
- Cuny, M.; Vigneau, E.; Le Gall, G.; Colquhoun, I.; Lees, M.; Rutledge, D.N. Fruit juice authentication by 1H NMR spectroscopy in combination with different chemometric tools. Anal. Bioanal. Chem. 2008, 390, 419–427. [Google Scholar] [CrossRef]
- Vezzulli, F.; Fontanella, M.C.; Lambri, M.; Beone, G.M. Specialty and high-quality coffee: Discrimination through elemental characterization via ICP-OES, ICP-MS, and ICP-MS/MS of origin, species, and variety. J. Sci. Food Agric. 2023, 103, 4303–4316. [Google Scholar] [CrossRef] [PubMed]
- Anderson, D.L.; Cunningham, W.C.; Alvarez, G.H. Multielement analysis of foods by neutron capture prompt γ-ray activation analysis. J. Radioanal. Nucl. Chem. 1992, 167, 139–144. [Google Scholar] [CrossRef]
- Rossmann, A. Determination of stable isotope ratios in food analysis. Food Rev. Int. 2001, 17, 347–381. [Google Scholar] [CrossRef]
- Akerstrom, A.; Jaakola, L.; Bang, U.; Jaderlund, A. Effects of latitude-related factors and geographical origin on anthocyanidin concentrations in fruits of Vaccinium myrtillus L. (Bilberries). J. Agric. Food Chem. 2010, 58, 11939. [Google Scholar] [CrossRef]
- Li, A.; Zhao, D.; Li, J.; Qian, J.; Chen, Q.; Qian, X.; Yang, X.; Zhao, J. Authenticating the Geographical Origin of Jingbai Pear in Northern China by Multiple Stable Isotope and Elemental Analysis. Foods 2024, 13, 3417. [Google Scholar] [CrossRef]
- Turco, V.L.; Potortì, A.G.; Tropea, A.; Dugo, G.; Di Bella, G. Element analysis of dried figs (Ficus carica L.) from the Mediterranean areas. J. Food Compos. Anal. 2020, 90, 103503. [Google Scholar] [CrossRef]
- Matos-Reyes, M.N.; Simonot, J.; Lopez-Salazar, O.; Cervera, M.L.; de la Guardia, M. Authentication of Alicante’s mountain cherries protected designation of origin by their mineral profile. Food Chem. 2013, 141, 2191–2197. [Google Scholar] [CrossRef]
- Karabagias, V.K.; Karabagias, I.K.; Louppis, A.; Badeka, A.; Kontominas, M.G.; Papastephanou, C. Valorization of Prickly Pear Juice Geographical Origin Based on Mineral and Volatile Compound Contents Using LDA. Foods 2019, 8, 123. [Google Scholar] [CrossRef]
- Louppis, A.P.; Constantinou, M.S.; Kosma, I.S.; Badeka, A.V.; Kontominas, M.G.; Blando, F.; Stamatakos, G. Identification of quality markers for the geographical and botanical differentiation of Mediterranean prickly pears based on conventional physicochemical parameters, volatile compounds, sugars and colour. J. Food Compos. Anal. 2023, 123, 105579. [Google Scholar] [CrossRef]
- Louppis, A.P.; Constantinou, M.S.; Kontominas, M.G.; Blando, F.; Stamatakos, G. Geographical and botanical differentiation of Mediterranean prickly pear using specific chemical markers. J. Food Compos. Anal. 2023, 119, 105219. [Google Scholar] [CrossRef]
- Ramírez-Pérez, M.; Hidalgo-Martínez, D.; Reyes-López, C.A.; Pinedo-Espinoza, J.M.; Hernández-Fuentes, A.D.; Becerra-Martínez, E. Discrimination of different prickly pear (Opuntia spp.) accessions by NMR-based metabolomics. J. Food Compos. Anal. 2024, 130, 106158. [Google Scholar] [CrossRef]
- González-Stuart, A.E.; Rivera, J.O. Chapter 23—Nutritional and Therapeutic Applications of Prickly Pear Cacti. In Bioactive Food as Dietary Interventions for Diabetes, 2nd ed.; Watson, R.R., Preedy, V.R., Eds.; Academic Press: Cambridge, MA, USA, 2019; pp. 349–360. [Google Scholar]
- Albuquerque, T.G.; Pereira, P.; Silva, M.A.; Vicente, F.; Ramalho, R.; Costa, H.S. Chapter 44—Prickly pear. In Nutritional Composition and Antioxidant Properties of Fruits and Vegetables; Jaiswal, A.K., Ed.; Academic Press: Cambridge, MA, USA, 2020; pp. 709–728. Available online: https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=1724699 (accessed on 24 April 2025).
