Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (6,625)

Search Parameters:
Keywords = alternative promoters

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
33 pages, 1619 KB  
Article
Morphological and Performance Assessment of Commercial Menstrual and Incontinence Absorbent Hygiene Products
by Liesbeth Birchall, Millie Newmarch, Charles Cohen and Muhammad Tausif
Polymers 2026, 18(3), 318; https://doi.org/10.3390/polym18030318 (registering DOI) - 24 Jan 2026
Abstract
Disposable absorbent hygiene products (AHPs) contain plastics that are challenging to recycle and not biodegradable, making a significant contribution to landfill. Decreasing the nonbiodegradable mass of products could reduce this burden. Despite this, public data on how AHP design and material selection relate [...] Read more.
Disposable absorbent hygiene products (AHPs) contain plastics that are challenging to recycle and not biodegradable, making a significant contribution to landfill. Decreasing the nonbiodegradable mass of products could reduce this burden. Despite this, public data on how AHP design and material selection relate to performance is limited. In this work, fifteen commercial AHPs were characterised using dimensional measurement, infrared spectroscopy, and imaging. Simulated urination, air permeability, and moisture management testing were used to assess expected leakage and user comfort. Sustainable materials currently in use were identified, and their performance compared to typical plastics, informing opportunities to replace or reduce nonbiodegradable materials. Polybutylene adipate terephthalate-based leakproof layers replaced polyolefins. Commercial alternatives to polyacrylate superabsorbent polymers (SAPs), with comparable absorption, were not seen. Although absorbency correlated with the mass of absorbants, SAPs reduced surface moisture after absorption and are known for high absorption capacity under pressure, preventing rewetting. Channels and side guards were observed to prevent side leakage and guide fluid distribution, potentially reducing the need for nonbiodegradable nonwoven and absorbant content by promoting efficient use of the full product mass. While synthetic nonwovens typically outperformed cellulosics, apertured and layered nonwovens were associated with improved moisture transport; polylactic acid rivalled typical thermoplastics as a bio-derived, compostable alternative. Although the need for biopolymer-based SAPs and foams remains, it is hoped that these findings will guide AHP design and promote research in sustainable materials. Full article
(This article belongs to the Section Polymer Analysis and Characterization)
19 pages, 1699 KB  
Article
Insights into IAA Production by the Halotolerant Bacterium Vreelandella titanicae
by Gianmaria Oliva, Patrizia Iannece, Stefano Castiglione and Giovanni Vigliotta
Fermentation 2026, 12(2), 68; https://doi.org/10.3390/fermentation12020068 (registering DOI) - 24 Jan 2026
Abstract
The excessive use of chemical fertilizers raised concerns regarding environmental sustainability and soil degradation, prompting increasing interest in biofertilizers as eco-friendly alternatives. Among these, a compound that is effective in stimulating root and plant growth is indole-3-acetic acid (IAA). In our study, we [...] Read more.
The excessive use of chemical fertilizers raised concerns regarding environmental sustainability and soil degradation, prompting increasing interest in biofertilizers as eco-friendly alternatives. Among these, a compound that is effective in stimulating root and plant growth is indole-3-acetic acid (IAA). In our study, we evaluated IAA production by the halotolerant bacterium Vreelandella titanicae under different and varying nutritional conditions, such as tryptophan availability, temperature, pH, salinity, etc. The bacterium showed significant IAA production under a broad range of conditions and a dependence on the presence of tryptophan for IAA biosynthesis. High salinity (1.0 M NaCl), slightly alkaline pH (8.0–9.0), and temperatures of 34 °C increased IAA production, while optimal growth occurred in the absence of NaCl at a range of temperatures of 25–28 °C, suggesting a stress-responsive regulation of its biosynthesis. Easily metabolizable carbon sources, such as glucose and mannitol, enhanced IAA yield again, whereas additions of 1.0 g L−1 NH4NO3 and KH2PO4 in the basal medium, poor in these salts, inhibited both the growth of the bacterium and IAA production. Notably, V. titanicae produced relevant amounts of IAA in seawater (24.57 ± 11.28 μg⋅mL−1) when used as growth medium and dairy whey (15.68 ± 2.42 μg⋅mL−1), highlighting its suitability for low-cost and circular bioprocessing strategies. In conclusion, V. titanicae is a promising Plant Growth-Promoting Rhizobacterium (PGPR) candidate for sustainable IAA production and potential application in saline or marginal agricultural soils. Its ability to synthesize IAA in different growth media could allow its exploitation in environmentally friendly bioprocesses. Full article
Show Figures

