Evolution of the Defense Compounds Against Biotic Stressors in the Invasive Plant Species Leucaena leucocephala
Abstract
:1. Introduction
2. Toxicity Against Herbivorous Mammals
3. Toxicity Against Herbivorous Insects
4. Toxicity Against Parasitic Nematodes
5. Toxicity Against Pathogenic Fungi and Bacteria
6. Toxicity Against Competing Plant Species
7. Conclusions
Funding
Conflicts of Interest
References
- Global Invasive Species Database, Species Profile: Leucaena leucocephala. Available online: https://www.iucngisd.org/gisd/species.php?sc=23 (accessed on 18 April 2025).
- Invasive Species Compendium, Leucaena leucocephala (Leucaena). Available online: https://www.cabidigitallibrary.org/doi/full/10.1079/cabicompendium.31634 (accessed on 18 April 2025).
- Walton, C. The biology of Australian weeds. 42. Leucaena leucocephala (Lamark) de Wit. Plant Prot. Quart. 2003, 18, 90–98. [Google Scholar]
- Sharma, P.; Kaur, A.; Batish, D.R.; Kaur, S.; Chauhan, B.S. Critical insights into the ecological and invasive attributes of Leucaena leucocephala, a tropical agroforestry species. Front. Agron. 2022, 4, 890992. [Google Scholar] [CrossRef]
- Campbell, S.; Vogler, W.; Brazier, D.; Vitelli, J.; Brooks, S. Weed leucaena and its significance, implications and control. Trop. Grassl. 2019, 7, 280–289. [Google Scholar] [CrossRef]
- Rengsirikul, K.; Kanjanakuha, A.; Ishii, Y.; Kangvansaichol, K.; Sripichitt, P.; Punsuvon, V.; Vaithanomsat, P.; Nakamenee, G.; Tudsri, S. Potential forage and biomass production of newly introduced varieties of leucaena (Leucaena leucocephala (Lam.) de Wit.) in Thailand. Grassl. Sci. 2011, 57, 94–100. [Google Scholar] [CrossRef]
- Wanapat, M.; Kang, S.; Polyorach, S. Development of feeding systems and strategies of supplementation to enhance rumen fermentation and ruminant production in the tropics. J. Anim. Sci. Biotechnol. 2013, 4, 32. [Google Scholar] [CrossRef]
- de Angelis, A.; Gasco, L.; Parisi, G.; Danieli, P.P. A multipurpose leguminous plant for the mediterranean countries: Leucaena leucocephala as an alternative protein source: A review. Animals 2021, 11, 2230. [Google Scholar] [CrossRef]
- Durango, S.G.; Barahona, R.; Bolívar, D.; Chirinda, N.; Arango, J. Feeding strategies to increase nitrogen retention and improve rumen fermentation and rumen microbial population in beef steers fed with tropical forages. Sustainability 2021, 13, 10312. [Google Scholar] [CrossRef]
- Verdecia, D.M.; Herrera, R.S.; Ramírez, J.L.; Leonard, I.; Bodas, R.; Andrés, S.; Giráldez, F.J.; Valdés, C.; Arceo, Y.; Paumier, M.; et al. Effect of age of regrowth, chemical composition and secondary metabolites on the digestibility of Leucaena leucocephala in the Cauto Valley, Cuba. Agrofor. Syst. 2020, 94, 1247–1253. [Google Scholar] [CrossRef]
- Mac Dicken, K.G. Nitrogen Fixing Trees for Wastelands; FAO Regional Office for Asia and the Pacific—Food and Agriculture Organization of the United Nations: Bangkok, Thailand, 1988; pp. 1–104. [Google Scholar]
- Hansted, A.L.S.; Nakashima, G.T.; Martins, M.P.; Yamamoto, H.; Yamaji, F.M. Comparative analyses of fast growing species in different moisture content for high quality solid fuel production. Fuel 2016, 184, 180–184. [Google Scholar] [CrossRef]
- Nguyen, M.P.; Vaast, P.; Pagella, T.; Sinclair, F. Local knowledge about ecosystem services provided by trees in coffee agroforestry practices in northwest Vietnam. Land 2020, 9, 486. [Google Scholar] [CrossRef]
- Prasad, J.V.N.S.; Korwar, G.R.; Rao, K.V.; Mandal, U.K.; Rao, G.R.; Srinivas, I.; Venkateswarlu, B.; Rao, S.N.; Kulkarni, H.D. Optimum stand density of Leucaena leucocephala for wood production in Andhra Pradesh, Southern India. Biomass Bioenergy 2011, 35, 227–235. [Google Scholar] [CrossRef]
- Khanna, N.K.; Shukla, O.P.; Gogate, M.G.; Narkhede, S.L. Leucaena for paper industry in Gujarat, India: Case study. Trop. Grassl.-Forrajes Trop. 2019, 7, 200–209. [Google Scholar] [CrossRef]
- Anupam, K.; Swaroop, V.; Deepika; Lal, P.S.; Bist, V. Turning Leucaena leucocephala bark to biochar for soil application via statistical modelling and optimization technique. Ecol. Eng. 2015, 82, 26–39. [Google Scholar] [CrossRef]
- Jha, P.; Neenu, S.; Rashmi, I.; Meena, B.P.; Jatav, R.C.; Lakaria, B.L.; Biswas, A.L.; Singh, M.; Patra, A.K. Ameliorating effects of Leucaena biochar on soil acidity and exchangeable Ions. Commun. Soil Sci. Plant Anal. 2016, 47, 1252–1262. [Google Scholar] [CrossRef]
- Yu, G.; Huang, H.Q.; Wang, Z.; Brierley, G.; Zhang, K. Rehabilitation of a debris-flow prone mountain stream in southwestern China—Strategies, effects and implications. J. Hydrol. 2012, 414-415, 231–243. [Google Scholar] [CrossRef]
- Adhikary, P.P.; Hombegowda, H.C.; Barman, D.; Jakhar, P.; Madhu, M. Soil erosion control and carbon sequestration in shifting cultivated degraded highlands of eastern India: Performance of two contour hedgerow systems. Agrof. Syst. 2017, 91, 757–771. [Google Scholar] [CrossRef]
- Ishihara, K.L.; Honda, M.D.H.; Bageel, A.; Borthakur, D. Leucaena leucocephala: A leguminous tree suitable for eroded habitats of Hawaiian Islands. In Ravine Lands: Greening for Livelihood and Environmental Security; Dagar, J., Singh, A., Eds.; Springer: Singapore, 2018; pp. 413–431. [Google Scholar]
- Badalamenti, E.; Pasta, S.; Sala, G.; Catania, V.; Quatrini, P.; La Mantia, T. The paradox of the alien plant Leucaena leucocephala subsp. glabrata (Rose) S. Zárate in Sicily: Another threat for the native flora or a valuable resource? Int. J. Plant Biol. 2020, 11, 8637. [Google Scholar]
- Iqbal, I.M.; Balzter, H.; Firdaus-e-Bareen; Shabbir, A. Mapping Lantana camara and Leucaena leucocephala in protected areas of Pakistan: A geo-spatial approach. Remote Sens. 2023, 15, 1020. [Google Scholar] [CrossRef]
- Chen, J.C.; Chen, C.T.; Jump, A.S. Forest disturbance leads to the rapid spread of the invasive Leucaena leucocephala in Taiwan. J. Rakuno Gakuen Univ. 2014, 38, 101–109. [Google Scholar] [CrossRef]
- Kew Royal Botanic Gardens, Leucaena leucocephala (Lam.) de Wit. Available online: https://powo.science.kew.org/taxon/urn:lsid:ipni.org:names:138955-2#distributions (accessed on 18 April 2025).
