molecules-logo

Journal Browser

Journal Browser

Hybrid O/I Sol–Gel-Derived Nanocomposites Systems for Advanced Functional Applications

A special issue of Molecules (ISSN 1420-3049). This special issue belongs to the section "Materials Chemistry".

Deadline for manuscript submissions: 30 April 2025 | Viewed by 4652

Special Issue Editors


E-Mail Website
Guest Editor

E-Mail Website
Guest Editor
Department of Chemical, Materials and Production Engineering (DICMaPI), University of Naples Federico II, P.le Tecchio 80, 80125 Naples, Italy
Interests: hybrid O/I systems; sol–gel processes; flame retardance; multifunctional materials; thermal degradation; polymer (nano)composites; hydrophobic polymer coatings; materials for advanced oxidation processes
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

The need for high-performing polymer-based systems has continued to propel (and is still encouraging) both the academic and industrial communities toward the design, synthesis, and characterization of novel, advanced and sustainable materials that are suitable for application in demanding sectors (i.e., electrical engineering and electronics, advanced packaging, and flame retardance, among others). Considering this, we would like to propose a new Special Issue entitled “Hybrid O/I sol–gel-derived nanocomposites systems for advanced functional applications”, with the aim of collecting significant contributions from scientists working in the field of polymer research.      

This Special Issue aims to cover recent progress and trends in the preparation, characterization, applications, processability, and sustainability of hybrid O/I systems. The scope of this Special Issue includes, but is not limited to, the topics listed below. Contributions to this Special Issue can be full research articles, short communications, and reviews.

Prof. Dr. Giulio Malucelli
Dr. Aurelio Bifulco
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Molecules is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • sol–gel processes
  • hybrid O/I systems
  • interfaces in hybrid O/I systems
  • characterization of hybrid O/I systems
  • mechanical behavior
  • thermal behavior
  • fire behavior
  • wettability behavior
  • shape memory effect
  • advanced functional applications of hybrid O/I systems
  • sustainability in Hybrid O/I systems

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (4 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

17 pages, 3799 KiB  
Article
Sol-Gel Heterogeneization of an Ir(III) Complex for Sustainable Visible-Light Redox Photocatalysis
by Janira Herce, Mónica Martínez-Aguirre, Javier Gómez-Benito, Miguel A. Rodríguez and Jesús R. Berenguer
Molecules 2025, 30(8), 1680; https://doi.org/10.3390/molecules30081680 - 9 Apr 2025
Viewed by 207
Abstract
Photocatalysis is a key strategy for the development of sustainable solar-driven chemical processes. In this work, we report the synthesis and characterization of a novel organometallo–ionosilica material derived from the self-condensation of an alcoxysilane functionalized Ir(III) complex. In acetonitrile suspension, the material retains [...] Read more.
Photocatalysis is a key strategy for the development of sustainable solar-driven chemical processes. In this work, we report the synthesis and characterization of a novel organometallo–ionosilica material derived from the self-condensation of an alcoxysilane functionalized Ir(III) complex. In acetonitrile suspension, the material retains the photophysical properties of its precursor in solution in the same solvent, together with a significant absorption in the visible between 400 and 500 nm. As a heterogeneous photocatalyst, the material showed high efficiency in the reductive dehalogenation of 2-bromoacetophenone under blue light irradiation, achieving high yields of conversion of about 90%, and excellent recyclability in seven catalytic cycles, retaining more than 70% of the catalytic efficiency. All these properties of the self-condensed material highlight its potential as an efficient and sustainable heterogeneous photocatalyst for applications in organic synthesis and solar-driven redox processes. Full article
Show Figures

Graphical abstract

16 pages, 2940 KiB  
Article
Organic–Inorganic Hybrid Ladder-like Polysilsesquioxanes as Compatibilized Nanofiller for Nanocomposite Materials
by Dominique Mouysset, Marion Rollet, Emily Bloch, Stéphane Gastaldi, Eric Besson and Trang N. T. Phan
Molecules 2024, 29(24), 5832; https://doi.org/10.3390/molecules29245832 - 11 Dec 2024
Viewed by 850
Abstract
Nanocomposite materials composed of an organic matrix and an inorganic nanofiller have been the subject of intense research in recent years. Indeed, the synergy between these two phases confers improved properties thanks to an increased surface–volume ratio, which reinforces the interactions between the [...] Read more.
Nanocomposite materials composed of an organic matrix and an inorganic nanofiller have been the subject of intense research in recent years. Indeed, the synergy between these two phases confers improved properties thanks to an increased surface–volume ratio, which reinforces the interactions between the particles and the polymer matrix. These interactions depend on many factors such as the shape, size and dispersion of the nanoobjects. Polysilsesquioxanes (PSQs) are a silicon polymer family that offers different sizes, shapes and structures and possesses ceramics properties (i.e., high thermal and/or oxidative resistance and high chain rigidity), thanks to the siloxane backbone. In this article, we propose to incorporate polymer-grafted ladder polysilsesquioxanes (LPSQs) as nanofillers in thermoplastic matrices. Chloride-functionalized LPSQs were synthesized from two different precursors and thoroughly characterized by 1H, 13C and 29Si NMR, as well as by SEC and WAXS. The well-defined LPSQ was then converted into an azide analog. The resulting hybrid material was functionalized with poly(ethylene glycol) (PEG) chains and incorporated into poly(ethylene oxide) or poly(methyl methacrylate) matrices. We found that the viscoelastic properties of the nanocomposite materials were impacted by plasticizing or the reinforcement effect depending on the grafted PEG chain length. Full article
Show Figures

