Elucidating Semiconducting Properties and Photocatalytic Performance of Surface-Decorated BiVO4 for the Removal of Contaminants of Emerging Concern
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Chemicals
3.2. Experimental Procedure
3.2.1. Preparation of BiVO4
3.2.2. Photomodification of BiVO4 by Ag and Fe
3.3. Photocatalytic Procedures
3.4. Characterization
3.5. Modeling Procedure
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Olatunde, O.C.; Kuvarega, A.T.; Onwudiwe, D.C. Photo Enhanced Degradation of Contaminants of Emerging Concern in Waste Water. Emerg. Contam. 2020, 6, 283–302. [Google Scholar] [CrossRef]
- Paumo, H.K.; Dalhatou, S.; Katata-Seru, L.M.; Kamdem, B.P.; Tijani, J.O.; Vishwanathan, V.; Kane, A.; Bahadur, I. TiO2 Assisted Photocatalysts for Degradation of Emerging Organic Pollutants in Water and Wastewater. J. Mol. Liq. 2021, 331, 115458. [Google Scholar] [CrossRef]
- Chen, X.; Shen, S.; Guo, L.; Mao, S.S. Semiconductor-Based Photocatalytic Hydrogen Generation. Chem. Rev. 2010, 110, 6503–6570. [Google Scholar] [CrossRef] [PubMed]
- Araújo, E.S.; Pereira, M.F.G.; da Silva, G.M.G.; Tavares, G.F.; Oliveira, C.Y.B.; Faia, P.M. A Review on the Use of Metal Oxide-Based Nanocomposites for the Remediation of Organics-Contaminated Water via Photocatalysis: Fundamentals, Bibliometric Study and Recent Advances. Toxics 2023, 11, 658. [Google Scholar] [CrossRef]
- Chen, X.; Wu, Z.; Li, D.; Gao, Z. Preparation of ZnO photocatalyst for the efficient and rapid photocatalytic degradation of azo dyes. Nanoscale Res. Lett. 2017, 12, 143. [Google Scholar] [CrossRef]
- Dimitropoulos, M.; Aggelopoulos, C.A.; Sygellou, L.; Tsantis, S.T.; Koutsoukos, G.; Yannopoulos, S.N. Unveiling the photocorrosion mechanism of zinc oxide photocatalyst: Interplay between surface corrosion and regeneration. J. Environ. Chem. Eng. 2024, 12, 112102. [Google Scholar] [CrossRef]
- Perović, K.; dela Rosa, F.M.; Kovačić, M.; Kušić, H.; Štangar, U.L.; Fresno, F.; Dionysiou, D.D.; Bozic, A.L. Recent achievements in development of TiO2-based composite photocatalytic materials for solar driven water purification and water splitting. Materials 2020, 13, 1338. [Google Scholar] [CrossRef]
- Gunawan, D.; Zhang, J.; Li, Q.; Toe, C.Y.; Scott, J.; Antonietti, M.; Guo, J.; Amal, R. Materials Advances in Photocatalytic Solar Hydrogen Production: Integrating Systems and Economics for a Sustainable Future. Adv. Mater. 2024, 36, 2404618. [Google Scholar] [CrossRef]
- Pelaez, M.; Nolan, N.T.; Pillai, S.C.; Seery, M.K.; Falaras, P.; Kontos, A.G.; Dunlop, P.S.M.; Hamilton, J.W.J.; Byrne, J.A.; O’Shea, K.; et al. A review on the visible light active titanium dioxide photocatalysts for environmental applications. Appl. Catal. B Environ. 2012, 125, 331–349. [Google Scholar] [CrossRef]
- Huang, G.-F.; Ma, Z.-L.; Huang, W.-Q.; Tian, Y.; Jiao, C.; Yang, Z.-M.; Wan, Z.; Pan, A. Ag3PO4 Semiconductor Photocatalyst: Possibilities and Challenges. J. Nanomater. 2013, 2013, 371356. [Google Scholar] [CrossRef]
- Kása, Z.; Almási, E.E.; Hernádi, K.; Gyulavári, T.; Baia, L.; Veréb, G.; László, Z.; Pap, Z. New Insights into the Photoactivity of Shape-Tailored BiVO4 Semiconductors via Photocatalytic Degradation Reactions and Classical Reduction Processes. Molecules 2020, 25, 4842. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Wang, L.; Huang, W. Bismuth-Based Photocatalysts for Solar Energy Conversion. J. Mater. Chem. A 2020, 8, 24307–24352. [Google Scholar] [CrossRef]