- Mello, T.J.; Oliveira, A.A. Making a bad situation worse: An invasive species altering the balance of interactions between local species. PLoS ONE 2016, 11, e0152070. [Google Scholar] [CrossRef]
- Hata, K.; Suzuki, J.I.; Kachi, N. Effects of an alien shrub species, Leucaena leucocephala, on establishment of native mid-successional tree species after disturbance in the national park in the Chichijima island, a subtropical oceanic island. Tropics 2007, 16, 283–290. [Google Scholar] [CrossRef]
- Jurado, E.; Flores, J.; Navar, J.; Jiménez, J. Seedling establishment under native tamaulipan thornscrub and Leucaena leucocephala plantation. For. Ecol. Manag. 1998, 105, 151–157. [Google Scholar] [CrossRef]
- Yoshida, K.; Oka, S. Invasion of Leucaena leucocephala and its effects on the native plant community in the Ogasawara (Bonin) Islands. Weed Technol. 2004, 18, 1371–1375. [Google Scholar] [CrossRef]
- Colón, S.M. Recovery of a subtropical dry forest after abandonment of different land. Biotropica 2006, 38, 354–364. [Google Scholar] [CrossRef]
- Francis, J.K.; Parrotta, J.A. Vegetation response to grazing and planting of Leucaena leucocephala in a Urochloa maximum-dominated grassland in Puerto Rico. Caribb. J. Sci. 2006, 42, 67–74. [Google Scholar]
- Hwang, C.Y.; Hsu, L.M.; Liou, Y.J.; Wang, C.Y. Distribution, growth, and seed germination ability of lead tree (Leucaena leucocephala) plants in Penghu Islands, Taiwan. Weed Technol. 2010, 24, 574–582. [Google Scholar] [CrossRef]
- Marler, T.N.; Nirmala Dongol, N.; Cruz, G.M. Leucaena leucocephala and adjacent native limestone forest habitats contrast in soil properties on Tinian Island. Commu. Integr. Biol. 2016, 9, e1212792. [Google Scholar]
- Njunge, J.T.; Kaholongo, I.K.; Amutenya, M.; Hove, K. Invasiveness and biomass production of Leucaena leucocephala under harsh ecological conditions of north-central Namibia. J. Trop. For. Sci. 2017, 29, 297–304. [Google Scholar]
- Yoshida, K.; Oka, S. Impact of biological invasion of Leucaena leucocephala on successional pathway and species diversity of secondary forest on Hahajima Island, Ogasawara (Bonin) Islands, northwestern Pacific. Jpn. J. Ecol. 2000, 50, 111–119. [Google Scholar]
- Idol, T. A short review of Leucaena as an invasive species in Hawaii. Trop. Grassl.-Forrajes Trop. 2019, 7, 290–294. [Google Scholar] [CrossRef]
- Brewbaker, J.L.; Hegde, N.; Hutton, E.M.; Jones, R.J.; Lowry, J.B.; Moog, F.; van den Beldt, R. Leucaena—Forage Production and Use; Nitrogen Fixing Tree Association: Waimanalo, HI, USA, 1985; pp. 1–39. [Google Scholar]
- Sandhu, J.; Sinha, M.; Ambasht, R.S. Nitrogen release from decomposing litter of Leucaena leucocephala in the dry tropics. Soil Biol. Biochem. 1990, 22, 859–863. [Google Scholar] [CrossRef]
- Valiente, C.A. The invasion ecology of Leucaena leucocephala on Moorea, French Polynesia. Biol. Geomorphol. Trop. Islands 2010, 19, 65–72. [Google Scholar]
- te Beest, M.; Le Roux, J.J.; Richardson, D.M.; Brysting, A.K.; Suda, J.; Kubešová, M.; Pyšek, P. The more the better? The role of polyploidy in facilitating plant invasions. Ann. Bot. 2012, 109, 19–45. [Google Scholar] [CrossRef] [PubMed]
- IUCN. 100 of the World’s Worst Invasive Alien Species. Available online: https://portals.iucn.org/library/sites/library/files/documents/2000-126.pdf (accessed on 18 April 2025).
- Marifatul, H.S.; Mohammed, D.; Muhammad, W.; Manoj, K.; Manzer, S.H.; Rainer, B.W. Predicting potential invasion risks of Leucaena leucocephala (Lam.) de Wit in the arid area of Saudi Arabia. J. Arid Land 2024, 16, 983–999. [Google Scholar] [CrossRef]
- Mack, R.M. Predicting the identity and fate of plant invaders: Emergent and emerging approaches. Biol. Conserv. 1996, 78, 107–121. [Google Scholar] [CrossRef]
- Theoharides, K.A.; Dukes, J.S. Plant invasion across space and time: Factors affecting nonindigenous species success during four stages of invasion. New Phytol. 2007, 176, 256–273. [Google Scholar] [CrossRef]
- Warren, R.J.; Matt Candeias, M.; Labatore, A.; Olejniczak, M.; Yang, L. Multiple mechanisms in woodland plant species invasion. J. Plant Ecol. 2019, 12, 201–209. [Google Scholar] [CrossRef]
- Kato-Noguchi, H. The impact and invasive mechanisms of Pueraria montana var. lobata, one of the world’s worst alien species. Plants 2023, 12, 3066. [Google Scholar]
- Kato-Noguchi, H. Invasive mechanisms of one of the world’s worst alien plant species Mimosa pigra and its management. Plants 2023, 12, 1960. [Google Scholar] [CrossRef]
- Clements, D.R.; Kato-Noguchi, H. Defensive mechanisms of Mikania micrantha likely enhance its invasiveness as one of the world’s worst alien species. Plants 2025, 14, 269. [Google Scholar] [CrossRef]
- Sohtome, Y.; Tokunaga, T.; Ueda, K.; Yamamura, S.; Ueda, M. Leaf-closing substance in Leucaena leucocephala. Biosci. Biotechnol. Biochem. 2002, 66, 51–56. [Google Scholar] [CrossRef] [PubMed]
- Rao, P.B.; Kaur, A.; Tewari, A. Drought resistance in seedlings of five important tree species in Tarai region of Uttarakhand. Trop. Ecol. 2008, 49, 43. [Google Scholar]
- Yige, C.; Fangqing, C.; Lei, L.; Shunbo, Z. Physiological responses of Leucaena leucocephala seedlings to drought stress. Procedia Eng. 2012, 28, 110–116. [Google Scholar] [CrossRef]
- Bageel, A.; Honda, M.D.; Carrillo, J.T.; Borthakur, D. Giant leucaena (Leucaena leucocephala subsp. glabrata): A versatile tree-legume for sustainable agroforestry. Agrofor. System. 2020, 94, 251–268. [Google Scholar]
- Abair, A.; Hughes, C.E.; Bailey, C.D. The evolutionary history of Leucaena: Recent research, new genomic resources and future directions. Trop. Grassl.-Forrajes Trop. 2019, 7, 65–73. [Google Scholar] [CrossRef]
- Walton, C. Leucaena (Leucaena leucocephala) in Queensland; Department of Natural Resources and Mines: Brisbane, QLD, Australia, 2003; pp. 1–51. [Google Scholar]
- Olckers, T. Biological control of Leucaena leucocephala (Lam.) de Wit (Fabaceae) in South Africa: A tale of opportunism, seed feeders and unanswered questions. Afr. Entomol. 2011, 19, 356–365. [Google Scholar] [CrossRef]
- Marques, A.R.; Costa, C.F.; Atman, A.P.F.; Garcia, Q.S. Germination characteristics and seedbank of the alien species Leucaena leucocephala (Fabaceae) in Brazilian forest: Ecological implications. Weed Res. 2014, 54, 576–583. [Google Scholar] [CrossRef]
- Fonseca, N.G.D.; Jacobi, C.M. Germination performance of the invader Leucaena leucocephala (Lam.) de Wit. compared to Caesalpinia ferrea Mart. ex Tul. and C. pulcherrima (L.) Sw. (Fabaceae). Acta Bot. Bras. 2011, 25, 191–197. [Google Scholar] [CrossRef]