Figure 1

14 pages, 3380 KiB  
Article
Optical Properties and Antimicrobial Activity of Si/PVP Hybrid Material Combined with Antibiotics
by Lilia Yordanova, Yoanna Kostova, Elitsa Pavlova, Albena Bachvarova-Nedelcheva, Iliana Ivanova and Elena Nenova
Molecules 2024, 29(22), 5322; https://doi.org/10.3390/molecules29225322 - 12 Nov 2024
Viewed by 1112
Abstract
Silica–poly (vinylpyrrolidone) hybrid material was prepared using the sol–gel method. Tetramethyl ortosilane (TMOS) was used as a silica precursor. XRD analysis established that the as-prepared material is amorphous. The morphological structure of the final product was determined by the incorporated PVP. The UV–Vis [...] Read more.
Silica–poly (vinylpyrrolidone) hybrid material was prepared using the sol–gel method. Tetramethyl ortosilane (TMOS) was used as a silica precursor. XRD analysis established that the as-prepared material is amorphous. The morphological structure of the final product was determined by the incorporated PVP. The UV–Vis analysis showed that the obtained hybrid exhibited absorption in the ultraviolet range. The antimicrobial activity of the SiO2/15PVP hybrid material was tested on Staphylococcus epidermidis ATCC 14990, Salmonella typhimurium ATCC BAA-2162, Candida albicans, and Saccharomyces cerevisiae in combination with the following antibiotics: Vancomycin for Gram-positive bacteria, Ciprofloxacin for Gram-negative bacteria, and Nystatin for yeast. The results confirmed a concentration-dependent synergistic effect of the antibiotic in combination with the TM15/PVP hybrid particles, especially at their highest concentration of 100 mg/mL on Gram-positive bacteria and for the Gram-negative Salmonella. On Candida albicans ATCC 18804 and Saccharomyces cerevisiae CCY 21-6-3, the effect was synergistic again, and a fungicidal effect was observed at 6.25 and 1.50 mg/mL for the antibiotic concentration and concentrations of hybrid material at 100 mg/mL. The toxicity on Daphnia magna was also tested. The registered prooxidant activity of SiO2/15PVP shows possible applications at very low concentrations. The obtained results demonstrate the possibility of clinical implementations of the newly synthesized hybrid material. Full article
Show Figures

Figure 1

13 pages, 3214 KiB  
Communication
Novel Approach for the Preparation of a Highly Hydrophobic Coating Material Exhibiting Self-Healing Properties
by Uwe Holzdörfer, Wael Ali, Eckhard Schollmeyer, Jochen S. Gutmann, Thomas Mayer-Gall and Torsten Textor
Molecules 2024, 29(16), 3766; https://doi.org/10.3390/molecules29163766 - 9 Aug 2024
Cited by 1 | Viewed by 1416
Abstract
A concept to prepare a highly hydrophobic composite with self-healing properties has been designed and verified. The new material is based on a composite of a crystalline hydrophobic fluoro wax, synthesized from montan waxes and perfluoroethylene alcohols, combined with spherical silica nanoparticles equipped [...] Read more.
A concept to prepare a highly hydrophobic composite with self-healing properties has been designed and verified. The new material is based on a composite of a crystalline hydrophobic fluoro wax, synthesized from montan waxes and perfluoroethylene alcohols, combined with spherical silica nanoparticles equipped with a hydrophobic shell. Highly repellent layers were prepared using this combination of a hydrophobic crystalline wax and silica nanoparticles. The novel aspect of our concept was to prepare a ladder-like structure of the hydrophobic shell allowing the inclusion of a certain share of wax molecules. Wax molecules trapped in the hydrophobic structure during mixing are hindered from crystallizing; therefore, these molecules maintain a higher mobility compared to crystallized molecules. When a thin layer of the composite material is mechanically damaged, the mobile wax molecules can migrate and heal the defects to a certain extent. The general preparation of the composite is described and XRD analysis demonstrated that a certain share of wax molecules in the composite are hindered to crystallize. Furthermore, we show that the resulting material can recovery its repellent properties after surface damage. Full article
Show Figures

Figure 1

Back to TopTop