Antioxidant Activity, Total Polyphenol Content, and Cytotoxicity of Various Types of Starch with the Addition of Different Polyphenols
Abstract
1. Introduction
2. Results and Discussion
2.1. Antioxidant Activity
2.2. Total Phenolic Content (TPC)
2.3. Cytotoxicity
3. Materials and Methods
3.1. Sample Preparation
3.1.1. Preparation of Starch–Phenolic Complexes
3.1.2. Selection of Samples for the Present Study
3.1.3. Samples in Total (Before and After the Digestion Process)
3.1.4. Sample’s Supernatant (After the Digestion Process)
3.2. Measurement of the Antioxidant Activity
3.2.1. FRAP Method
3.2.2. DPPH· Method
3.3. Measurement of the Total Polyphenol Content (TPC)
3.4. Measurement of the Cytotoxicity
3.5. Data Analyses
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kwaśny, D.; Borczak, B.; Sikora, M.; Kapusta-Duch, J. Preliminary Study on the Influence of the Polyphenols of Different Groups on the Digestibility of Wheat Starch, Measured by the Content of Resistant Starch. Appl. Sci. 2022, 12, 10859. [Google Scholar] [CrossRef]
- Kwaśny, D.; Borczak, B.; Kapusta-Duch, J.; Kron, I. The Influence of Different Polyphenols on the Digestibility of Various Kinds of Starch and the Value of the Estimated Glycemic Index. Appl. Sci. 2024, 14, 8065. [Google Scholar] [CrossRef]
- Ngo, T.V.; Kusumawardani, S.; Kunyanee, K.; Luangsakul, N. Polyphenol-Modified Starches and Their Applications in the Food Industry: Recent Updates and Future Directions. Foods 2022, 11, 3384. [Google Scholar] [CrossRef]
- Types of Carbohydrates|ADA. Available online: https://diabetes.org/food-nutrition/understanding-carbs/types-carbohydrates (accessed on 14 May 2025).
- Carbs and Diabetes|ADA. Available online: https://diabetes.org/food-nutrition/understanding-carbs (accessed on 14 May 2025).
- Diabetes. Available online: https://www.who.int/news-room/fact-sheets/detail/diabetes (accessed on 14 May 2025).
- Carbohydrates in the Diet|Oklahoma State University. Available online: https://extension.okstate.edu/fact-sheets/carbohydrates-in-the-diet.html (accessed on 14 May 2025).
- Bashir, K.; Aggarwal, M. Physicochemical, Structural and Functional Properties of Native and Irradiated Starch: A Review. J. Food Sci. Technol. 2019, 56, 513–523. [Google Scholar] [CrossRef]
- Food, Nutrition and Agriculture 24 Carbohydrates in Human Nutrition. Available online: https://www.fao.org/4/x2650t/x2650t02.htm (accessed on 14 May 2025).
- Brand-Miller, J.; Buyken, A.E. The Relationship between Glycemic Index and Health. Nutrients 2020, 12, 536. [Google Scholar] [CrossRef] [PubMed]
- International Tables of Glycemic Index and Glycemic Load Values: 2008|Diabetes Care|American Diabetes Association. Available online: https://diabetesjournals.org/care/article/31/12/2281/24911/International-Tables-of-Glycemic-Index-and (accessed on 14 May 2025).
- Giri, S.; Banerji, A.; Lele, S.S.; Ananthanarayan, L. Starch Digestibility and Glycaemic Index of Selected Indian Traditional Foods: Effects of Added Ingredients. Int. J. Food Prop. 2017, 20, S290–S305. [Google Scholar] [CrossRef]
- Corgneau, M.; Gaiani, C.; Petit, J.; Nikolova, Y.; Banon, S.; Ritié-Pertusa, L.; Le, D.T.L.; Scher, J. Digestibility of Common Native Starches with Reference to Starch Granule Size, Shape and Surface Features towards Guidelines for Starch-containing Food Products. Int. J. Food Sci. Technol. 2019, 54, 2132–2140. [Google Scholar] [CrossRef]
- Sies, H.; Berndt, C.; Jones, D.P. Oxidative Stress. Annu. Rev. Biochem. 2017, 86, 715–748. [Google Scholar] [CrossRef] [PubMed]
- Influence of Technological Processing of Wheat Grain on Starch Digestibility and Resistant Starch Content—Štěrbová—2016—Starch—Stärke—Wiley Online Library. Available online: https://onlinelibrary.wiley.com/doi/full/10.1002/star.201500162 (accessed on 14 May 2025).