- Keane, R.M.; Crawley, M.L. Exotic plant invasions and the enemy release hypothesis. Trend. Ecol. Evol. 2002, 17, 164–170. [Google Scholar] [CrossRef]
- Callaway, R.M.; Aschehoug, E.T. Invasive plants versus their new and old neighbors: A mechanism for exotic invasion. Science 2000, 290, 521–523. [Google Scholar] [CrossRef]
- Kato-Noguchi, H.; Kato, M. Evolution of the secondary metabolites in invasive plant species Chromolaena odorata for the defense and allelopathic functions. Plants 2023, 12, 521. [Google Scholar] [CrossRef] [PubMed]
- Kato-Noguchi, H.; Kato, M. Defense molecules of the invasive plant species Ageratum conyzoides. Molecules 2024, 29, 4673. [Google Scholar] [CrossRef] [PubMed]
- Kato-Noguchi, H.; Kato, M. Compounds involved in the invasive characteristics of Lantana camara. Molecules 2025, 30, 411. [Google Scholar] [CrossRef] [PubMed]
- Kato-Noguchi, H.; Kato, M. Defensive compounds involved in the invasiveness of Tithonia diversifolia. Molecules 2025, 30, 1946. [Google Scholar] [CrossRef]
- Hammond, A.C. Leucaena toxicosis and its control in ruminants. J. Anim. Sci. 1995, 73, 1487–1492. [Google Scholar] [CrossRef]
- Dalzell, S.A.; Burnett, D.J.; Dowsett, J.E.; Forbes, V.E.; Shelton, H.M. Prevalence of mimosine and DHP toxicity in cattle grazing Leucaena leucocephala pastures in Queensland, Australia. Anim. Prod. Sci. 2012, 52, 365–372. [Google Scholar] [CrossRef]
- Radrizzani, A.; Nasca, J.A. The effect of Leucaena leucocephala on beef production and its toxicity in the Chaco Region of Argentina. Trop. Grassl.-Forrajes Trop. 2014, 2, 127–129. [Google Scholar] [CrossRef]
- Phaikaew, C.; Suksaran, W.; Ted-Arsen, J.; Nakamanee, G.; Saichuer, A.; Seejundee, S.; Kotprom, N.; Shelton, H.M. Incidence of subclinical toxicity in goats and dairy cows consuming leucaena (Leucaena leucocephala) in Thailand. Anim. Prod. Sci. 2012, 52, 283–286. [Google Scholar] [CrossRef]
- Peixoto, P.V.; França, T.N.; Cunha, B.M.; Tavares, D.V.A.M.; Brito, M.F. Spontaneous poisoning by Leucaena leucocephalai in a goat from Rio de Janeiro State, Brazil. Ciência Rural. 2008, 38, 551–555. [Google Scholar] [CrossRef]
- Halliday, M.J.; Padmanabha, J.; McSweeney, C.S.; Kerven, G.; Shelton, H.M. Leucaena toxicity: A new perspective on the most widely used forage tree legume. Trop. Grassl.-Forrajes Trop. 2013, 1, 1–11. [Google Scholar] [CrossRef]
- Machado, M.; Queiroz-Machado, C.R.; Gardner, D.R.; Castro, M.B.; Câmara, A.C.L.; Pimentel, L.A.; Galixa, G.J.N.; Riet-Correa, F. Leucaena leucocephala toxicity in Brazilian horses. Toxicon 2024, 240, 107655. [Google Scholar] [CrossRef] [PubMed]
- Anyanwu, G.A.; Okoro, V.M.O.; Mbajiorgu, C.A. Optimum inclusion levels of Leucaena leucocephala pasture leaf-meal on growth, haematology and physiological performance of growing pigs. Trop. Anim. Health Prod. 2021, 53, 116. [Google Scholar] [CrossRef]
- Fayemi, P.O.; Onwuka, C.F.I.; Isah, O.A.; Jegede, A.V.; Arigbede, O.M.; Muchenje, V. Effects of mimosine and tannin toxicity on rabbits fed processed Leucaena leucocephala (Lam) de Wit. leaves. Afr. J. Agric. Res. 2011, 6, 4081–4085. [Google Scholar]
- Mtenga, L.A.; Laswai, G.D. Leucaena leucocephala as feed for rabbits and pigs: Detailed chemical composition and effect of level of inclusion on performance. For. Ecol. Manag. 1994, 64, 249–257. [Google Scholar] [CrossRef]
- Burawat, J.; Uabandit, N.; Arun, S.; Nualkaew, S.; Iamsaard, S. Effects of Leucaena leucocephala (Lamk.) shoot tips plus young leaf extract containing mimosine on reproductive system of male rats. Int. J. Morphol. 2018, 36, 1062–1069. [Google Scholar] [CrossRef]
- de Almeida, E.R.; Martinelli, E.C.; Pereira, E.C.; Raspantini, L.E.; Hueza, I.M. Alternative method for oral administration of insoluble toxins to rats. A prenatal study of L-mimosine. Toxicon 2021, 202, 82–89. [Google Scholar] [CrossRef]
- de Almeida, E.R.; Górniak, S.L.; Momo, C.; Ferreira, V.L.; Pereira, E.C.; Hueza, I.M. Prenatal toxicity of L-mimosine in Wistar rats. Toxicon 2025, 254, 108223. [Google Scholar] [CrossRef]
- Kanla, P.; Burawat, J.; Arun, S.; Sawatpanich, T.; Chaichun, A.; Iamsaard, S. Acute effects of mimosine purified from Leucaena leucocephala on male reproductive system of adult mice. Int. J. Morphol. 2018, 36, 507–512. [Google Scholar] [CrossRef]
- Crawford, G.; Puschner, B.; Affolter, V.; Stalis, I.; Davidson, A.; Baker, T.; Tahara, J.; Jolly, A.; Ostapak, S. Systemic effects of Leucaena leucocephala ingestion on ringtailed lemurs (Lemur catta) at Berenty Reserve, Madagascar. Am. J. Primatol. 2015, 77, 633–641. [Google Scholar] [CrossRef]
- Brewbaker, J.L.; Hylin, J.W. Variations in mimosine content among Leucaena species and related mimosaceae. Crop Sci. 1965, 5, 348–349. [Google Scholar] [CrossRef]
- Smith, I.K.; Fowden, L.A. Study of mimosine toxicity in plants. J. Exp. Bot. 1996, 17, 750–761. [Google Scholar] [CrossRef]
- Soedarjo, M.; Borthakur, D. Mimosine produced by the tree-legume Leucaena provides growth advantages to some Rhizobium strains that utilize it as a source of carbon and nitrogen. Plant Soil 1996, 186, 87–92. [Google Scholar] [CrossRef]
- Xuan, T.D.; Elzaawely, A.A.; Deba, F.; Tawata, S. Mimosine in Leucaena as a potent bio-herbicide. Agron. Sustain. Dev. 2006, 26, 89–97. [Google Scholar] [CrossRef]
- Honda, M.D.H.; Borthakur, D. Mimosine concentration in Leucaena leucocephala under various environmental conditions. Trop. Grassl.-Forrajes Trop. 2019, 7, 164–172. [Google Scholar] [CrossRef]
- Honda, M.; Borthakur, D. Mimosine concentration in giant leucaena (Leucaena leucocephala subsp. glabrata) fluctuates with age and plant part: Mimosine concentration in giant leucaena. Trop. Grassl.-Forrajes Trop. 2024, 12, 11–23. [Google Scholar] [CrossRef]
- Ikegami, F.; Mizuno, M.; Kihara, M.; Murakoshi, I. Enzymatic synthesis of the thyrotoxic amino acid mimosine by cysteine synthase. Phytochemistry 1990, 29, 3461–3465. [Google Scholar] [CrossRef]
- Harun-Ur-Rashid, M.; Iwasaki, H.; Parveen, S.; Oogai, S.; Fukuta, M.; Amzad Hossain, M.A.; Anai, T.; Oku, H. Cytosolic cysteine synthase switch cysteine and mimosine production in Leucaena leucocephala. Appl. Biochem. Biotechnol. 2018, 186, 613–632. [Google Scholar] [CrossRef]
- Murakoshi, I.; Ikegami, F.; Hinuma, Y.; Hanma, Y. Purification and characterization of L-mimosine synthase from Leucaena leucocephala. Phytochemistry 1984, 23, 1905–1908. [Google Scholar] [CrossRef]
- MetaCyc. Pathway: Mimosine Biosynthesis. Available online: https://biocyc.org/gene?orgid=META&id=MONOMER-11365 (accessed on 18 April 2025).