- Arana-Trenado, J.A.; Ramírez-Ortega, D.; Serrano-Lázaro, A.; Hernández-Gordillo, A.; Rodil, S.E.; Bizarro, M. Synergistic Photocatalytic Effect of BiOBr–BiOI Heterojunctions Due to Appropriate Layer Stacking. Dalton Trans. 2022, 51, 2413–2427. [Google Scholar] [CrossRef]
- Meng, X.; Zhang, Z. Facile Synthesis of BiOBr/Bi2WO6 Heterojunction Semiconductors with High Visible-Light-Driven Photocatalytic Activity. J. Photochem. Photobiol. A Chem. 2015, 310, 33–44. [Google Scholar] [CrossRef]
- Liu, X.; Gu, S.; Zhao, Y.; Zhou, G.; Li, W. BiVO4, Bi2WO6 and Bi2MoO6 Photocatalysis: A Brief Review. J. Mater. Sci. Technol. 2020, 56, 45–68. [Google Scholar] [CrossRef]
- Tan, H.L.; Tahini, H.A.; Wen, X.; Wong, R.J.; Tan, X.; Iwase, A.; Kudo, A.; Amal, R.; Smith, S.C.; Ng, Y.H. Interfacing BiVO4 with Reduced Graphene Oxide for Enhanced Photoactivity: A Tale of Facet Dependence of Electron Shuttling. Small 2016, 12, 5295–5302. [Google Scholar] [CrossRef]
- Fan, H.; Jiang, T.; Li, H.; Wang, D.; Wang, L.; Zhai, J.; He, D.; Wang, P.; Xie, T. Effect of BiVO4 Crystalline Phases on the Photoinduced Carriers Behavior and Photocatalytic Activity. J. Phys. Chem. C 2012, 116, 2425–2430. [Google Scholar] [CrossRef]
- Borowska, E.; Gomes, J.F.; Martins, R.C.; Quinta-Ferreira, R.M.; Horn, H.; Gmurek, M. Solar photocatalytic degradation of sulfamethoxazole by TiO2 modified with noble metals. Catalysts 2019, 9, 500. [Google Scholar] [CrossRef]
- Ahmed, O.; Pons, M.N.; Lachheb, H.; Houas, A.; Zahraa, O. Degradation of sulfamethoxazole by photocatalysis using supported TiO2. Sustain. Environ. Res. 2014, 24, 381–387. [Google Scholar]
- Pourmoslemi, S.; Mohammadi, A.; Kobarfard, F.; Assi, N. Photocatalytic removal of two antibiotic compounds from aqueous solutions using ZnO nanoparticles. Desalin. Water Treat. 2015, 3994, 1–11. [Google Scholar] [CrossRef]
- Petala, A.; Arvaniti, O.S.; Travlou, G.; Mantzavinos, D.; Frontistis, Z. Solar light induced photocatalytic removal of sulfamethoxazole from water and wastewater u-sing BiOCl photocatalyst. J. Environ. Sci. Heal. Part A 2021, 56, 963–972. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Wang, F.; Meng, L.; Han, M.; Guo, Y.; Sun, C. Controlled synthesis of BiVO4/SrTiO3 composite with enhanced sunlight-driven pho-tofunctions for sulfamethoxazole removal. J. Colloid Interface Sci. 2017, 485, 116–122. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Wang, X.; Cao, Z.; Li, Q.; Feng, G.; Zhang, R. Enhancing Photooxidative Performance with Bi2O3 Nanoparticle-Modified BiVO4 Heterostructural Flowers. J. Phys. Chem. C 2018, 122, 23582–23590. [Google Scholar] [CrossRef]
- Regmi, C.; Kshetri, Y.K.; Pandey, R.P.; Kim, T.-H.; Gyawali, G.; Lee, S.W. Understanding the Multifunctionality in Cu-Doped BiVO4 Semiconductor Photocatalyst. J. Environ. Sci. 2019, 75, 84–97. [Google Scholar] [CrossRef]
- Pingmuang, K.; Wetchakun, N.; Kangwansupamonkon, W.; Ounnunkad, K.; Inceesungvorn, B.; Phanichphant, S. Photocatalytic Mineralization of Organic Acids over Visible-Light-Driven Au/BiVO4 Photocatalyst. Int. J. Photoenergy 2013, 2013, 943256. [Google Scholar] [CrossRef]
- Liu, K.; Chang, Z.; Li, W.; Che, P.; Zhou, H. Preparation, Characterization of Mo, Ag-Loaded BiVO4 and Comparison of Their Degradation of Methylene Blue. Sci. China Chem. 2012, 55, 1770–1775. [Google Scholar] [CrossRef]