- Ells, L.J.; Seal, C.J.; Kettlitz, B.; Bal, W.; Mathers, J.C. Postprandial glycaemic, lipaemic and haemostatic responses to ingestion of rapidly and slowly digested starches in healthy young women. Br. J. Nutr. 2005, 94, 948–955. [Google Scholar] [CrossRef]
- Seal, C.J.; Daly, M.E.; Thomas, L.C.; Bal, W.; Birkett, A.M.; Jeffcoat, R.; Mathers, J.C. Postprandial carbohydrate metabolism in healthy subjects and those with type 2 diabetes fed starches with slow and rapid hydrolysis rates determined in vitro. Br. J. Nutr. 2003, 90, 853–864. [Google Scholar] [CrossRef]
- Englyst, H.N.; Kingman, S.M.; Hudson, G.J.; Cummings, J.H. Measurement of resistant starch in vitro and in vivo. Br. J. Nutr. 1996, 75, 749–755. [Google Scholar] [CrossRef] [PubMed]
- Afandi, F.A.; Wijaya, C.H.; Faridah, D.N.; Suyatma, N.E.; Jayanegara, A. Evaluation of Various Starchy Foods: A Systematic Review and Meta-Analysis on Chemical Properties Affecting the Glycemic Index Values Based on In Vitro and In Vivo Experiments. Foods 2021, 10, 364. [Google Scholar] [CrossRef] [PubMed]
- Gourineni, V.; Stewart, M.L.; Wilcox, M.L.; Maki, K.C. Nutritional Bar with Potato-Based Resistant Starch Attenuated Post-Prandial Glucose and Insulin Response in Healthy Adults. Foods 2020, 9, 1679. [Google Scholar] [CrossRef] [PubMed]
- Biskup, I.; Golonka, I.; Gamian, A.; Sroka, Z. Antioxidant activity of selected phenols estimated by ABTS and FRAP methods. Adv. Hyg. Exp. Med. Hig. Med. Dosw. 2013, 67. [Google Scholar] [CrossRef]
- Korus, J.; Gumul, D.; Czechowska, K. Effect of Extrusion on the Phenolic Composition and Antioxidant Activity of Dry Beans of Phaseolus vulgaris L. Food Technol. Biotechnol. 2007, 45, 139–146. [Google Scholar]
- Harasym, J.; Oledzki, R. Effect of fruit and vegetable antioxidants on total antioxidant capacity of blood plasma. Nutrition 2014, 30, 511–517. [Google Scholar] [CrossRef]
- Han, X.; Shen, T.; Lou, H. Dietary Polyphenols and Their Biological Significance. Int. J. Mol. Sci. 2007, 8, 950–988. [Google Scholar] [CrossRef]
- Rudrapal, M.; Khairnar, S.J.; Khan, J.; Dukhyil, A.B.; Ansari, M.A.; Alomary, M.N.; Alshabrmi, F.M.; Palai, S.; Deb, P.K.; Devi, R. Dietary Polyphenols and Their Role in Oxidative Stress-Induced Human Diseases: Insights Into Protective Effects, Antioxidant Potentials and Mechanism(s) of Action. Front. Pharmacol. 2022, 13, 806470. [Google Scholar] [CrossRef]
- Elsayed Azab, A.; Adwas, A.; Ibrahim Elsayed, A.S.; Adwas, A.; Ibrahim Elsayed, A.S.; Quwaydir, F.A. Oxidative stress and antioxidant mechanisms in human body. J. Appl. Biotechnol. Bioeng. 2019, 6, 43–47. [Google Scholar] [CrossRef]
- Manna, P.; Jain, S.K. Obesity, Oxidative Stress, Adipose Tissue Dysfunction, and the Associated Health Risks: Causes and Therapeutic Strategies. Metab. Syndr. Relat. Disord. 2015, 13, 423–444. [Google Scholar] [CrossRef]
- Adebooye, O.C.; Alashi, A.M.; Aluko, R.E. A brief review on emerging trends in global polyphenol research. J. Food Biochem. 2018, 42, e12519. [Google Scholar] [CrossRef]
- Sinha, M.; Sachan, D.K.; Bhattacharya, R.; Singh, P.; Parthasarathi, R. ToxDP2 Database: Toxicity prediction of dietary polyphenols. Food Chem. 2022, 370, 131350. [Google Scholar] [CrossRef] [PubMed]
- Majumdar, S.; Srirangam, R. Solubility, Stability, Physicochemical Characteristics and In Vitro Ocular Tissue Permeability of Hesperidin: A Natural Bioflavonoid. Pharm. Res. 2009, 26, 1217–1225. [Google Scholar] [CrossRef] [PubMed]
- p-Coumaric Acid Datasheet. Available online: https://www.selleckchem.com/datasheet/p-coumaric-acid-S475902-DataSheet.html (accessed on 7 April 2025).