- Loukili, E.H.; Merzouki, M.; Taibi, M.; Elbouzidi, A.; Hammouti, B.; Yadav, K.K.; Khalid, M.; Addi, M.; Ramdani, M.; Kumar, P.; et al. Phytochemical, biological, and nutritional properties of the prickly pear, Opuntia dillenii: A review. Saudi Pharm. J. 2024, 32, 102167. [Google Scholar] [CrossRef]
- Valero-Galván, J.; González-Fernández, R.; Sigala-Hernández, A.; Núñez-Gastélum, J.A.; Ruiz-May, E.; Rodrigo-García, J.; Larqué-Saavedra, A.; del Rocío Martínez-Ruiz, N. Sensory attributes, physicochemical and antioxidant characteristics, and protein profile of wild prickly pear fruits (O. macrocentra Engelm., O. phaeacantha Engelm., and O. engelmannii Salm-Dyck ex Engelmann.) and commercial prickly pear fruits (O. ficus indica (L.) Mill.). Food Res. Int. 2021, 140, 109909. [Google Scholar] [CrossRef] [PubMed]
- Cota-Sánchez, J.H. Chapter 28—Nutritional Composition of the Prickly Pear (Opuntia ficus-indica) Fruit. In Nutritional Composition of Fruit Cultivars; Simmonds, M.S.J., Preedy, V.R., Eds.; Academic Press: Cambridge, MA, USA, 2016; pp. 691–712. [Google Scholar] [CrossRef]
- Díaz Medina, E.M.; Rodríguez, E.M.R.; Romero, C.D. Chemical characterization of Opuntia dillenii and Opuntia ficus indica fruits. Food Chem. 2007, 103, 38–45. [Google Scholar] [CrossRef]
- Mayer, J.A.; Cushman, J.C. Nutritional and mineral content of prickly pear cactus: A highly water-use efficient forage, fodder and food species. J. Agron. Crop Sci. 2020, 205, 625–634. [Google Scholar] [CrossRef]
- Abdel-Hameed, E.S.S.; Nagaty, M.A.; Salman, M.S.; Bazaid, S.A. Phytochemicals, nutritionals and antioxidant properties of two prickly pear cactus cultivars (Opuntia ficus indica Mill.) growing in Taif, KSA. Food Chem. 2014, 160, 31–38. [Google Scholar] [CrossRef] [PubMed]
- De Wit, M.; du Toit, A.; Osthoff, G.; Hugo, A. Cactus pear antioxidants: A comparison between fruit pulp, fruit peel, fruit seeds and cladodes of eight different cactus pear cultivars (Opuntia ficus-indica and Opuntia robusta). J. Food Meas. Charact. 2019, 13, 2347–2356. [Google Scholar] [CrossRef]
- Amaya-Cruz, D.M.; Pérez-Ramírez, I.F.; Delgado-García, J.; Mondragón-Jacobo, C.; Dector-Espinoza, A.; Reynoso-Camacho, R. An integral profile of bioactive compounds and functional properties of prickly pear (Opuntia ficus indica L.) peel with different tonalities. Food Chem. 2018, 278, 568–578. [Google Scholar] [CrossRef]