Figure 1

22 pages, 3203 KB  
Article
Synergistic Effect of Compost and Subsurface Water Retention Technology on Optimizing Soil Properties and Argan (Argania spinosa L. Skeels) Performances Under Field Conditions
by Boujemaa Fassih, Mohamed Ait-El-Mokhtar, Aicha Nait Douch, Abderrahim Boutasknit, Redouane Ouhaddou, Chayma Ikan, Zoulfa Roussi, Raja Ben-Laouane, Badia Aganchich and Said Wahbi
Plants 2026, 15(3), 365; https://doi.org/10.3390/plants15030365 (registering DOI) - 24 Jan 2026
Abstract
Argania spinosa L. Skeels is an ecological pillar of the arid zones of South-West Morocco, currently threatened by the drastic climate change. This study investigates the effect of the combined application of compost (C) and subsurface water retention technology (SWRT) on field performances [...] Read more.
Argania spinosa L. Skeels is an ecological pillar of the arid zones of South-West Morocco, currently threatened by the drastic climate change. This study investigates the effect of the combined application of compost (C) and subsurface water retention technology (SWRT) on field performances of one-(1Y) and two-year-old (2Y) argan seedlings. A randomized field trial was performed with four treatments: Control, C, SWRT, and C + SWRT. We evaluated soil properties, growth, and physiology, alongside biochemical parameters including stress markers, compatible solutes, antioxidant enzyme activities, and secondary metabolites. The results reveal the significant effect of C and/or SWRT on argan seedlings performances, particularly in 1Y subjects. The C + SWRT strongly stimulated stem elongation (246% vs. 163%), stomatal conductance (75% vs. 99%), photosynthetic efficiency (18% vs. 11%), and chlorophyll a content (80% vs. 65%) in 1Y and 2Y seedlings, respectively, compared to their corresponding controls. Under the same treatment, malondialdehyde levels were significantly reduced by 37% in 1Y seedlings and 23% in 2Y seedlings. In addition, catalase activity and soluble sugar, protein, and polyphenol content increased by 38, 43, 26, and 21%, respectively, in the younger seedlings and by 53, 51, 18, and 19%, respectively, in the elder seedlings. In terms of soil health, C + SWRT significantly enhanced total organic carbon and matter, available phosphorus, and reduced electrical conductivity. In summary, the C + SWRT application significantly improved argan plant performances, with a particularly marked effect on 1Y seedlings, which makes this combination an alternative solution to enhance the resilience of the argan tree in the era of climate change and promote the success of the reforestation program. Full article
Show Figures