- Trans-Ferulic Acid CAS#: 537-98-4. Available online: https://www.chemicalbook.com/ProductChemicalPropertiesCB3337152_EN.htm (accessed on 7 April 2025).
- PubChem Quercetin. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/5280343 (accessed on 7 April 2025).
- PubChem Kaempferol. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/5280863 (accessed on 7 April 2025).
- (−)-Epigallocatechin Gallate|989-51-5. Available online: https://www.chemicalbook.com/ChemicalProductProperty_EN_CB2227188.htm (accessed on 7 April 2025).
- Stasiłowicz-Krzemień, A.; Gołębiewski, M.; Płazińska, A.; Płaziński, W.; Miklaszewski, A.; Żarowski, M.; Adamska-Jernaś, Z.; Cielecka-Piontek, J. The Systems of Naringenin with Solubilizers Expand Its Capability to Prevent Neurodegenerative Diseases. Int. J. Mol. Sci. 2022, 23, 755. [Google Scholar] [CrossRef]
- Cuevas-Valenzuela, J.; González-Rojas, Á.; Wisniak, J.; Apelblat, A.; Pérez-Correa, J.R. Solubility of (+)-catechin in water and water-ethanol mixtures within the temperature range 277.6–331.2 K: Fundamental data to design polyphenol extraction processes. Fluid Phase Equilibria 2014, 382, 279–285. [Google Scholar] [CrossRef]
- Fernandes, P.A.R.; Coimbra, M.A. The antioxidant activity of polysaccharides: A structure-function relationship overview. Carbohydr. Polym. 2023, 314, 120965. [Google Scholar] [CrossRef]
- Fukumoto, L.R.; Mazza, G. Assessing Antioxidant and Prooxidant Activities of Phenolic Compounds. J. Agric. Food Chem. 2000, 48, 3597–3604. [Google Scholar] [CrossRef]
- Chen, J.; Yang, J.; Ma, L.; Li, J.; Shahzad, N.; Kim, C.K. Structure-antioxidant activity relationship of methoxy, phenolic hydroxyl, and carboxylic acid groups of phenolic acids. Sci. Rep. 2020, 10, 2611. [Google Scholar] [CrossRef]
- Robards, K.; Prenzler, P.D.; Tucker, G.; Swatsitang, P.; Glover, W. Phenolic compounds and their role in oxidative processes in fruits. Food Chem. 1999, 66, 401–436. [Google Scholar] [CrossRef]
- Rice-Evans, C.A.; Miller, N.J.; Paganga, G. Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radic. Biol. Med. 1996, 20, 933–956. [Google Scholar] [CrossRef]
- Cirillo, G.; Puoci, F.; Iemma, F.; Curcio, M.; Parisi, O.I.; Spizzirri, U.G.; Altimari, I.; Picci, N. Starch-quercetin conjugate by radical grafting: Synthesis and biological characterization. Pharm. Dev. Technol. 2012, 17, 466–476. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Wang, X.; Yong, H.; Kan, J.; Zhang, N.; Jin, C. Preparation, characterization, digestibility and antioxidant activity of quercetin grafted Cynanchum auriculatum starch. Int. J. Biol. Macromol. 2018, 114, 130–136. [Google Scholar] [CrossRef] [PubMed]
- Lv, X.; Ye, F.; Li, J.; Ming, J.; Zhao, G. Synthesis and characterization of a novel antioxidant RS4 by esterifying carboxymethyl sweetpotato starch with quercetin. Carbohydr. Polym. 2016, 152, 317–326. [Google Scholar] [CrossRef] [PubMed]
- Hu, H.; Yong, H.; Yao, X.; Yun, D.; Huang, J.; Liu, J. Highly efficient synthesis and characterization of starch aldehyde-catechin conjugate with potent antioxidant activity. Int. J. Biol. Macromol. 2021, 173, 13–25. [Google Scholar] [CrossRef]
- Yong, H.; Hu, H.; Wang, Z.; Yun, D.; Kan, J.; Liu, J. Structure, stability and antioxidant activity of dialdehyde starch grafted with epicatechin, epicatechin gallate, epigallocatechin and epigallocatechin gallate. J. Sci. Food Agric. 2022, 102, 6373–6386. [Google Scholar] [CrossRef]
- Shahidi, F.; Wanasundara, P.K. Phenolic antioxidants. Crit. Rev. Food Sci. Nutr. 1992, 32, 67–103. [Google Scholar] [CrossRef]
- Cuvelier, M.-E.; Richard, H.; Berset, C. Comparison of the Antioxidative Activity of Some Acid-phenols: Structure-Activity Relationship. Biosci. Biotechnol. Biochem. 1992, 56, 324–325. [Google Scholar] [CrossRef]
- Deng, N.; Bian, X.; Luo, S.; Liu, C.; Hu, X. The starch-polyphenol inclusion complex: Preparation, characterization and digestion. Food Biosci. 2023, 53, 102655. [Google Scholar] [CrossRef]
- Wu, Y.; Liu, Y.; Jia, Y.; Zhang, H.; Ren, F. Formation and Application of Starch–Polyphenol Complexes: Influencing Factors and Rapid Screening Based on Chemometrics. Foods 2024, 13, 1557. [Google Scholar] [CrossRef]
- Wheat Starch-Tannic Acid Complexes Modulate Physicochemical and Rheological Properties of Wheat Starch and Its Digestibility—ScienceDirect. Available online: https://www.sciencedirect.com/science/article/pii/S0268005X21008754?via%3Dihub (accessed on 15 May 2025).