- Xu, X.; Du, M.; Chen, T.; Xiong, S.; Wu, T.; Zhao, D.; Fan, Z. New Insights into Ag-Doped BiVO4 Microspheres as Visible Light Photocatalysts. RSC Adv. 2016, 6, 98788–98796. [Google Scholar] [CrossRef]
- Wu, J.; Wang, Y.; Liu, Z.; Yan, Y.; Zhu, Z. Preparation of Noble Metal Ag-Modified BiVO4Nanosheets and a Study on the Degradation Performance of Tetracyclines. New J. Chem. 2020, 44, 13815–13823. [Google Scholar] [CrossRef]
- Regmi, C.; Kshetri, Y.K.; Kim, T.-H.; Pandey, R.P.; Lee, S.W. Visible-light-induced Fe-doped BiVO4 photocatalyst for contaminated water treatment. Mol. Catal. 2017, 432, 220–231. [Google Scholar] [CrossRef]
- Popović, M.; Sharifi, T.; Kraljić -Roković, M.; Genorio, B.; Žener, B.; Peternel, I.; LavrenčičŠtangar, U.; Kušić, H.; LončarićBožić, A.; Kovačić, M. Enhancing the Photocatalytic Performance of BiVO4 for Micropollutant Degradation by Fe and Ag Photomodification. Processes 2023, 11, 2803. [Google Scholar] [CrossRef]
- Sharifi, T.; Crmaric, D.; Kovacic, M.; Popovic, M.; Rokovic, M.K.; Kusic, H.; Jozić, D.; Ambrožić, G.; Kralj, D.; Kontrec, J.; et al. Tailored BiVO4 for enhanced visible-light photocatalytic performance. J. Environ. Chem. Eng. 2021, 9, 106025. [Google Scholar] [CrossRef]
- Sharifi, T.; Jozić, D.; Kovačić, M.; Kušić, H.; Lončarić Božić, A. In-situ high temperature XRD study on thermally induced phase changes of BiVO4: The formation of an iso-type heterojunction. Mater. Lett. 2021, 305, 130816. [Google Scholar] [CrossRef]
- Winchell, L.J.; Wells, M.J.M.; Ross, J.J.; Fonoll, X.; Norton, J.W.; Kuplicki, S.; Khan, M.; Bell, K.Y. Analyses of per- and polyfluoroalkyl substances (PFAS) through the urban water cycle: Toward achieving an integrated analytical workflow across aqueous, solid, and gaseous matrices in water and wastewater treatment. Sci. Total. Environ. 2021, 148, 03121003. [Google Scholar] [CrossRef]
- Oharisi, O.O.L.; Ncube, S.; Nyoni, H.; Madikizela, M.L.; Olowoyo, O.J.; Maseko, B.R. Occurrence and prevalence of antibiotics in wastewater treatment plants and effluent receiving rivers in South Africa using UHPLC-MS determination. J. Environ. Manag. 2023, 345, 118621. [Google Scholar] [CrossRef] [PubMed]
- Tomic, A.; Kovacic, M.; Kusic, H.; Karamanis, P.; Rasulev, B.; Loncaric, A. Structural features promoting photocatalytic degradation of contaminants of emerging; insight into degradation mechanism employing QSA/PR modeling. Molecules 2023, 28, 2443. [Google Scholar] [CrossRef]
- CalvilloSolís, J.J.; Sandoval-Pauker, C.; Bai, D.; Yin, S.; Senftle, T.P.; Villagrá, D. Electrochemical Reduction of Perfluorooctanoic Acid (PFOA): An Experimental and Theoretical ApproachClick to copy article link. J. Am. Chem. Soc. 2024, 146, 10687–10698. [Google Scholar] [CrossRef]
- Deng, Y.; Liang, Z.; Lu, X.; Chen, D.; Li, Z.; Wang, F. The degradation mechanisms of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS) by different chemical methods: A critical review. Chemosphere 2021, 283, 131168. [Google Scholar] [CrossRef]
- Chen, Y.; Tang, H.; Sun, H.; Liu, Y.; Xie, H.; Wang, L. A novel CuFe-Sb-SnO2 anode for efficient degradation of ciprofloxacin by enhancing hydroxyl radical production: Key role of Cu/Fe in accelerating electron transfer. Sep. Purif. Technol. 2025, 3561, 129996. [Google Scholar] [CrossRef]