Figure 1

23 pages, 707 KB  
Review
Plant-Based Nano-Delivery Systems in the Treatment of Inflammatory Disorders
by Catarina R. Silva, Amélia C. F. Vieira, Ana Cláudia Paiva-Santos, Francisco Veiga and Gustavo Costa
Pharmaceutics 2026, 18(2), 150; https://doi.org/10.3390/pharmaceutics18020150 - 23 Jan 2026
Abstract
Inflammation is strongly related to the development of multiple chronic diseases, such as cardiovascular and autoimmune diseases, and is considered a crucial target for new therapeutic approaches, since it significantly impacts public health, contributes to high mortality rates, and decreases the quality of [...] Read more.
Inflammation is strongly related to the development of multiple chronic diseases, such as cardiovascular and autoimmune diseases, and is considered a crucial target for new therapeutic approaches, since it significantly impacts public health, contributes to high mortality rates, and decreases the quality of life. Conventional anti-inflammatory approaches are commonly used, but they present multiple limitations, such as undesirable side effects and low target-specificity. Medicinal plants and their bioactive phytochemical compounds have been studied in recent years and are considered promising alternatives to classical therapies. They are widely recognized for their capacity to modulate inflammatory pathways, regulate inflammatory responses, and consequently reduce inflammation and related symptoms. Although they are considered a good therapeutic alternative, their application in the human body is limited by certain characteristics, such as low solubility, which leads to rapid metabolism and excretion by the organism, significantly reducing bioavailability; for these reasons, the use of medicinal plants remains a biopharmaceutical challenge. Nanotechnology represents a promising tool in this context, since it can improve several characteristics of these compounds. By incorporating plant-derived compounds in nanosystems, considerable advantages, including sustained release, protection from degradation, an increase in the specificity to target tissues, and consequent reduction in toxicity, can be achieved. Thus, nanosystems promote more favorable therapeutic outcomes. This work aims to compile scientific evidence supporting the use of medicinal plants and their bioactive phytochemical compounds, incorporated in nanosystems, in inflammatory disorders. This review enlarges knowledge by integrating both in vitro and in vivo studies involving multiple medicinal plants and bioactive phytochemical compounds, describing their mechanisms of action and the nanosystems employed for drug delivery. In the future, the need for deeper mechanistic studies, the development of targeted and stimuli-responsive systems, and advancement toward clinically translatable, sustainable, and cost-effective plant-based nanotherapies is required. Full article
(This article belongs to the Special Issue Phytocompounds-Based Formulations for Anti-Inflammatory Disorders)
35 pages, 1297 KB  
Article
Load-Dependent Shipping Emission Factors Considering Alternative Fuels, Biofuels and Emission Control Technologies
by Achilleas Grigoriadis, Theofanis Chountalas, Evangelia Fragkou, Dimitrios Hountalas and Leonidas Ntziachristos
Atmosphere 2026, 17(2), 122; https://doi.org/10.3390/atmos17020122 - 23 Jan 2026
Abstract
Shipping is a high-energy-intensive sector and a major source of climate-relevant and harmful air pollutant emissions. In response to growing environmental concerns, the sector has been subject to increasingly stringent regulations, promoting the uptake of alternative fuels and emission control technologies. Accurate and [...] Read more.