- Amoako, D.B.; Awika, J.M. Resistant starch formation through intrahelical V-complexes between polymeric proanthocyanidins and amylose. Food Chem. 2019, 285, 326–333. [Google Scholar] [CrossRef]
- Tan, L.; Kong, L. Starch-guest inclusion complexes: Formation, structure, and enzymatic digestion. Crit. Rev. Food Sci. Nutr. 2020, 60, 780–790. [Google Scholar] [CrossRef] [PubMed]
- Chang, R.; Xiong, L.; Li, M.; Wang, Y.; Lin, M.; Qiu, L.; Bian, X.; Sun, C.; Sun, Q. Interactions between debranched starch and emulsifiers, polyphenols, and fatty acids. Int. J. Biol. Macromol. 2020, 150, 644–653. [Google Scholar] [CrossRef] [PubMed]
- Database on Polyphenol Content in Foods—Phenol-Explorer. Available online: http://phenol-explorer.eu/ (accessed on 15 May 2025).
- Liu, B.; Zhong, F.; Yokoyama, W.; Huang, D.; Zhu, S.; Li, Y. Interactions in starch co-gelatinized with phenolic compound systems: Effect of complexity of phenolic compounds and amylose content of starch. Carbohydr. Polym. 2020, 247, 116667. [Google Scholar] [CrossRef]
- Du, J.; Yang, Z.; Xu, X.; Wang, X.; Du, X. Effects of tea polyphenols on the structural and physicochemical properties of high-hydrostatic-pressure-gelatinized rice starch. Food Hydrocoll. 2019, 91, 256–262. [Google Scholar] [CrossRef]
- Lea, T. Caco-2 Cell Line. In The Impact of Food Bioactives on Health: In vitro and ex vivo Models; Verhoeckx, K., Cotter, P., López-Expósito, I., Kleiveland, C., Lea, T., Mackie, A., Requena, T., Swiatecka, D., Wichers, H., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 103–111. [Google Scholar]
- Martínez-Maqueda, D.; Miralles, B.; Recio, I. HT29 Cell Line. In The Impact of Food Bioactives on Health: In Vitro and Ex Vivo Models; Verhoeckx, K., Cotter, P., López-Expósito, I., Kleiveland, C., Lea, T., Mackie, A., Requena, T., Swiatecka, D., Wichers, H., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 113–124. ISBN 978-3-319-16104-4. [Google Scholar]
- Strzelecka, M.; Wiatrak, B.; Jawień, P.; Czyżnikowska, Ż.; Świątek, P. New Schiff bases derived from dimethylpyridine-1,2,4-triazole hybrid as cytotoxic agents targeting gastrointestinal cancers: Design, synthesis, biological evaluation and molecular docking studies. Bioorg. Chem. 2023, 139, 106758. [Google Scholar] [CrossRef]
- Volstatova, T.; Marchica, A.; Hroncova, Z.; Bernardi, R.; Doskocil, I.; Havlik, J. Effects of chlorogenic acid, epicatechin gallate, and quercetin on mucin expression and secretion in the Caco-2/HT29-MTX cell model. Food Sci. Nutr. 2019, 7, 492–498. [Google Scholar] [CrossRef]
- Schantz, M.; Mohn, C.; Baum, M.; Richling, E. Antioxidative efficiency of an anthocyanin rich bilberry extract in the human colon tumor cell lines Caco-2 and HT-29. J. Berry Res. 2010, 1, 25–33. [Google Scholar] [CrossRef]
- Kuntz, S.; Wenzel, U.; Daniel, H. Comparative analysis of the effects of flavonoids on proliferation, cytotoxicity, and apoptosis in human colon cancer cell lines. Eur. J. Nutr. 1999, 38, 133–142. [Google Scholar] [CrossRef]