- Albano, C.; Negro, C.; Tommasi, N.; Gerardi, C.; Mita, G.; Miceli, A.; De Bellis, L.; Blando, F. Betalains, Phenols and Antioxidant Capacity in Cactus Pear [Opuntia ficus-indica (L.) Mill.] Fruits from Apulia (South Italy) Genotypes. Antioxidants 2015, 4, 269–280. [Google Scholar] [CrossRef]
- Albergamo, A.; Mottese, A.F.; Bua, G.D.; Caridi, F.; Sabatino, G.; Barrega, L.; Costa, R.; Dugo, G. Discrimination of the Sicilian Prickly Pear (Opuntia Ficus-Indica L., CV. Muscaredda) according to the provenance by testing unsupervised and supervised chemometrics. J. Food Sci. 2018, 83, 2933–2942. [Google Scholar] [CrossRef]
- El-Guezzane, C.; El-Moudden, H.; Harhar, H.; Chahboun, N.; Tabyaoui, M.; Zarrouk, A. A comparative study of the antioxidant activity of two Moroccan prickly pear cultivars collected in different regions. Chem. Data Collect. 2021, 31, 100637. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis, 22nd ed.; AOAC International: San Diego, CA, USA, 2023. [Google Scholar]
- Louppis, A.P.; Constantinou, M.S.; Kontominas, M.G. An ultra-performance liquid chromatography-tandem mass spectrometric method for the identification and quantification of selected natural antioxidants in prickly pear samples. J. Food Compos. Anal. 2021, 104, 104155. [Google Scholar] [CrossRef]
- Singleton, V.; Rossi, J. Colorimetry of Total Phenolic Compounds with Phosphomolybdic-Phosphotungstic Acid Reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar] [CrossRef]
- Matić, P.; Sabljić, M.; Jakobek, L. Validation of Spectrophotometric Methods for the Determination of Total Polyphenol and Total Flavonoid Content. J. AOAC Int. 2017, 100, 1795–1803. [Google Scholar] [CrossRef]
- Ozgen, M.; Reese, R.N.; Tulio, A.Z.; Scheerens, J.C.; Miller, A.R. Modified 2,2-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (abts) method to measure antioxidant capacity of Selected small fruits and comparison to ferric reducing antioxidant power (FRAP) and 2,2′-diphenyl-1-picrylhydrazyl (DPPH) methods. J. Agric. Food Chem. 2006, 54, 1151–1157. [Google Scholar] [CrossRef]
Compound | Crete | Symi | Paros | Peloponnese |
---|---|---|---|---|
pH * | 6.27 ± 0.11 ab | 6.19 ± 0.14 ab | 6.13 ± 0.19 a | 6.35 ± 0.14 b |
Electrical Conductivity * (μS/cm) | 151 ± 26 a | 187 ± 28 ab | 202 ± 21 b | 173 ± 30 ab |
Titratable acidity (% as citric acid) | 0.070 ± 0.0000 | 0.079 ± 0.029 | 0.064 ± 0.011 | 0.066 ± 0.011 |
Crude protein (g/100 d.w.b.) | 0.91 ± 0.23 | 1.08 ± 0.31 | 0.79 ± 0.24 | 1.15 ± 0.42 |
Moisture content * (g/100 g) | 78 ± 4 a | 84 ± 2 b | 83 ± 3 b | 84 ± 3 b |
Ash (acid insoluble, g/100 g) | 0.55 ± 0.10 | 0.55 ± 0.04 | 0.62 ± 0.11 | 0.56 ± 0.10 |