Shipping is a high-energy-intensive sector and a major source of climate-relevant and harmful air pollutant emissions. In response to growing environmental concerns, the sector has been subject to increasingly stringent regulations, promoting the uptake of alternative fuels and emission control technologies. Accurate and diverse emission factors (EFs) are critical for quantifying shipping’s contribution to current emission inventories and projecting future developments under different policy scenarios. This study advances the development of load-dependent EFs for ships by incorporating alternative fuels, biofuels and emission control technologies. The methodology combines statistical analysis of data from an extensive literature review with newly acquired on-board emission measurements, including two-stroke propulsion engines and four-stroke auxiliary units. To ensure broad applicability, the updated EFs are expressed as functions of engine load and are categorized by engine and fuel type, covering conventional marine fuels, liquified natural gas, methanol, ammonia and biofuels. The results provide improved resolution of shipping emissions and insights into the role of emission control technologies, supporting robust, up-to-date emission models and inventories. This work contributes to the development of effective strategies for sustainable maritime transport and supports both policymakers and industry stakeholders in their decarbonization efforts. Full article
(This article belongs to the Special Issue Air Pollution from Shipping: Measurement and Mitigation)
18 pages, 2558 KB  
Article
Standardized Hericium erinaceus Extract Powder Improves Scopolamine-Induced Cognitive Deficits via BDNF-Mediated Neuroplasticity
by Seon-Hyeok Kim, Se Jeong Kim, Eun Ji Ko, Hae Ran Lee, Seong Min Hong, Se Hwan Ryu, Dae Hee Lee, Young Guk Kim, Jeong Yun Yu, Jae Kang Lee, Mi Kyeong Lee and Sun Yeou Kim
Sci. Pharm. 2026, 94(1), 12; https://doi.org/10.3390/scipharm94010012 - 23 Jan 2026
Abstract
Alzheimer’s disease and related neurodegenerative disorders are associated with progressive cognitive decline, primarily driven by cholinergic dysfunction and impaired synaptic signaling. Hericium erinaceus, also known as lion’s mane mushroom, has been reported to promote neuronal differentiation and synaptic plasticity. In this study, [...] Read more.
Alzheimer’s disease and related neurodegenerative disorders are associated with progressive cognitive decline, primarily driven by cholinergic dysfunction and impaired synaptic signaling. Hericium erinaceus, also known as lion’s mane mushroom, has been reported to promote neuronal differentiation and synaptic plasticity. In this study, a standardized H. erinaceus extract powder (HEP) was prepared from fruiting bodies and quantified using hericene A as a marker compound. The neuroprotective effects of HEP were then evaluated in both cellular and animal models of scopolamine-induced cognitive dysfunction. Pretreatment of SH-SY5Y human neuroblastoma cells with HEP (5–25 μg/mL) significantly improved cell viability and reduced scopolamine-induced apoptosis, while enhancing the activation of neuroplasticity-related signaling proteins, including brain-derived neurotrophic factor (BDNF), cAMP response element-binding protein (CREB), and extracellular signal-regulated kinase (ERK). In vivo, oral administration of HEP (300 mg/kg) to scopolamine-treated ICR mice markedly improved cognitive performance, increasing the recognition index to 63.8% compared with 41.6% in the scopolamine group, and enhancing spontaneous alternation in the Y-maze test to 59.6%. These cognitive improvements were accompanied by preserved hippocampal neuronal structure and increased BDNF immunoreactivity. Additionally, HEP improved cholinergic function by restoring serum acetylcholine levels and reducing acetylcholinesterase activity. Collectively, these findings suggest that standardized HEP exerts neuroprotective and cognition-enhancing effects via modulation of cholinergic markers and activation of BDNF-mediated neuroplasticity, highlighting its potential as a functional food ingredient or nutraceutical for preventing cognitive decline related to cholinergic dysfunction. Full article
(This article belongs to the Topic Functional Foods and Nutraceuticals in Health and Disease)
Show Figures