- Ye, Y.-S.; Duan, Y.-T.; Zhou, Z.; Thepkaysone, K.; Douangdeuane, B.; Xu, G. Structurally Diverse Cytotoxic Polyphenols from Garcinia gracilis. J. Nat. Prod. 2023, 86, 2206–2215. [Google Scholar] [CrossRef]
- Ramos, S.; Rodríguez-Ramiro, I.; Martín, M.A.; Goya, L.; Bravo, L. Dietary flavanols exert different effects on antioxidant defenses and apoptosis/proliferation in Caco-2 and SW480 colon cancer cells. Toxicol. Vitr. 2011, 25, 1771–1781. [Google Scholar] [CrossRef]
- Agullo, G.; Gamet-Payrastre, L.; Fernandez, Y.; Anciaux, N.; Demigné, C.; Rémésy, C. Comparative effects of flavonoids on the growth, viability and metabolism of a colonic adenocarcinoma cell line (HT29 cells). Cancer Lett. 1996, 105, 61–70. [Google Scholar] [CrossRef] [PubMed]
- Dihal, A.A.; Woutersen, R.A.; van Ommen, B.; Rietjens, I.M.C.M.; Stierum, R.H. Modulatory effects of quercetin on proliferation and differentiation of the human colorectal cell line Caco-2. Cancer Lett. 2006, 238, 248–259. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Blanco, C.; Font, G.; Ruiz, M.-J. Role of quercetin on Caco-2 cells against cytotoxic effects of alternariol and alternariol monomethyl ether. Food Chem. Toxicol. 2016, 89, 60–66. [Google Scholar] [CrossRef]
- Raja, S.B.; Rajendiran, V.; Kasinathan, N.K.; Venkatabalasubramanian, S.; Murali, M.R.; Devaraj, H.; Devaraj, S.N. Differential cytotoxic activity of Quercetin on colonic cancer cells depends on ROS generation through COX-2 expression. Food Chem. Toxicol. 2017, 106, 92–106. [Google Scholar] [CrossRef]
- Uesato, S.; Kitagawa, Y.; Kamishimoto, M.; Kumagai, A.; Hori, H.; Nagasawa, H. Inhibition of green tea catechins against the growth of cancerous human colon and hepatic epithelial cells. Cancer Lett. 2001, 170, 41–44. [Google Scholar] [CrossRef] [PubMed]
- Benzie, I.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Hillis, W.E.; Swain, T. The phenolic constituents of Prunus domestica. II.—The analysis of tissues of the Victoria plum tree. J. Sci. Food Agric. 1959, 10, 135–144. [Google Scholar] [CrossRef]
- Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods 1983, 65, 55–63. [Google Scholar] [CrossRef]
Sample | Digestion | |||
---|---|---|---|---|
Starch | Polyphenol | Before | After | After (Natant) |
Wheat | - | <LOQ a* | <LOQ a | <LOQ a |
(+)-catechin | 493.7 ± 9.3 c,d,e,f | 587.1 ± 17.8 d,e,f | 528.1 ± 18.0 d,e | |
Epigallocatechin gallate | 1123.0 ± 4.6 h,i,j | 359.0 ± 10.2 a,b,c,d | 323.0 ± 19.9 b | |
Naringenin | <LOQ a | <LOQ a | <LOQ a | |
Quercetin | 6735.8 ± 8.0 m** | 2104.5 ± 8.8 h | <LOQ a | |
Kaempferol | 931.4 ± 13.0 g,h,i | 812.7 ± 2.8 e,f | <LOQ a | |
Rice | - | <LOQ a | <LOQ a | <LOQ a |
Epigallocatechin gallate | 866.9 ± 1.2 f,g,h | 532.0 ± 8.7 b,c,d,e | 355.9 ± 34.8 b,c | |