Crude fat (g/100 d.w.b.) | 2.27 ± 0.87 | 2.43 ± 0.85 | 2.40 ± 0.00 | 2.51 ± 0.83 |
Carbohydrates * (g/100 g) | 18 ± 4 b | 11 ± 1 a | 14 ± 3 a | 11 ± 3 a |
Fructose * (g/100 g) | 2.86 ± 1.04 b | 1.25 ± 0.61 a | 3.69 ± 1.17 b | 2.42 ± 0.52 ab |
Glucose * (g/100 g) | 3.73 ± 1.44 b | 0.82 ± 0.06 a | 4.36 ± 1.37 b | 1.53 ± 0.88 a |
L | 65.68 ± 1.21 | 65.40 ± 3.46 | 61.34 ± 2.59 | 62.66 ± 4.20 |
a * | −1.54 ± 1.27 ab | −3.21 ± 1.42 a | 0.91 ± 3.32 b | −1.79 ± 1.86 ab |
b * | 0.91 ± 0.30 ab | 1.04 ± 0.56 b | 0.45 ± 0.36 a | 0.78 ± 0.40 ab |
Mineral | Crete | Symi | Paros | Peloponnese |
---|---|---|---|---|
K | 1794 ± 311 | 2237 ± 151 | 2216 ± 372 | 1893 ± 408 |
Ca | 349 ± 109 | 384 ± 151 | 566 ± 269 | 383 ± 134 |
P | 249 ± 131 | 360 ± 105 | 184 ± 70 | 322 ± 130 |
Mg | 221 ± 114 | 231 ± 77 | 272 ± 84 | 270 ± 93 |
B * | 4.65 ± 1.41 b | 4.81 ± 0.53 b | 3.54 ± 0.48 ab | 3.31 ± 0.70 a |
Si * | 1.61 ± 0.36 a | 2.66 ± 0.38 ab | 2.84 ± 0.95 ab | 3.24 ± 1.13 b |
Zn | 1.99 ± 1.37 | 3.44 ± 1.20 | 1.79 ± 0.71 | 2.82 ± 1.16 |
Mn * | 5.17 ± 0.56 ab | 2.67 ± 1.25 a | 1.27 ± 0.62 a | 10.00 ± 6.04 b |
Na * | 4.09 ± 0.83 ab | 3.45 ± 0.62 a | 6.09 ± 2.57 b | 3.32 ± 0.84 a |
Fe | 1.99 ± 2.35 | 2.04 ± 0.60 | 1.38 ± 0.46 | 2.22 ± 0.77 |
Sr * | 0.36 ± 0.21 a | 0.281 ± 0.08 a | 0.26 ± 0.13 a | 0.51 ± 0.22 a |
Al * | 0.52 ± 0.26 a | 0.23 ± 0.07 a | 0.91 ± 0.43 b | 0.23 ± 0.09 a |
Cu * | 0.37 ± 0.17 a | 0.58 ± 0.14 a | 0.34 ± 0.13 a | 0.52 ± 0.19 a |
Ni * | 0.48 ± 0.17 ab | 0.61 ± 0.22 b | 0.20 ± 0.16 a | 0.68 ± 0.25 b |
Ba * | 0.12 ± 0.06 a | 0.27 ± 0.14 ab | 0.14 ± 0.12 a | 0.46 ± 0.34 b |
Sn * | 0.07 ± 0.01 ab | 0.03 ± 0.00 a | 0.14 ± 0.09 b | 0.03 ± 0.00 a |
Ti | 0.030 ± 0.006 | 0.052 ± 0.036 | 0.015 ± 0.002 | 0.023 ± 0.003 |
Mo | 0.022 ± 0.003 | 0.023 ± 0.014 | 0.010 ± 0.005 | 0.014 ± 0.008 |
Co | 0.004 ± 0.002 | 0.003 ± 0.001 | 0.003 ± 0.001 | 0.002 ± 0.000 |
Compound | Crete | Symi | Paros | Peloponnese |
---|---|---|---|---|
DPPH * (mg/kg Trolox) | 9 ± 2 a | 7 ± 4 a | 16 ± 2 b | 4 ± 1 a |
FRAP * (mg/kg FeSO4) | 41 ± 5 a | 48 ± 11 a | 62 ± 8 b | 50 ± 5 a |
Total flavonoids * (mg/kg quercetin) | 4.07 ± 0.32 a | 4.67 ± 0.61 ab | 6.20 ± 1.97 b | 4.72 ± 0.96 ab |
Total phenolics * (mg/kg gallic acid) | 114 ± 19 c | 66 ± 10 a | 90 ± 12 b | 70 ± 7 a |
Nicotinic Acid * (μg/kg) | 70 ± 34 ab | 105 ± 34 b | 27 ± 18 a | 177 ± 62 c |
Nicotinamide (μg/kg) | 16 ± 7 | 27 ± 18 | 22 ± 17 | 22 ± 14 |
Pyridoxal (μg/kg) | 14 ± 5 | 18 ± 9 | 10 ± 6 | 12 ± 4 |
Pyridoxine * (μg/kg) | 2.25 ± 0.72 a | 3.47 ± 1.30 a | 2.12 ± 1.31 a | 6.38 ± 1.48 b |