Figure 1

13 pages, 2430 KB  
Article
Construction of Bovine CypA Gene Expression Vector and Validation of Its Expression in CHO-K1 Cells
by Haidong Liu, Biyu Zhang, Meng Zhou, Yanqiang Zhang, Qian Shi, Haitao Diao, Youfang Gu, Qianqian Hu, Jing Li and Chongmei Ruan
Animals 2026, 16(3), 367; https://doi.org/10.3390/ani16030367 - 23 Jan 2026
Abstract
Bovine mastitis remains a globally prevalent disease, with the limitations of antibiotic-based treatments—such as the rise in antimicrobial resistance and the presence of drug residues—highlighting the urgent need for alternative therapeutic approaches. Inflammation is intricately linked to various cytokines and immunomodulatory proteins, among [...] Read more.
Bovine mastitis remains a globally prevalent disease, with the limitations of antibiotic-based treatments—such as the rise in antimicrobial resistance and the presence of drug residues—highlighting the urgent need for alternative therapeutic approaches. Inflammation is intricately linked to various cytokines and immunomodulatory proteins, among which cyclophilin A (CypA) serves as a pivotal inflammatory mediator, significantly contributing to the initiation and amplification of inflammatory responses under such conditions. The acquisition of high-purity recombinant protein is a fundamental prerequisite for in vitro functional studies of bovine CypA. This study aimed to construct a eukaryotic expression vector for bovine CypA and verify its expression in CHO-K1 cells. Utilizing the bovine CypA gene sequence available in GenBank, the coding region was artificially synthesized and optimized for codon usage, subsequently being inserted into the pPB[Exp] backbone vector via BsrGI and BstEII double digestion. The resulting polycistronic expression vector contained a CAG promoter driving the CypA transcription, an EF1α promoter driving the EGFP reporter gene, a PGK promoter controlling the puromycin resistance gene, and a C-terminal His-tag. Restriction enzyme digestion and bidirectional Sanger sequencing confirmed that the inserted fragment sequence was completely consistent with the optimized design. Robust EGFP fluorescence was observed 24 h post-transfection and remained stable after puromycin selection. qPCR analysis showed that the Ct value of CypA in the experimental group was 16.20 ± 0.04, while no amplification signal was detected in the control group. Additionally, Western blot analysis identified a CypA-specific band at approximately 18 kDa, confirming the correct expression of the exogenous CypA protein in CHO-K1 cells. Collectively, these results demonstrate the successful construction and validation of a bovine CypA eukaryotic expression vector. The established CHO-K1 expression system exhibited stable and efficient expression, thereby providing a robust foundation for future research on the production and application of recombinant CypA protein. Full article
(This article belongs to the Section Cattle)
Show Figures

Figure 1

22 pages, 1433 KB  
Article
An Engineering-Based Methodology to Assess Alternative Options for Reusing Decommissioned Offshore Platforms
by Annachiara Martini, Raffaella Gerboni, Anna Chiara Uggenti, Claudia Vivalda, Emanuela Bruno, Francesca Verga, Giorgio Giglio and Andrea Carpignano
J. Mar. Sci. Eng. 2026, 14(3), 239; https://doi.org/10.3390/jmse14030239 - 23 Jan 2026
Abstract
In the current context of the energy transition, the reuse of offshore oil and gas (O&G) structures that have reached the end of their operational life presents new engineering challenges. Many projects aim to adapt existing facilities for a range of alternative uses. [...] Read more.
In the current context of the energy transition, the reuse of offshore oil and gas (O&G) structures that have reached the end of their operational life presents new engineering challenges. Many projects aim to adapt existing facilities for a range of alternative uses. This paper outlines guidelines for identifying the most suitable conversion options aligned with the goals of the ongoing energy transition, focusing on the Italian offshore area. The study promotes the reuse—instead of partial or full removal—of existing offshore platforms originally built for the exploitation of hydrocarbon reservoirs. From an engineering perspective, the project describes the development of guidelines based on an innovative methodology to identify new uses for both offshore oil and gas platforms and the depleted reservoirs, with a focus on safety and environmental impact. The guidelines identify the most suitable and effective conversion option for the platform–reservoir system under consideration. To ensure a realistic approach, the developed methodology allows one to identify the preferable conversion option even when some piece of information is missing or incomplete, as often happens in the early stages of a feasibility study. The screening process provides an associated level of uncertainty related to the degree of data incompleteness. The outcome is a complete evaluation procedure divided into five phases: definition of criteria; assignment of an importance scale to determine how critical each criterion is; connection of indices and weights to each criterion; and analysis of the relationships between them. The guidelines are implemented in a software tool that supports and simplifies the decision-making process. The results are very promising. The developed methodology and the related guidelines applied to a case study have proven to be an effective decision-support for analysts. The study shows that it is possible to identify the most suitable conversion option from a technical, engineering, and operational point of view while also considering its environmental impact and safety implications. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