- Gotardo, A.T.; Dipe, V.V.; de Almeida, E.R.M.; Hueza, I.M.; Pfister, J.A.; Górniak, S.L. Potential toxic effects produced by L-mimosine in the thyroid and reproductive systems. Evaluation in male rats. Toxicon 2021, 203, 121–128. [Google Scholar] [CrossRef]
- Hueza, I.M.; Dipe, V.V.; Gotardo, A.T.; Gardner, D.R.; de Almeida, E.R.M.; Górniak, S.L. Potential immunomodulatory response associated with L-mimosine in male Wistar rats. Toxicon 2023, 226, 107084. [Google Scholar] [CrossRef]
- Holmes, J.H.G.; Humphrey, J.D.; Walton, E.A.; O’Shea, J.D. Cataracts, goitre and infertility in cattle grazed on an exclusive diet of Leucaena leucocephala. Aust. Vet. J. 1981, 57, 257–261. [Google Scholar] [CrossRef] [PubMed]
- Zayed, M.Z.; Sallam, S.M.A.; Shetta, N.D. Review article on Leucaena leucocephala as one of the miracle timber trees. Int. J. Pharm. Pharmaceut. Sci. 2018, 10, 1–7. [Google Scholar] [CrossRef]
- Shelton, H.; Kerven, G.L.; Dalzell, S.A. An update on leucaena toxicity: Is inoculation with Synergistes jonesii necessary? Trop. Grassl.-Forrajes Trop. 2019, 7, 146–153. [Google Scholar] [CrossRef]
- Yanuartono, Y.; Indarjulianto, S.; Nururrozi, A.; Raharjo, S.; Purnamaningsih, H. Brief review: The negative impact of mimosin in L. leucocephala in ruminant animals and processing methods to reduce poisoning effects on ruminant livestock. J. Livest. Sci. Prod. 2019, 3, 199. [Google Scholar] [CrossRef]
- Negi, V.S.; Bingham, J.P.; Li, Q.X.; Borthakur, D. A carbon-nitrogen lyase from Leucaena leucocephala catalyzes the first step of mimosine degradation. Plant Physiol. 2014, 164, 922–934. [Google Scholar] [CrossRef]
- Jones, R.J.; Hegarty, M.P. The effect of different proportions of Leucaena leucocephala in the diet of cattle on growth, feed intake, thyroid function and urinary excretion of 3-hydroxy-4(1H)-pyridone. Aust. J. Agric. Res. 1984, 35, 317–325. [Google Scholar] [CrossRef]
- Gupta, H.K.; Atreja, P.P. Influence of feeding increasing levels of leucaena leaf meal on the performance of milch goats and metabolism of mimosine and 3-hydroxy-4 (1H) pyridone. Anim. Feed Sci. Technol. 1999, 78, 159–167. [Google Scholar] [CrossRef]
- Loh, Z.H.; Ouwerkerk, D.; Klieve, A.V.; Hungerford, N.L.; Fletcher, M.T. Toxin degradation by rumen microorganisms: A review. Toxins 2020, 12, 664. [Google Scholar] [CrossRef]
- Paul, S.S. Detoxification of mimosine and dihydroxypyridone: A review. Agric. Rev. 2000, 21, 104–109. [Google Scholar]
- Derakhshani, H.; Corley, S.W.; Jassim, R.A. Isolation and characterization of mimosine, 3, 4 DHP and 2, 3 DHP degrading bacteria from a commercial rumen inoculum. J. Basic Microbiol. 2016, 56, 580–585. [Google Scholar] [CrossRef]
- Allison, M.J.; Hammond, A.C.; Jones, R.J. Detection of ruminal bacteria that degrade toxic dihydroxypyridine compounds produced from mimosine. Appl. Environ. Microbiol. 1990, 56, 590–594. [Google Scholar] [CrossRef] [PubMed]
- Wiratmini, N.I.; Narayani, I.; Setiasih, N.L. The effect of dietary inclusion of detoxified Leucaena leucocephala leaf meal on thyroidal activity of rats during gestation-lactation period. Int. J. Biosc. Biotech. 2018, 2, 103–110. [Google Scholar] [CrossRef]
- Malafaia, P.; Armién, A.G.; Peixoto, P.V. Experimental poisoning of rabbits by Leucaena leucocephala. Pesqui. Vet. Bras. 1994, 4, 105–109. [Google Scholar]
- Porto, M.R.; Moscardini, A.R.; Novais, E.P.; Filho, S.L.C.; Lima, E.M.; Castro, M.B. Natural and experimental Leucaena leucocephala poisoning in horses. Pesqui. Vet. Bras. 2017, 37, 829–834. [Google Scholar] [CrossRef]
- Nguyen, B.C.; Tawata, S. The chemistry and biological activities of mimosine: A review. Phytother. Res. 2016, 30, 1230–1242. [Google Scholar] [CrossRef]
- Hashiguchi, H.; Takahashi, H. Inhibition of two copper-containing enzymes, tyrosinase and dopamine β-hydroxylase, by L-mimosine. Mol. Pharmacol. 1977, 13, 362–367. [Google Scholar] [CrossRef]
- Dai, Y.; Gold, B.; Vishwanatha, J.K.; Rhode, S.L. Mimosine inhibits viral DNA synthesis through ribonucleotide reductase. Virology 1994, 205, 210–216. [Google Scholar] [CrossRef]
- Crounse, R.G.; Maxwell, J.D.; Blank, H. Inhibition of growth of hair by mimosine. Nature 1962, 194, 694–695. [Google Scholar] [CrossRef]
- Lin, J.Y.; Shih, Y.M.; Ling, K.H. Studies on the mechanism of toxicity of mimosine (β-(N-[3-hydroxypyridone])-α-aminopropionic acid. Studies of the reactions of mimosine and pyridoxal 5-phosphate using the spectrophotometric method. J. Formos. Med. Assoc. 1962, 61, 997–1003. [Google Scholar]
- Lin, J.Y.; Lin, K.T.; Ling, K.H. Studies on the mechanism of toxicity of mimosine (β-(N-[3-hydroxypyridone])-α-aminopropionic acid. The effect of mimosine on the activity of L-dopa decarboxylase, in vitro. J. Formos. Med. Assoc. 1963, 62, 587–1003. [Google Scholar]
- Hylin, J.W. Toxic peptides and amino acids in foods and feeds. J. Agric. Food Chem. 1969, 17, 492–496. [Google Scholar] [CrossRef]
- Krude, T. Mimosine arrests proliferating human cells before onset of DNA replication in a dose-dependent manner. Expe. Cell Res. 1999, 247, 148–159. [Google Scholar] [CrossRef] [PubMed]
- Park, S.Y.; Im, J.S.; Park, S.R.; Kim, S.E.; Wang, H.J.; Lee, J.K. Mimosine arrests the cell cycle prior to the onset of DNA replication by preventing the binding of human Ctf4/And-1 to chromatin via Hif-1α activation in HeLa cells. Cell Cycle 2012, 11, 761–766. [Google Scholar] [CrossRef] [PubMed]
- Kubota, S.; Fukumoto, Y.; Ishibashi, K.; Soeda, S.; Kubota, S.; Yuki, R.; Nakayama, Y.; Aoyama, K.; Yamaguchi, N.; Yamaguchi, N. Activation of the prereplication complex is blocked by mimosine through reactive oxygen species-activated ataxia telangiectasia mutated (ATM) protein without DNA damage. J. Biol. Chem. 2014, 289, 5730–5746. [Google Scholar] [CrossRef]
- Nordlund, P.; Reichard, P. Ribonucleotide reductases. Annu. Rev. Biochem. 2006, 75, 681–706. [Google Scholar] [CrossRef]
- Greene, B.L.; Kang, G.; Cui, C.; Bennati, M.; Nocera, D.G.; Drennan, C.L.; Stubbe, J. Ribonucleotide reductases: Structure, chemistry, and metabolism suggest new therapeutic targets. Annu. Rev. Biochem. 2020, 89, 45–75. [Google Scholar] [CrossRef]
- Blumenthal, D.M. Interactions between resource availability and enemy release in plant invasion. Ecol. Lett. 2006, 9, 887–895. [Google Scholar] [CrossRef]
- Blossey, B.; Notzold, R. Evolution of increased competitive ability in invasive nonindigenous plants—A hypothesis. J. Ecol. 1995, 83, 887–889. [Google Scholar] [CrossRef]
- Coley, P.D.; Barone, J.A. Herbivory and plant defenses in tropical forests. Annu. Rev. Ecol. Systemat. 1996, 27, 305–335. [Google Scholar] [CrossRef]