- Zeng, J.; Gao, T.; Li, Z.; Lin, J.; Zhu, Y.; Li, D.; Ke, F.; Gao, D.; Wang, D. Magnetic recyclable g-C3N4/CuFe2O4/MnO2 activated peroxymonosulfate process via dual Z-scheme heterojunction for photodegradation of ciprofloxacin. J. Environ. Chem. Eng. 2024, 12, 114502. [Google Scholar] [CrossRef]
- Naughton, E.; Kohlrausch, E.C.; Alves Fernandes, J.; Sullivan, J.A. BiVO4-Based Systems Magnetron Sputtered with Silver Nanoparticles for the Artificial Photosynthesis Reaction. Sustain. Chem. 2025, 6, 4. [Google Scholar] [CrossRef]
- Yang, J.; Deng, C.; Lei, Y.; Duan, M.; Yang, Y.; Chen, X.; Yang, S.; Li, J.; Sheng, H.; Shi, W.; et al. Fe−N Co-Doped BiVO4 Photoanode with Record Photocurrent for Water Oxidation. Angew. Chem. 2025, 64, e202416340. [Google Scholar] [CrossRef] [PubMed]
- Ji, S.; Chen, Y.; Wang, X.; Zhang, Z.; Wang, D.; Li, Y. Chemical Synthesis of Single Atomic Site Catalysts. Chem. Rev. 2020, 120, 11900–11955. [Google Scholar] [CrossRef] [PubMed]
- Shi, Q.; Murcia-López, S.; Tang, P.; Flox, C.; Morante, J.R.; Bian, Z.; Wang, H.; Andreu, T. Role of Tungsten doping on the surface states in BiVO4 photoanodes for water oxidation: Tuning the electron trapping process. ACS Catal. 2018, 8, 3331–3342. [Google Scholar] [CrossRef]
- Hu, Y.; Gao, Y.; Liu, F.; Tian, Y.; Wang, Q.; Zeng, D.; Shen, T.; Song, J.; Guan, R.; Yuan, H. The {010} and {110} facets of BiVO4 were selectively modified by Cu and g-C3N4 to enhance its visible light photocatalytic performance. Sep. Purif. Technol. 2023, 323, 124471. [Google Scholar] [CrossRef]
- D’Amato, C.A.; Giovannetti, R.; Zannotti, M.; Rommozzi, E.; Ferraro, S.; Seghetti, C.; Minicucci, M.; Gunnella, R.; Di Cicco, A. Enhancement of visible-light photoactivity by polypropylene coated plasmonic Au/TiO2 for dye degradation in water solution. Appl. Surf. Sci. 2018, 441, 575–587. [Google Scholar] [CrossRef]
- U.S. EPA. Method 537.1 Determination of Selected Per- and Polyfluorinated Alkyl Substances in Drinking Water by Solid Phase Extraction and Liquid Chromatography/Tandem Mass Spectrometry (LC/MS/MS); EPA/600/R-20/006; U.S. EPA: Washington, DC, USA, 2020.
- Radić, G.; Perović, K.; Sharifi, T.; Kušić, H.; Kovačić, M.; Kraljić Roković, M. Electro-chemical characterisation of the photoanode containing TiO2 and SnS2 in the presence of various pharmaceuticals. Catalysts 2023, 13, 909. [Google Scholar] [CrossRef]
- Jahangir, T.N.; Abdel-Azeim, S.; Kandiel, T.A. BiVO4 Photoanode with NiV2O6 back contact interfacial layer for improved hole-diffusion length and photo-electrochemical water oxidation activity. ACS Appl. Mater. Interfaces 2024, 16, 28742–28755. [Google Scholar] [CrossRef]
- Tozar, T.; Boni, M.; Staicu, A.; Pascu, M.L. Optical Characterization of Ciprofloxacin Photolytic Degradation by UV-Pulsed Laser Radiation. Molecules 2021, 26, 2324. [Google Scholar] [CrossRef]
- Mondal, S.K.; Saha, A.K.; Sinha, A. Removal of ciprofloxacin using modified advanced oxidation processes: Kinetics, pathways and process optimization. J. Clean. Prod. 2018, 171, 1203–1214. [Google Scholar] [CrossRef]
- Verma, S.; Mezgebe, B.; Hejase, C.A.; Sahle-Demessie, E.; Nadagouda, M.N. Photodegradation and photocatalysis of per- and polyfluoroalkyl substances (PFAS): A review of recent progress. Next Mater. 2024, 2, 100077. [Google Scholar] [CrossRef]