15 pages, 229 KB  
Article
From Ownership to Equitable Access: Shared Electric Mobility as an Alternative to Private Electric Vehicles
by Peerawat Payakkamas, Joop de Kraker and Marc Dijk
Future Transp. 2026, 6(1), 25; https://doi.org/10.3390/futuretransp6010025 - 23 Jan 2026
Abstract
Adoption of electric vehicles (EVs) is widely considered as a crucial step in decarbonizing urban mobility. While access to private ownership of EVs is socially and spatially still highly unequal, shared electric mobility has been suggested as a more accessible alternative. However, access [...] Read more.
Adoption of electric vehicles (EVs) is widely considered as a crucial step in decarbonizing urban mobility. While access to private ownership of EVs is socially and spatially still highly unequal, shared electric mobility has been suggested as a more accessible alternative. However, access to shared electric mobility is still inequitable; hence, there is a need for practical insights and recommendations for urban policymakers on how to improve this. This study addressed this need with a ‘practice consultation’, comprising 15 in-depth interviews with practice experts from Belgium, Denmark, Finland and the Netherlands, on the current state of shared electric mobility, the associated policies and realistic policy options to promote and ensure equitable access. The study revealed not only a diverse offer of shared electric mobility but also the persistence of earlier-identified barriers to equitable access. Current policies focus more on the orderly and safe integration of shared mobility services and improving access to shared mobility more generally. Yet, various recent plans, experiments and pilots with policy options for more equitable access were mentioned. Some options are novel and open up new ways to equitable access, while other already-suggested ones were confirmed as relevant and feasible by practice experts. Full article
16 pages, 2373 KB  
Article
Pyrrhotite Facilitates Growth and Cr Accumulation in Leersia hexandra Swartz for Effective Cr(VI) Removal in Constructed Wetlands
by Xinyue Zhang, Xuehong Zhang, Yue Lin, Jiang Lv, Minmin Jiang, Sijia Cheng and Jun Yan
Toxics 2026, 14(1), 107; https://doi.org/10.3390/toxics14010107 - 22 Jan 2026
Abstract
Hexavalent chromium (Cr(VI)) is a hazardous pollutant frequently found in industrial wastewater. Constructed wetlands (CWs) provide an alternative for Cr(VI) removal, but their effective removal is essentially governed by the extent of Cr accumulation in plants. This study evaluated the effects of pyrrhotite [...] Read more.
Hexavalent chromium (Cr(VI)) is a hazardous pollutant frequently found in industrial wastewater. Constructed wetlands (CWs) provide an alternative for Cr(VI) removal, but their effective removal is essentially governed by the extent of Cr accumulation in plants. This study evaluated the effects of pyrrhotite addition on a Cr-hyperaccumulator Leersia hexandra Swartz (L. hexandra) in CW microcosms with different substrates (pyrrhotite and gravel) and influent Cr(VI) concentrations (2 and 10 mg·L−1). All microcosms achieved substantial Cr(VI) removal, while pyrrhotite significantly facilitated the removal of NO3-N, COD, and TP. Pyrrhotite alleviated Cr-induced oxidative stress and thus promoted photosynthesis in L. hexandra, reflected by 27.32–39.09% lower malondialdehyde levels, 1.67–8.37% higher total chlorophyll contents, and 17.36–39.61% higher net photosynthetic rates. Consequently, maximum aboveground Cr standing stock reached 164.50 mg·m−2 in the P10 group, where L. hexandra contributed 6.63% to the total Cr removal. Microbial analysis showed reduced Cr-stress responses in pyrrhotite groups. Structural equation modeling indicated that pyrrhotite and its dissolution products promote Cr standing stock of L. hexandra through establishing in/ex planta defensive mechanisms. These findings provide new perspectives on phytoremediation coupled with CWs for the treatment of Cr(VI)-containing wastewater. Full article
(This article belongs to the Special Issue Ecological Remediation of Heavy Metal-Polluted Environment)
Show Figures