Hesperidin | 142.9 ± 1.3 a,b,c | 145.0 ± 48.4 a,b,c | <LOQ a | |
Naringenin | <LOQ a | <LOQ a | <LOQ a | |
Trans-ferulic acid | 571.6 ± 14.2 d,e,f,g | 373.9 ± 9.6 a,b,c,d | 671.8 ± 2.6 f | |
p-coumaric acid | 135.3 ± 2.3 a,b,c | 135.7 ± 27.0 a,b | 127.3 ± 6.2 a | |
Quercetin | 1420.5 ± 6.1 j | 1318.7 ± 44.1 g | <LOQ a | |
Kaempferol | 1416.2 ± 2.6 j | 950.7 ± 4.1 f | <LOQ a | |
Potato | - | <LOQ a | <LOQ a | <LOQ a |
(+)-catechin | 459.7 ± 5.2 b,c,d,e | 803.5 ± 4.8 e,f | 823.7 ± 1.5 g | |
Epigallocatechin gallate | 746.7 ± 27.1 e,f,g,h | 545.4 ± 14.8 c,d,e | 459.0 ± 18.8 c,d | |
Hesperidin | 63.2 ±22.1 a,b | 152.5 ±4.8 a,b,c | <LOQ a | |
Naringenin | <LOQ a | <LOQ a | <LOQ a | |
p-coumaric acid | 141.6 ± 0.2 a,b,c | 141.8 ± 7.9 a,b | 129.9 ± 10.1 a | |
Quercetin | 183.5 ± 33.9 a,b,c,d | 968.0 ± 11.3 f | <LOQ a | |
Kaempferol | 38.4 ± 11.5 a | 730.8 ± 5.6 d,e,f | <LOQ a | |
Maize | - | <LOQ a | <LOQ a | <LOQ a |
(+)-catechin | 425.8 ± 7.2 b,c,d,e | 851.4 ± 5.2 e,f | 686.6 ± 20.5 f | |
Epigallocatechin gallate | 1268.0 ± 5.3 i,j | 330.2 ± 26.2 a,b,c,d | 314.8 ± 26.6 b | |
Trans-ferulic acid | 614.1 ± 4.5 e,f,g | 596.8 ± 6.2 d,e,f | 576.3 ± 27.0 e,f | |
Quercetin | 3252.2 ± 3.8 l | 1335.7 ± 1.3 g | <LOQ a | |
Kaempferol | 2222.5 ± 0.8 k | 497.9 ± 4.1 b,c,d,e | <LOQ a |
Sample | Digestion | |||
---|---|---|---|---|
Starch | Polyphenol | Before | After | After (Natant) |
Wheat | - | <LOQ a* | <LOQ a | <LOQ a |
(+)-catechin | 138.6 ± 23.1 a,b | 195.7 ± 12.4 b,c | 154.4 ± 2.5 b | |
Epigallocatechin gallate | 692.1 ± 7.2 d** | 261.8 ± 8.7 c | 222.6 ± 5.5 c,d | |
Naringenin | <LOQ a | <LOQ a | <LOQ a | |
Quercetin | 376.6 ± 21.6 c | 545.1 ± 1.8 e | <LOQ a | |
Kaempferol | 233.5 ± 14.3 b,c | 209.1 ± 11.9 b,c | <LOQ a | |
Rice | - | <LOQ a | <LOQ a | <LOQ a |
Epigallocatechin gallate | 538.0 ± 30.2 d | 270.9 ± 10.4 c | 206.5 ± 8.1 b,c,d | |
Hesperidin | <LOQ a | 34.3 ± 38.3 a | <LOQ a | |
Naringenin | <LOQ a | <LOQ a | <LOQ a | |
Trans-ferulic acid | 288.6 ± 10.1 b,c | 149.8 ± 58.7 b | 165.2 ± 52.8 b,c | |
p-coumaric acid | <LOQ a | <LOQ a | <LOQ a | |
Quercetin | 678.8 ± 0.1 d | 742.1 ± 14.7 f | <LOQ a | |
Kaempferol | 228.7 ± 35.5 b,c | 201.4 ± 8.8 b,c | <LOQ a | |
Potato | - | <LOQ a | <LOQ a | <LOQ a |
(+)-catechin | 341.3 ± 24.5 c | <LOQ a | 153.9 ± 24.2 b | |
Epigallocatechin gallate | 625.8 ± 3.2 d | <LOQ a | 166.4 ± 21.1 b,c | |
Hesperidin | <LOQ a | 40.8 ± 5.4 a | <LOQ a | |
Naringenin | <LOQ a | <LOQ a | <LOQ a | |
p-coumaric acid | <LOQ a | <LOQ a | <LOQ a | |
Quercetin | 381.7 ± 16.0 c | 438.9 ± 1.7 d | <LOQ a | |
Kaempferol | 150.0 ± 22.9 a,b | <LOQ a | <LOQ a | |
Maize | - | <LOQ a | <LOQ a | <LOQ a |
(+)-catechin | 146.3 ± 26.8 a,b | 242.0 ± 67.3 b,c | 211.0 ± 0.0 b,c,d | |
Epigallocatechin gallate | 573.6 ± 47.3 d | 283.0 ± 16.1 c | 159.3 ± 18.0 b,c | |
Trans-ferulic acid | 283.7 ± 2.7 b,c | 294.3 ± 3.4 c | 245.1 ± 3.7 d | |
Quercetin | 539.4 ± 8.6 d | 619.3 ± 0.7 e | <LOQ a | |