- Mithöfer, A.; Boland, W. Plant defense against herbivores: Chemical aspects. Annu. Rev. Plant Biol. 2012, 63, 431–450. [Google Scholar] [CrossRef]
- Cavalcante, G.M.; Moreira, A.F.C.; Vasconcelos, S.D. Insecticidal potential of aqueous extracts from arboreous species against whitefly. Pesqui. Agropecu. Bras. 2006, 41, 9–14. [Google Scholar] [CrossRef]
- Auamcharoen, W.; Chandrapatya, A. Acaricidal and ovicidal efficacies of Leucaena glauca Benth. seed crude extracts on Tetranychus urticae Koch (Acari: Tetranychidae). J. Biopestic. 2015, 8, 68. [Google Scholar] [CrossRef]
- Elliott, R.; Milton, J.T.B.; Gordon, G.H.; Blamey, F.P.C. Effect of L-mimosine in artificial diet on the growth and development of Heliothis punctiger larvae. J. Agric. Sci. 1984, 103, 477–479. [Google Scholar] [CrossRef]
- Ishaaya, I.; Hirashima, A.; Yablonski, S.; Tawata, S.; Eto, M. Mimosine, a nonprotein amino acid, inhibits growth and enzyme systems in Tribolium castaneum. Pestic. Biochem. Physiol. 1991, 39, 35–42. [Google Scholar] [CrossRef]
- Nguyen, B.C.Q.; Chompoo, J.; Tawata, S. Insecticidal and nematicidal activities of novel mimosine derivatives. Molecules 2015, 20, 16741–16756. [Google Scholar] [CrossRef]
- Yu, Q.Y.; Lu, C.; Li, W.L.; Xiang, Z.H.; Zhang, Z. Annotation and expression of carboxylesterases in the silkworm. BMC Genom. 2009, 10, 553. [Google Scholar] [CrossRef]
- Colovic, M.B.; Krstic, D.Z.; Lazarevic-Pasti, T.D.; Bondzic, A.M.; Vasic, V.M. Acetylcholinesterase inhibitors: Pharmacology and toxicology. Curr. Neuropharmacol. 2013, 11, 315–335. [Google Scholar] [CrossRef]
- Labbé, P.; Alout, H.; Djogbénou, L.; Pasteur, N.; Weill, M.G. Evolution of resistance to insecticide in disease vectors. In Genetics and Evolution of Infectious Diseases; Tibayrenc, M., Ed.; Elsevier: London, UK, 2011; pp. 363–409. [Google Scholar]
- Sidhu, G.K.; Singh, S.; Kumar, V.; Dhanjal, D.S.; Datta, S.; Singh, J. Toxicity, monitoring and biodegradation of organophosphate pesticides: A review. Crit. Rev. Environ. Sci. Technol. 2019, 49, 1135–1187. [Google Scholar] [CrossRef]
- Vavricka, C.J.; Han, Q.; Mehere, P.; Ding, H.; Christensen, B.M.; Li, J. Tyrosine metabolic enzymes from insects and mammals: A comparative perspective. Insect Sci. 2014, 21, 13–19. [Google Scholar] [CrossRef]
- Sterkel, M.; Oliveira, P.L. Developmental roles of tyrosine metabolism enzymes in the blood-sucking insect Rhodnius prolixus. Proc. Royal Soc. B Biol. Sci. 2017, 284, 20162607. [Google Scholar] [CrossRef]
- Arakane, Y.; Noh, M.Y.; Asano, T.; Kramer, K.J. Tyrosine metabolism for insect cuticle pigmentation and sclerotization. In Extracellular Composite Matrices in Arthropods; Cohen, E., Moussian, B., Eds.; Springer: Berlin/Heidelberg, Germany, 2016; pp. 165–220. [Google Scholar]
- Fallon, A.M. Effects of mimosine on Wolbachia in mosquito cells: Cell cycle suppression reduces bacterial abundance. Vitr. Cell. Dev. Biol. Animal 2015, 51, 958–963. [Google Scholar] [CrossRef] [PubMed]
- Lambert, K.; Bekal, S. Introduction to Plant-Parasitic Nematodes. Plant Health Instr. 2002, 2. Available online: https://www.apsnet.org/edcenter/disandpath/nematode/intro/Pages/IntroNematodes.aspx (accessed on 18 April 2025). [CrossRef]
- den Akker, S.E. Plant–nematode interactions. Curr. Opin. Plant Biol. 2021, 62, 102035. [Google Scholar]
- Seid, A.; Fininsa, C.; Mekete, T.; Decraemer, W.; Wesemael, W.M. Tomato (Solanum lycopersicum) and root-knot nematodes (Meloidogyne spp.)—A century-old battle. Nematology 2015, 17, 995–1009. [Google Scholar] [CrossRef]
- Sikandar, A.; Zhang, M.Y.; Wang, Y.Y.; Zhu, X.F.; Liu, X.Y.; Fan, H.Y.; Xuan, Y.H.; Chen, L.J.; Duan, Y.X. Meloidogyne incognita (root-knot nematode) a risk to agriculture. Appl. Ecol. Environ. Res. 2020, 18, 1. [Google Scholar] [CrossRef]
- Pires, D.; Vicente, C.S.L.; Menéndez, E.; Faria, J.M.S.; Rusinque, L.; Camacho, M.J.; Inácio, M.L. The fight against plant-parasitic nematodes: Current status of bacterial and fungal biocontrol agents. Pathogens 2022, 11, 1178. [Google Scholar] [CrossRef]
- Adekunle, O.K.; Akinlua, A. Nematicidal effects of Leucaena leucocephala and Gliricidia sepium extracts on Meloidogyne incognita infecting okra. J. Agric. Sci. 2007, 52, 53–63. [Google Scholar] [CrossRef]
- Ahmed, Z.M.; Dawar, S.; Tariq, M.; Zaki, M.J. Effect of local tree seeds in the control of root knot nematode Meloidogyne javanica (Treub) chitwood and growth promotion of chickpea (Cicer arietinum L.) and mung bean (Vigna radiata L.). Acta Agrobot. 2010, 63, 197–203. [Google Scholar] [CrossRef]
- El-Nuby, A.S.M.; Alam, E.A. Phytochemical and nematicidal activity studies of some extracts of different plant parts of Leucaena leucocephala against Meloidogyne incognita. Int. J. Chem. Pharm. Sci. 2020, 11, 1–17. [Google Scholar]
- Amaral, D.R.; Oliveira, D.F.; Campos, V.P.; Pantaleão, J.A.; Carvalho, D.A.D.; Nunes, A.D.S. Effect of plant and fungous metabolites on Meloidogyne exigua. Cienc. Agrotec. 2009, 33, 1861–1865. [Google Scholar] [CrossRef]
- Widaad, A.; Zulkipli, I.N.; Petalcorin, M.I.R. Anthelmintic effect of Leucaena leucocephala extract and its active compound, mimosine, on vital behavioral activities in Caenorhabditis elegans. Molecules 2022, 27, 1875. [Google Scholar] [CrossRef] [PubMed]
- Adekunle, O.K.; Aderogba, M.A. Characterisation of an antinematicidal compound from Leucaena leucocephala. Australas. Plant Dis. Notes 2008, 3, 168–170. [Google Scholar]
- von Son-de Fernex, E.; Alonso-Díaz, M.Á.; Mendoza-de Gives, P.; Valles-de la Mora, B.; González-Cortazar, M.; Zamilpa, A.; Gallegos, E.C. Elucidation of Leucaena leucocephala anthelmintic-like phytochemicals and the ultrastructural damage generated to eggs of Cooperia spp. Vet. Parasitol. 2015, 214, 89–95. [Google Scholar] [CrossRef] [PubMed]
- Elmahy, R.A.; Moustafa, A.Y.; Radwan, N.A. Toxocara canis: Prospective activity of Quercetin and venom of Cassiopea andromeda (Cnidaria: Cassiopeidae) against third-stage larvae in vitro. J. Exp. Zool. A Ecol. Integr. Physiol. 2024, 341, 991–1001. [Google Scholar] [CrossRef]
- Abramovitch, R.B.; Martin, G.B. Strategies used by bacterial pathogens to suppress plant Defenses. Curr. Opi. Plant Biol. 2004, 7, 356–364. [Google Scholar] [CrossRef]
- Rojas, C.M.; Senthil-Kumar, M.; Tzin, V.; Mysore, K.S. Regulation of primary plant metabolism during plant-pathogen interactions and its contribution to plant defense. Front. Plant Sci. 2014, 5, 17. [Google Scholar] [CrossRef]