- Yao, X.; Zuo, J.; Wang, Y.-J.; Song, N.-N.; Li, H.-H.; Qiu, K. Enhanced photocatalytic degradation of perfluorooctanoic acid by mesoporous Sb2O3/TiO2 Heterojunctions. Front. Chem. 2021, 9, 690520. [Google Scholar] [CrossRef] [PubMed]
- Vierke, L.; Staude, C.; Biegel-Engler, A.; Drost, W.; Schulte, C. Perfluorooctanoic acid (PFOA)—Main concerns and regulatory developments in Europe from an environmental point of view. Environ. Sci. Eur. 2012, 24, 16. [Google Scholar] [CrossRef]
- Wang, X.; Li, S.; Yu, H.; Yu, J.; Liu, S. Ag2O as a New Visible-Light Photocatalyst: Self-Stability and High Photocatalytic Activity. Chem. Eur. J. 2011, 17, 7777–7780. [Google Scholar] [CrossRef] [PubMed]
- Sharifi, T.; Kovačić, M.; Belec, M.; Perović, K.; Popović, M.; Radić, G.; Žener, B.; Pulitika, A.; Kraljić Roković, M.; Lavrenčič Štangar, U.; et al. Effect of Functionalized Benzene Derivatives as Potential Hole Scavengers for BiVO4 andrGO-BiVO4 Photoelectrocatalytic Hydrogen Evolution. Molecules 2022, 27, 7806. [Google Scholar] [CrossRef]
- Lu, T.; Chen, F. Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem. 2012, 33, 580–592. [Google Scholar] [CrossRef]
- Lu, T. A comprehensive electron wavefunction analysis toolbox for chemists, Multiwfn. J. Chem. Phys. 2024, 161, 082503. [Google Scholar] [CrossRef]
Number of Units of BiVO4 (n) | (BiVO4)n HOMO-LUMO Gap in eV | (BiVO4)n + 2Ag HOMO-LUMO Gap in eV | (BiVO4)n + 2Fe HOMO-LUMO Gap in eV | (BiVO4)n + Ag + Fe HOMO-LUMO Gap in eV |
---|---|---|---|---|
1 | 3.81 | 1.89 | 2.67 | 1.88 |
2 | 3.90 | 1.62 | 2.78 | 2.02 |
3 | 2.21 | 2.23 | 2.79 | 2.44 |
4 | 2.86 | 1.52 | 1.43 | |
5 | 3.77 | 1.25 | ||
6 | 3.79 | 1.37 | ||
7 | 3.64 | 1.49 | ||
8 | 2.61 | 1.93 | ||
9 | 3.74 | 1.10 | ||
10 | 3.38 | 2.54 | ||
11 | 3.17 | 1.37 | ||
12 | 3.29 | 2.76 | ||
13 | 3.16 | 1.18 | ||
Average | 3.33 (+/−0.5) | 1.72 (+/−0.5) (13) | 2.41 (+/−0.6) | 2.11 (+/−0.3) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Popović, M.; Pandey, S.K.; Zjačić, J.P.; Dananić, V.; Roković, M.K.; Kovačić, M.; Kušić, H.; Šuligoj, A.; Štangar, U.L.; Božić, A.L. Elucidating Semiconducting Properties and Photocatalytic Performance of Surface-Decorated BiVO4 for the Removal of Contaminants of Emerging Concern. Molecules 2025, 30, 2454. https://doi.org/10.3390/molecules30112454
Popović M, Pandey SK, Zjačić JP, Dananić V, Roković MK, Kovačić M, Kušić H, Šuligoj A, Štangar UL, Božić AL. Elucidating Semiconducting Properties and Photocatalytic Performance of Surface-Decorated BiVO4 for the Removal of Contaminants of Emerging Concern. Molecules. 2025; 30(11):2454. https://doi.org/10.3390/molecules30112454
Chicago/Turabian StylePopović, Marin, Suresh Kumar Pandey, Josipa Papac Zjačić, Vladimir Dananić, Marijana Kraljić Roković, Marin Kovačić, Hrvoje Kušić, Andraž Šuligoj, Urška Lavrenčič Štangar, and Ana Lončarić Božić. 2025. "Elucidating Semiconducting Properties and Photocatalytic Performance of Surface-Decorated BiVO4 for the Removal of Contaminants of Emerging Concern" Molecules 30, no. 11: 2454. https://doi.org/10.3390/molecules30112454
APA StylePopović, M., Pandey, S. K., Zjačić, J. P., Dananić, V., Roković, M. K., Kovačić, M., Kušić, H., Šuligoj, A., Štangar, U. L., & Božić, A. L. (2025). Elucidating Semiconducting Properties and Photocatalytic Performance of Surface-Decorated BiVO4 for the Removal of Contaminants of Emerging Concern. Molecules, 30(11), 2454. https://doi.org/10.3390/molecules30112454