Kaempferol | 184.8 ± 18.1 a,b | 153.5 ± 16.4 b | <LOQ a |
Sample | Digestion | |||
---|---|---|---|---|
Starch | Polyphenol | Before | After | After (Natant) |
Wheat | - | <LOQ a* | <LOQ a | <LOQ a |
(+)-catechin | 0.025 ± 11.6 a | 0.036 ± 3.8 a,b,c,d | 0.058 ± 64.0 b,c | |
Epigallocatechin gallate | 0.069 ± 16.3 a,b,c,d,e,f,g | 0.050 ± 8.2 a,b,c,d,e,f | 0.068 ± 24.7 c,d | |
Naringenin | 0.089 ± 21.8 d,e,f,g,h | 0.027 ± 7.4 a,b,c | <LOQ a | |
Quercetin | 0.239 ± 52.8 i** | 0.103 ± 1.9 g,h | <LOQ a | |
Kaempferol | 0.072 ± 16.1 a,b,c,d,e,f,g | 0.049 ± 9.3 a,b,c,d,e | <LOQ a | |
Rice | - | <LOQ a | <LOQ a | <LOQ a |
Epigallocatechin gallate | 0.036 ± 14.2 a,b,c | 0.039 ± 23.3 a,b,c,d | 0.042 ± 37.1 a,b,c | |
Hesperidin | 0.030 ± 8.9 a,b | 0.032 ± 53.7 a,b,c,d | <LOQ a | |
Naringenin | 0.130 ± 8.2 h | 0.056 ± 2.3 c,d,e,f | <LOQ a | |
Trans-ferulic acid | 0.091 ± 10.2 d,e,f,g,h | 0.043 ± 56.3 a,b,c,d,e | 0.049 ± 49.4 a,b,c | |
p-coumaric acid | 0.089 ± 0.4 d,e,f,g,h | 0.047 ± 50.2 a,b,c,d,e | <LOQ a | |
Quercetin | 0.124 ± 14.4 h | 0.151 ± 19.3 i | <LOQ a | |
Kaempferol | 0.104 ± 27.0 e,f,g,h | 0.061 ± 4.7 d,e,f | <LOQ a | |
Potato | - | <LOQ a | <LOQ a | <LOQ a |
(+)-catechin | 0.098 ± 22.8 e,f,g,h | 0.083 ± 23.2 f,g,h | 0.085 ± 62.5 d | |
Epigallocatechin gallate | 0.053 ± 13.7 a,b,c,d,e | 0.049 ± 23.9 a,b,c,d,e | 0.036 ± 46.4 a,b | |
Hesperidin | 0.022 ± 4.6 a | 0.027 ± 13.0 a,b,c | <LOQ a | |
Naringenin | 0.119 ± 3.2 g,h | 0.093 ± 13.7 g,h | <LOQ a | |
p-coumaric acid | 0.083 ± 0.6 c,d,e,f,g,h | 0.058 ± 1.4 c,d,e,f | 0.044 ± 70.0 a,b,c | |
Quercetin | 0.010 ± 17.2 e,f,g,h | 0.105 ± 16.4 g,h | <LOQ a | |
Kaempferol | 0.062 ± 22.8 a,b,c,d,e,f | 0.057 ± 1.8 c,d,e,f | <LOQ a | |
Maize | - | <LOQ a | <LOQ a | <LOQ a |
(+)-catechin | 0.041 ± 37.6 a,b,c,d | 0.051 ± a,b,c,d,e,f | 0.026 ± 48.7 a | |
Epigallocatechin gallate | 0.058 ± 68.2 a,b,c,d,e | 0.055 ± 20.4 b,c,d,e,f | 0.035 ± 31.4 a,b | |
Trans-ferulic acid | 0.080 ± 10.0 b,c,d,e,f,g,h | 0.075 ± 7.9 e,f,g | 0.050 ± 70.5 a,b,c | |
Quercetin | 0.113 ± 13.0 f,g,h | 0.108 ± 5.7 h | <LOQ a | |
Kaempferol | 0.069 ± 5.9 a,b,c,d,e,f,g | 0.033 ± 23.3 a,b,c,d | <LOQ a |
Sample | Cell Lines | |||
---|---|---|---|---|
Starch | Polyphenol | Caco-2 | HT29 | CCD 841 CoN |
Wheat | - | >512 c* | >512 c | >512 c |
(+)-catechin | >512 c | >512 c | >512 c | |
Epigallocatechin gallate | >512 c | >512 c | >512 c | |
Naringenin | >512 c | >512 c | >512 c | |
Quercetin | >512 c | >512 c | >512 c | |
Kaempferol | >512 c | >512 c | >512 c | |
Rice | - | >512 c | >512 c | >512 c |
Epigallocatechin gallate | >512 c | >512 c | >512 c | |
Hesperidin | >512 c | >512 c | >512 c | |
Naringenin | >512 c | >512 c | >512 c | |
Trans-ferulic acid | >512 c | >512 c | >512 c | |
p-coumaric acid | >512 c | >512 c | >512 c | |
Quercetin | >512 c | >512 c | >512 c | |
Kaempferol | >512 c | >512 c | >512 c | |
Potato | - | >512 c | >512 c | >512 c |