- Pandey, P.; Irulappan, V.; Bagavathiannan, M.V.; Senthil-Kumar, M. Impact of combined abiotic and biotic stresses on plant growth and avenues for crop improvement by exploiting physio-morphological traits. Front. Plant Sci. 2017, 8, 537. [Google Scholar] [CrossRef]
- Abbas, A.M.; Novak, S.J.; Fictor, M.; Mostafa, Y.S.; Alamri, S.A.; Alrumman, S.A.; Taher, M.A.; Hashem, M.; Khalaphallah, R. Initial in vitro assessment of the antifungal activity of aqueous extracts from three invasive plant species. Agriculture 2022, 12, 1152. [Google Scholar] [CrossRef]
- Serrano, E.P.; Ilag, L.; Mendoza, E.M.T. Biochemical mechanisms of mimosine toxicity to Sclerotium rolfsii Sacco. Aust. J. Biol. Sci. 1983, 36, 445–454. [Google Scholar] [CrossRef]
- Elbanoby, N.E.; El-Settawy, A.A.; Mohamed, A.A.; Salem, M.Z. Phytochemicals derived from Leucaena leucocephala (Lam.) de Wit (Fabaceae) biomass and their antimicrobial and antioxidant activities: HPLC analysis of extracts. Biomass Convers. Biorefin. 2024, 14, 14593–14609. [Google Scholar] [CrossRef]
- Gorniak, I.; Bartoszewski, R.; Kroliczewski, J. Comprehensive review of antimicrobial activities of plant flavonoids. Phytochem. Rev. 2019, 18, 241–272. [Google Scholar] [CrossRef]
- Taheri, Y.; Suleria, H.A.R.; Martins, N.; Sytar, O.; Beyatli, A.; Yeskaliyeva, B.; Seitimova, G.; Salehi, B.; Semwal, P.; Painuli, S.; et al. Myricetin bioactive effects: Moving from preclinical evidence to potential clinical applications. BMC Complement. Med. Ther. 2020, 20, 241. [Google Scholar] [CrossRef] [PubMed]
- Gledhill, J.R.; Montgomery, M.G.; Leslie, A.G.; Walker, J.E. Mechanism of inhibition of bovine F1-ATPase by resveratrol and related polyphenols. Proc. Nat. Acad. Sci. USA 2007, 104, 13632–13637. [Google Scholar] [CrossRef] [PubMed]
- Hotra, A.; Suter, M.; Biuković, G.; Ragunathan, P.; Kundu, S.; Dick, T.; Grüber, G. Deletion of a unique loop in the mycobacterial F-ATP synthase γ subunit sheds light on its inhibitory role in ATP hydrolysis-driven H+ pumping. FEBS J. 2016, 283, 1947–1961. [Google Scholar] [CrossRef] [PubMed]
- Vestergaard, M.; Ingmer, H. Antibacterial and antifungal properties of resveratrol. Int. J. Antimicrob. Agents 2019, 53, 716–723. [Google Scholar] [CrossRef]
- Ivanov, M.; Kostić, M.; Stojković, D.; Soković, M. Rosmarinic acid-modes of antimicrobial and antibiofilm activities of a common plant polyphenol. S. Afr. J. Bot. 2022, 146, 521–527. [Google Scholar] [CrossRef]
- Choi, S.H.; Gu, M.B. Phenolic toxicity-detection and classification through the use of a recombinant bioluminescent Escherichia coli. Environ. Toxicol. Chem. 2001, 20, 248–255. [Google Scholar] [CrossRef]
- Cueva, C.; Moreno-Arribas, M.V.; Martín-Álvarez, P.J.; Bills, G.; Vicente, M.F.; Basilio, A.; Rivas, C.L.; Requena, T.; Rodríguez, J.M.; Bartolomé, B. Antimicrobial activity of phenolic acids against commensal, probiotic and pathogenic bacteria. Res. Microbiol. 2010, 161, 372–382. [Google Scholar] [CrossRef]
- Kim, H.W.; Seok, Y.S.; Rhee, M.S. Synergistic staphylocidal interaction of benzoic acid derivatives (benzoic acid, 4-hydroxybenzoic acid and β-resorcylic acid) and capric acid: Mechanism and verification study using artificial skin. J. Antimicrob. Chemother. 2020, 75, 571–575. [Google Scholar] [CrossRef]
- Kato-Noguchi, H. Allelopathy of knotweeds as invasive plants. Plants 2022, 11, 3. [Google Scholar] [CrossRef]
- Kato-Noguchi, H. Involvement of allelopathy in the invasive potential of Tithonia diversifolia. Plants 2020, 9, 766. [Google Scholar] [CrossRef] [PubMed]
- Kato-Noguchi, H.; Kurniadie, D. Allelopathy and allelochemicals of Leucaena leucocephala as an invasive plant species. Plants 2022, 11, 1672. [Google Scholar] [CrossRef] [PubMed]
- Callaway, R.M.; Ridenour, W.M. Novel weapons: Invasive success and the evolution of increased competitive ability. Front. Ecol. Environ. 2004, 2, 419–426. [Google Scholar] [CrossRef]
- Cappuccino, N.; Arnason, J.T. Novel chemistry of invasive exotic plants. Biol. Lett. 2006, 2, 189–193. [Google Scholar] [CrossRef]
- Muller-Scharer, H.; Schaffner, U.; Steinger, T. Evolution in invasive plants: Implications for biological control. Trends Ecol. Evol. 2004, 19, 417–422. [Google Scholar] [CrossRef]
- Wang, C.; Zhu, M.; Chen, X.; Qu, B. Review on allelopathy of exotic invasive plants. Procedia. Engin. 2011, 18, 240–246. [Google Scholar]
- Rice, E.L. Allelopathy, 2nd ed.; Academic Press: Orlando, FL, USA, 1984; pp. 1–422. [Google Scholar]
- Belz, R.G. Allelopathy in crop/weed interactions—An update. Pest Manag. Sci. 2007, 63, 308–326. [Google Scholar] [CrossRef]
- Kato-Noguchi, H. Bioactive compounds involved in the formation of the sparse understory vegetation in pine forests. Curr. Org. Chem. 2021, 25, 1731–1738. [Google Scholar] [CrossRef]
- Kato-Noguchi, H. Defensive molecules momilactones A and B: Function, biosynthesis, induction and occurrence. Toxins 2023, 15, 241. [Google Scholar] [CrossRef]
- Macías, F.A.; Molinillo, J.M.; Varela, R.M.; G167]alindo, J.C. Allelopathy—A natural alternative for weed control. Pest Manag. Sci. 2007, 63, 327–348. [Google Scholar] [CrossRef]
- Kato-Noguchi, H.; Kurniadie, D. Allelopathy of Lantana camara as an invasive plant. Plants 2021, 10, 1028. [Google Scholar] [CrossRef] [PubMed]
- Kato-Noguchi, H.; Saito, Y.; Suenaga, K. Involvement of allelopathy in the establishment of pure colony of Dicranopteris linearis. Plant Ecol. 2012, 213, 1937–1944. [Google Scholar] [CrossRef]
- Kato-Noguchi, H.; Nakamura, K.; Ohno, O.; Suenaga, K.; Okuda, N. Asparagus decline: Autotoxicity and autotoxic compounds in asparagus rhizomes. Plant Physiol. 2017, 213, 23–29. [Google Scholar] [CrossRef] [PubMed]
- Kato-Noguchi, H.; Saito, Y.; Ohno, O.; Suenaga, K. A phytotoxic active substance in the decomposing litter of the fern Gleichenia japonica. J. Plant Physiol. 2015, 176, 55–60. [Google Scholar] [CrossRef]
- Kato-Noguchi, H.; Kimura, F.; Ohno, O.; Suenaga, K. Involvement of allelopathy in inhibition of understory growth in red pine forests. J. Plant Physiol. 2017, 218, 66–73. [Google Scholar] [CrossRef]
- Didham, R.K.; Tylianakis, J.M.; Gemmell, N.J.; Rand, T.A.; Ewers, R.M. Interactive effects of habitat modification and species invasion on native species decline. Trends Ecol. Evol. 2007, 22, 489–496. [Google Scholar] [CrossRef]
- Pires, N.M.; Prates, H.T.; Filho, I.A.P.; de Oliveira, R.S., Jr.; de Faria, T.C.L. Allelopathic activity of Leucaena on weed species. Sci. Agric. 2001, 58, 61–65. [Google Scholar] [CrossRef]
- Ishak, M.S.; Sahid, I. Allelopathic effects of the aqueous extract of the leaf and seed of Leucaena leucocephala on three selected weed species. AIP Conf. Proc. 2016, 1744, 020029. [Google Scholar]