Vitamin B5 * (μg/kg) | 754 ± 387 a | 927 ± 177 ab | 630 ± 341 a | 1364 ± 228 b |
Vitamin B7 (μg/kg) | 23 ± 11 a | 25 ± 5 a | 20 ± 11 a | 23 ± 6 a |
Vitamin B1 * (μg/kg) | 10.50 ± 5.60 ab | 8.59 ± 2.57 ab | 15.90 ± 10.04 b | 6.40 ± 1.60 a |
Vitamin B2 * (μg/kg) | 50 ± 20 a | 53 ± 20 a | 30 ± 17 a | 31 ± 9 a |
Vitamin C * (μg/kg) | 69272 ± 22628 b | 27309 ± 17302 a | 69054 ± 43416 b | 8907 ± 6919 a |
Taurine * (μg/kg) | 1.48 ± 0.54 ab | 1.12 ± 0.17 a | 2.12 ± 0.78 b | 2.43 ± 0.81 b |
Rutin * (μg/kg) | 36 ± 16 b | 34 ± 14 b | 35 ± 15 b | 6 ± 1 a |
Quercetin * (μg/kg) | 19 ± 9 b | 4 ± 3 a | 14 ± 5 ab | 24 ± 13 b |
Catechin * (μg/kg) | 21 ± 12 b | 9 ± 6 b | 11 ± 3 ab | 3 ± 2 a |
Isorhamnetin * (μg/kg) | 12.5 ± 8.6 ab | 0.7 ± 0.5 a | 7.0 ± 6.1 a | 21.0 ± 11.7 b |
Gallic acid (μg/kg) | 0.96 ± 0.22 | 0.49 ± 0.48 | 0.59 ± 0.42 | 1.39 ± 1.01 |
Kaempferol * (μg/kg) | 5.87 ± 3.20 bc | 0.45 ± 0.04 a | 2.99 ± 2.45 ab | 8.28 ± 2.64 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Louppis, A.P.; Kontominas, M.G.; Constantinou, M.S.; Kosma, I.S.; Badeka, A.V.; Stamatakos, G. Chemical Markers for Differentiating Yellow Prickly Pear (Opuntia ficus-indica) from Southern Greece: Insights from Physicochemical Parameters, Elemental Composition, Antioxidants, and Vitamins. Molecules 2025, 30, 2448. https://doi.org/10.3390/molecules30112448
Louppis AP, Kontominas MG, Constantinou MS, Kosma IS, Badeka AV, Stamatakos G. Chemical Markers for Differentiating Yellow Prickly Pear (Opuntia ficus-indica) from Southern Greece: Insights from Physicochemical Parameters, Elemental Composition, Antioxidants, and Vitamins. Molecules. 2025; 30(11):2448. https://doi.org/10.3390/molecules30112448
Chicago/Turabian StyleLouppis, Artemis P., Michael G. Kontominas, Michalis S. Constantinou, Ioanna S. Kosma, Anastasia V. Badeka, and Georgios Stamatakos. 2025. "Chemical Markers for Differentiating Yellow Prickly Pear (Opuntia ficus-indica) from Southern Greece: Insights from Physicochemical Parameters, Elemental Composition, Antioxidants, and Vitamins" Molecules 30, no. 11: 2448. https://doi.org/10.3390/molecules30112448
APA StyleLouppis, A. P., Kontominas, M. G., Constantinou, M. S., Kosma, I. S., Badeka, A. V., & Stamatakos, G. (2025). Chemical Markers for Differentiating Yellow Prickly Pear (Opuntia ficus-indica) from Southern Greece: Insights from Physicochemical Parameters, Elemental Composition, Antioxidants, and Vitamins. Molecules, 30(11), 2448. https://doi.org/10.3390/molecules30112448