(+)-catechin | >512 c | >512 c | >512 c | |
Epigallocatechin gallate | >512 c | >512 c | >512 c | |
Hesperidin | >512 c | >512 c | >512 c | |
Naringenin | >512 c | >512 c | >512 c | |
p-coumaric acid | >512 c | >512 c | >512 c | |
Quercetin | 275.58 ± 2.1 a | 470.51 ± 12.5 b | >512 c | |
Kaempferol | >512 c | >512 c | >512 c | |
Maize | - | >512 c | >512 c | >512 c |
(+)-catechin | >512 c | >512 c | >512 c | |
Epigallocatechin gallate | >512 c | >512 c | >512 c | |
Trans-ferulic acid | >512 c | >512 c | >512 c | |
Quercetin | >512 c | >512 c | >512 c | |
Kaempferol | >512 c | >512 c | >512 c |
Starch | Polyphenol | Dose of Polyphenol [mg] | Polyphenol Addition Before Starch Pasting | Polyphenol Addition After Starch Pasting |
---|---|---|---|---|
Wheat | - | - | - | - |
(+)-catechin | 20 | - | + | |
Epigallocatechin gallate | 20 | - | + | |
Naringenin | 20 | - | + | |
Quercetin | 5 | + | - | |
Kaempferol | 10 | + | - | |
Rice | - | - | - | - |
Epigallocatechin gallate | 10 | + | - | |
Hesperidin | 10 | + | - | |
Naringenin | 5 | + | - | |
Trans-ferulic acid | 10 | + | - | |
p-coumaric acid | 10 | + | - | |
Quercetin | 10 | + | - | |
Kaempferol | 5 | + | - | |
Potato | - | - | - | - |
(+)-catechin | 10 | - | + | |
Epigallocatechin gallate | 10 | + | - | |
Hesperidin | 20 | - | + | |
Naringenin | 10 | - | + | |
p-coumaric acid | 10 | - | + | |
Quercetin | 20 | - | + | |
Kaempferol | 10 | - | + | |
Maize | - | - | - | - |
(+)-catechin | 5 | + | - | |
Epigallocatechin gallate | 20 | - | + | |
Trans-ferulic acid | 10 | - | + | |
Quercetin | 5 | + | - | |
Kaempferol | 10 | - | + |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kwaśny, D.; Borczak, B.; Zagrodzki, P.; Kapusta-Duch, J.; Prochownik, E.; Doskočil, I. Antioxidant Activity, Total Polyphenol Content, and Cytotoxicity of Various Types of Starch with the Addition of Different Polyphenols. Molecules 2025, 30, 2458. https://doi.org/10.3390/molecules30112458
Kwaśny D, Borczak B, Zagrodzki P, Kapusta-Duch J, Prochownik E, Doskočil I. Antioxidant Activity, Total Polyphenol Content, and Cytotoxicity of Various Types of Starch with the Addition of Different Polyphenols. Molecules. 2025; 30(11):2458. https://doi.org/10.3390/molecules30112458
Chicago/Turabian StyleKwaśny, Dominika, Barbara Borczak, Paweł Zagrodzki, Joanna Kapusta-Duch, Ewelina Prochownik, and Ivo Doskočil. 2025. "Antioxidant Activity, Total Polyphenol Content, and Cytotoxicity of Various Types of Starch with the Addition of Different Polyphenols" Molecules 30, no. 11: 2458. https://doi.org/10.3390/molecules30112458
APA StyleKwaśny, D., Borczak, B., Zagrodzki, P., Kapusta-Duch, J., Prochownik, E., & Doskočil, I. (2025). Antioxidant Activity, Total Polyphenol Content, and Cytotoxicity of Various Types of Starch with the Addition of Different Polyphenols. Molecules, 30(11), 2458. https://doi.org/10.3390/molecules30112458