- Alvim, S.; Boöhm, F.M.L.; Pastorin, L.H. Allelopathic potential of Leucaena leucocephala (Lam.) de Wit leaf extracts on native species. Braz. J. Biol. 2023, 83, e272274. [Google Scholar] [CrossRef]
- Ahmed, T.; Hoque, A.T.M.R.; Hossain, M.K. Allelopathic effects of Leucaena leucocephala leaf litter on some forest and agricultural crops grown in nursery. J. For. Res. 2008, 19, 298–302. [Google Scholar] [CrossRef]
- Chou, C.H.; Kuo, Y.L. Allelopathic research of subtropical vegetation in Taiwan. J. Chem. Ecol. 1986, 12, 1431–1448. [Google Scholar] [CrossRef] [PubMed]
- Ishak, M.S.; Ismail, B.S.; Yusoff, N. Allelopathic potential of Leucaena leucocephala (Lam.) de Wit on the germination and seedling growth of Ageratum conyzoides L., Tridax procumbens L. and Emilia sonchifolia (L.) DC. Allelopathy J. 2016, 37, 109–122. [Google Scholar]
- John, J.; Narwal, S.S. Allelopathic plants. 9. Leucaena leucocephala (Lam.) de Wit. Allelopathy J. 2003, 12, 13–36. [Google Scholar]
- Hussain, M.I.; Gonzalez-Rodriguez, L.; Roger, M.R. Germination and growth response of four plant species to different allelochemicals and herbicides. Allelopathy J. 2008, 22, 101–110. [Google Scholar]
- Williams, R.D.; Hoagland, R.E. Phytotoxicity of mimosine and albizziine on seed germination and seedling growth of crops and weeds. Allelopathy J. 2007, 19, 423–430. [Google Scholar]
- Sahid, I.; Ishak, S.M.; Bajrai, F.S.; Jansar, K.M.; Yusoff, N. Quantification and herbicidal activity of mimosine from Leucaena leucocephala (Lam.) de Wit. Trans Sci. Technol. 2017, 4, 62–67. [Google Scholar]
- Honda, M.D.H.; Ishihara, L.L.; Pham, D.T.; Borthakur, D. Highly expressed genes in the foliage of giant Leucaena (Leucaena leucocephala subsp. glabrata), a nutritious fodder legume in the tropics. Plant Biosyst. 2020, 154, 107–116. [Google Scholar] [CrossRef]
- Negi, V.S.; Borthakur, D. Heterologous expression and characterization of mimosinase from Leucaena leucocephala. In Biotechnology of Plant Secondary Metabolism: Methods and Protocols, Methods in Molecular Biology; Fett-Neto, A., Ed.; Humana Press: New York, NY, USA, 2016; pp. 59–77. [Google Scholar]
- Wee, K.L.; Wang, S. Effect of post-harvest treatment on the degradation of mimosine in Leucaena leucocephala leaves. J. Sci. Food Agric. 1987, 39, 195–201. [Google Scholar] [CrossRef]
- Lowry, J.B.; Tangendjaja, B. Autolysis of mimosine to 3-hydroxy-4-1 (H) pyridone in green tissues of Leucaena leucocephala. J. Sci. Food Agric. 1983, 34, 529–533. [Google Scholar] [CrossRef]
- Soedarjo, M.; Borthakur, D. Mimosine, a toxin produced by the tree-legume Leucaena provides a nodulation competition advantage to mimosine-degrading Rhizobium strains. Soil Biol. Biochem. 1998, 30, 1605–1613. [Google Scholar] [CrossRef]
- Honda, M.D.H.; Borthakur, D. Mimosine is a stress-response molecule that serves as both an antioxidant and osmolyte in giant leucaena (Leucaena leucocephala subsp. glabrata) during environmental stress conditions. Plant Stress 2021, 2, 100015. [Google Scholar]
- Pires, N.M.; de Souza, I.R.P.; Prates, H.T.; Faria, T.C.L.; Filho, I.A.P. Effect of Leucaena aqueous extract on the development, mitotic index, and peroxidase activity in maize seedlings. R. Bras. Fisiol. Veg. 2001, 13, 55–65. [Google Scholar] [CrossRef]
- Siddiqui, S.; Alamri, S.; Al-Rumman, S.; Moustafa, M. Allelopathic and cytotoxic effects of medicinal plants on vegetable crop pea (Pisum sativum). Cytologia 2018, 83, 277–282. [Google Scholar] [CrossRef]
- Perennes, C.; Qin, L.X.; Glab, N.; Bergounioux, C. Petunia p34cdc2 protein kinase activity in G2/M cells obtained with a reversible cell cycle inhibitor, mimosine. FEBS Lett. 1993, 333, 141–145. [Google Scholar] [CrossRef]
- Yeung, P.K.; Wong, F.T.; Wong, J.T. Mimosine, the allelochemical from the leguminous tree Leucaena leucocephala, selectively enhances cell proliferation in dinoflagellates. Appl. Eviron. Mcrobiol. 2002, 68, 5160–5163. [Google Scholar] [CrossRef]
- Çavuşoğlu, D.; Çavuşoğlu, K. Effect of exogenous application of L-mimosine on physiological, cytogenetic, biochemical and anatomical characteristics of Allium cepa L. S. Afr. J. Bot. 2024, 175, 744–754. [Google Scholar] [CrossRef]
- Chai, T.T.; Ooh, K.F.; Ooi, P.W.; Chue, P.S.; Wong, F.C. Leucaena leucocephala leachate compromised membrane integrity, respiration and antioxidative defense of water hyacinth leaf tissues. Bot. Stud. 2013, 54, 8. [Google Scholar] [CrossRef]
- Miao, L.; Clair, D.K.S. Regulation of superoxide dismutase genes: Implications in disease. Free Radic. Biol. Med. 2009, 47, 344–356. [Google Scholar] [CrossRef]
- Heck, D.E.; Shakarjian, M.; Kim, H.D.; Laskin, J.D.; Vetrano, A.M. Mechanisms of oxidant generation by catalase. Ann N. Y. Acad. Sci. 2010, 1203, 120–125. [Google Scholar] [CrossRef]
- Perry, J.J.P.; Shin, D.S.; Getzoff, E.D.; Tainer, J.A. The structural biochemistry of the superoxide dismutases. Biochim. Biophys. Acta 2010, 1804, 245–262. [Google Scholar] [CrossRef]
- Møller, I.M. Plant mitochondria and oxidative stress: Electron transport, NADPH turnover, and metabolism of reactive oxygen species. Annu. Rev. Plant Biol. 2001, 52, 561–591. [Google Scholar] [CrossRef] [PubMed]
- Arora, A.; Sairam, R.K.; Srivastava, G.C. Oxidative stress and antioxidative system in plants. Curr. Sci. 2002, 82, 1227–1238. [Google Scholar]
- Demidchik, V. Mechanisms of oxidative stress in plants: From classical chemistry to cell biology. Environ. Exp. Bot. 2015, 109, 212–228. [Google Scholar] [CrossRef]
- Alscher, R.G.; Erturk, N.; Heath, L.S. Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. J. Exp. Bot. 2002, 53, 1331–1341. [Google Scholar] [CrossRef]
- Itri, R.; Junqueira, H.C.; Mertins, O.; Baptista, M.S. Membrane changes under oxidative stress: The impact of oxidized lipids. Biophys. Rev. 2014, 6, 47–61. [Google Scholar] [CrossRef]
- Rodrigues-Corrêa, K.C.D.S.; Honda, M.D.H.; Borthakur, D.; Fett-Neto, A.G. Mimosine accumulation in Leucaena leucocephala in response to stress signaling molecules and acute UV exposure. Plant Physiol. Biochem. 2019, 135, 432–440. [Google Scholar] [CrossRef]
- Vestena, S.; Fett-Neto, A.G.; Duarte, R.C.; Ferreira, A. Regulation of mimosine accumulation in Leucaena leucocephala seedlings. Plant Sci. 2001, 161, 597–604. [Google Scholar] [CrossRef]
- Khan, M.I.R.; Fatma, M.; Per, T.S.; Anjum, N.A.; Khan, N.A. Salicylic acid-induced abiotic stress tolerance and underlying mechanisms in plants. Front. Plant Sci. 2015, 6, 462. [Google Scholar] [CrossRef]
- Wang, X.; Pan, Y.-J.; Chang, B.-W.; Hu, Y.-B.; Guo, X.-R.; Tang, Z.H. Ethylene induced vinblastine accumulation is related to activated expression of downstream TIA pathway genes in Catharanthus roseus. BioMed Res. Int. 2016, 2016, 3708187. [Google Scholar]
- Wasternack, C.; Strnad, M. Jasmonate signaling in plant stress responses and development—Active and inactive compounds. New Biotechnol. 2016, 33, 604–613. [Google Scholar] [CrossRef]
- Inderjit. Plant phenolics in allelopathy. Bot. Rev. 1996, 62, 186–202. [Google Scholar] [CrossRef]
- Einhellig, F.A. Mode of action of allelochemical action of phenolic compounds. In Chemistry and Mode of Action of Allelochemicals; Macías, F.A., Galindo, J.C.G., Molino, J.M.G., Cutler, H.G., Eds.; CRC Press: Boca Raton, FL, USA, 2004; pp. 217–238. [Google Scholar]
- Dalton, B.R. The occurrence and behavior of plant phenolic acids in soil environments and their potential involvement in allelochemical interference interactions: Methodological limitations in establishing conclusive proof of allelopathy. In Principals and Practices in Plant Ecology: Allelochemical Interactions; Inderjit, Dakshini, K.M.M., Foy, C.L., Eds.; CRC Press: Boca Raton, FL, USA, 1999; pp. 57–74. [Google Scholar]
- Li, Z.H.; Wang, Q.; Ruan, X.; Pan, C.D.; Jiang, D.A. Phenolics and plant allelopathy. Molecules 2010, 15, 8933–8952. [Google Scholar] [CrossRef] [PubMed]
- Widhalm, J.R.; Dudareva, N. A familiar ring to it: Biosynthesis of plant benzoic acids. Mol. Plant 2015, 8, 83–97. [Google Scholar] [CrossRef] [PubMed]
- Erickson, A.J.; Ramsewak, R.S.; Smucker, A.J.; Nair, M.G. Nitrification Inhibitors from the Roots of Leucaena leucocephala. J. Agric. Food Chem. 2000, 48, 6174–6177. [Google Scholar] [CrossRef]
- Gujer, W. Nitrification and me—A subjective review. Water Res. 2000, 44, 1–19. [Google Scholar] [CrossRef]
- Hiatt, W.C.; Grady, C.L. An updated process model for carbon oxidation, nitrification, and denitrification. Water Environ. Res. 2008, 80, 2145–2156. [Google Scholar] [CrossRef]
- Chen, C.Y.; Wang, Y.D. Secondary metabolites from Leucaena leucocephala. Chem. Nat. Compd. 2011, 47, 145–146. [Google Scholar] [CrossRef]
- Salem, A.Z.M.; Salem, M.Z.; Gonzalez-Ronquillo, M.; Camacho, L.M.; Cipriano, M. Major chemical constituents of Leucaena leucocephala and Salix babylonica leaf extracts. J. Trop. Agric. 2011, 49, 95–98. [Google Scholar]
- Herrera, R.S.; Verdecia, D.M.; Ramírez, J.L.; García, M.; Cruz, A.M. Secondary metabolites of Leucaena leucochephala. Their relationship with some climate elements, different expressions of digestibility and primary metabolites. Cub. J. Agric. Sci. 2017, 51, 107–116. [Google Scholar]
- She, L.C.; Liu, C.M.; Chen, C.T.; Li, H.T.; Li, W.J.; Chen, C.Y. The anti-cancer and anti-metastasis effects of phytochemical constituents from Leucaena leucocephala. Biomed. Res. 2017, 28, 2893–2897. [Google Scholar]
- Deivasigamani, R. Phytochemical analysis of Leucaena leucocephala on various extracts. J. Phytopharm. 2018, 7, 480–482. [Google Scholar] [CrossRef]
- Zayed, M.Z.; Wu, A.; Sallam, S. Comparative phytochemical constituents of Leucaena leucocephala (Lam.) leaves, fruits, stem barks, and wood branches grown in Egypt using GC-MS method coupled with multivariate statistical approaches. BioResources 2019, 14, 996–1013. [Google Scholar] [CrossRef]
- Xu, Y.; Tao, Z.; Jin, Y.; Yuan, Y.; Dong, T.T.; Tsim, K.W.; Zhou, Z. Flavonoids, a potential new insight of Leucaena leucocephala foliage in ruminant health. J. Agric. Food Chem. 2018, 66, 7616–7626. [Google Scholar] [CrossRef] [PubMed]
- Chargui, H.; Ghazghazi, H.; Essghaier, B.; Fradj, M.K.B.; Feki, M.; Charfi, I.; Salem, R.B.; Rigane, G.; Bejaoui, Z. Investigation on the chemical composition of phenolic, fatty acid profiles (GC-FID) and biological activities from Leucaena leucocephala (Lam de wit) seed oil and leaves extracts: Effect of geographical location and maturation stage. Chem. Afr. 2023, 6, 819–826. [Google Scholar] [CrossRef]
- Mohammed, R.S.; El Souda, S.S.; Taie, H.A.; Moharam, M.E.; Shaker, K.H. Antioxidant, antimicrobial activities of flavonoids glycoside from Leucaena leucocephala leaves. J. Appl. Pharm. Sci. 2005, 5, 138–147. [Google Scholar] [CrossRef]
- Chaurasia, S.; Sharma, P. Evaluation of antibacterial and antimutagenic potential of Acokanthera oppositifolia and Leucaena leucocephala. Am. J. Pharm. Health. Res. 2015, 3, 246–258. [Google Scholar]
- Septina, E.; Yetti, R.D.; Rivai, H. Overview of traditional use, phytochemical, and pharmacological activities of chinese petai (Leucaena leucocephala). Int. J. Pharm. Sci. Med. 2020, 5, 1–10. [Google Scholar] [CrossRef]
- Clark, D.B.; Clark, D.A. Seedling dynamics of a tropical tree: Impacts of herbivory and meristem damage. Ecology 1985, 66, 1884–1892. [Google Scholar] [CrossRef]
- Karban, R.; Myers, J.H. Induced plant responses to herbivory. Annu. Rev. Ecol. Syst. 1989, 20, 331–348. [Google Scholar] [CrossRef]
- Maron, J.L.; Crone, E. Herbivory: Effects on plant abundance, distribution and population growth. Proc. R. Soc. B Biol. Sci. 2006, 273, 2575–2584. [Google Scholar] [CrossRef]
- Gong, B.; Zhang, G. Interactions between plants and herbivores: A review of plant defense. Acta Ecol. Sinica 2014, 34, 325–336. [Google Scholar] [CrossRef]
- Kato-Noguchi, H.; Kato, M. Allelopathy and allelochemicals of Solidago canadensis L. and S. altissima L. for their naturalization. Plants 2022, 11, 3235. [Google Scholar] [CrossRef] [PubMed]
- Kato-Noguchi, H.; Kato, M. Invasive characteristics of Robinia pseudoacacia and its impacts on the species diversity. Diversity 2024, 16, 773. [Google Scholar] [CrossRef]
- Kato-Noguchi, H. Allelopathy and allelochemicals of Imperata cylindrica as an invasive plant species. Plants 2022, 11, 2551. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kato-Noguchi, H.; Kato, M. Evolution of the Defense Compounds Against Biotic Stressors in the Invasive Plant Species Leucaena leucocephala. Molecules 2025, 30, 2453. https://doi.org/10.3390/molecules30112453
Kato-Noguchi H, Kato M. Evolution of the Defense Compounds Against Biotic Stressors in the Invasive Plant Species Leucaena leucocephala. Molecules. 2025; 30(11):2453. https://doi.org/10.3390/molecules30112453
Chicago/Turabian StyleKato-Noguchi, Hisashi, and Midori Kato. 2025. "Evolution of the Defense Compounds Against Biotic Stressors in the Invasive Plant Species Leucaena leucocephala" Molecules 30, no. 11: 2453. https://doi.org/10.3390/molecules30112453
APA StyleKato-Noguchi, H., & Kato, M. (2025). Evolution of the Defense Compounds Against Biotic Stressors in the Invasive Plant Species Leucaena leucocephala. Molecules, 30(11), 2453. https://doi.org/10.3390/molecules30112453