Figure 1

17 pages, 4950 KB  
Article
Effect of Driving Pressure Modes on Microjet Dispersion Characteristics in Tissue-Mimicking Gels for Large-Volume Needle-Free Injection
by Dongping Zeng, Longsheng Luo, Linxing Luo, Wei Wang and Jiamin Li
Gels 2026, 12(1), 95; https://doi.org/10.3390/gels12010095 (registering DOI) - 22 Jan 2026
Abstract
Needle-free injection (NFI) technology is a promising alternative to conventional syringe injection, as it mitigates needle-related complications and enhances patient compliance. However, achieving the controlled and efficient dispersion of larger-volume formulations (>1 mL) within tissues remains a significant challenge. This study presents a [...] Read more.
Needle-free injection (NFI) technology is a promising alternative to conventional syringe injection, as it mitigates needle-related complications and enhances patient compliance. However, achieving the controlled and efficient dispersion of larger-volume formulations (>1 mL) within tissues remains a significant challenge. This study presents a novel pneumatic NFI system that uses a two-phase driving mode to regulate driving pressure and duration with an ejection volume of 1.0–2.0 mL. The integrated pressure stabilization unit significantly reduces pressure fluctuations during the initial injection phase, generating a more stable and uniform spray distribution. It is designed to produce an ideal elliptical dispersion effect while eliminating splatter, enabling controlled large-volume delivery. Jet impact experiments were conducted to investigate the dynamic characteristics of microjets generated by conventional single-phase and novel two-phase driving modes. Furthermore, the influence of the driving mode on the dispersion behaviors of microjets in agarose gels was explored through high-speed imaging of gel injections. The results demonstrate that the two-phase driving mode produces a distinct two-phase jet pressure profile. Compared to the single-phase mode, the two-phase mode produced a significantly larger dispersion width at equivalent initial driving pressures. This promotes more uniform lateral drug distribution and achieves a higher percentage of liquid drug delivery in gels. Furthermore, favorable driving pressure combinations were identified for different volumes: (1.25–0.25) MPa for 1.0 mL, (1.25–0.50) MPa for 1.5 mL, and (1.50–0.50) MPa for 2.0 mL. This provides a practical basis for optimizing clinical parameters and advancing the development of controllable NFI systems. Full article
(This article belongs to the Special Issue Recent Advances in Biopolymer Gels (2nd Edition))
Show Figures

Figure 1

18 pages, 9224 KB  
Article
Coupled Effects of Mg/Si Ratio and Recrystallization on Strength and Electrical Conductivity in Al-xMg-0.5Si Alloys
by Shanquan Deng, Xingsen Zhang, Junwei Zhu, Meihua Bian and Heng Chen
Crystals 2026, 16(1), 78; https://doi.org/10.3390/cryst16010078 (registering DOI) - 22 Jan 2026
Abstract
The strategic balance between strength and electrical conductivity in Al-Mg-Si alloys is a critical challenge that must be overcome to enable their widespread adoption as viable alternatives to copper conductors in power transmission systems. To address this, the present study comprehensively investigates model [...] Read more.
The strategic balance between strength and electrical conductivity in Al-Mg-Si alloys is a critical challenge that must be overcome to enable their widespread adoption as viable alternatives to copper conductors in power transmission systems. To address this, the present study comprehensively investigates model alloys with Mg/Si ratios ranging from 1.0 to 2.0. A multi-faceted experimental approach was employed, combining tailored thermo-mechanical treatments (solution treatment, cold drawing, and isothermal annealing) with comprehensive microstructural characterization techniques, including electron backscatter diffraction (EBSD) and scanning electron microscopy (SEM). The results elucidate a fundamental competitive mechanism governing property optimization: excess Mg atoms concurrently contribute to solid-solution strengthening via the formation of Cottrell atmospheres around dislocations, while simultaneously enhancing electron scattering, which is detrimental to conductivity. A critical synergy was identified at the Mg/Si ratio of 1.75, which promotes the dense precipitation of fine β″ phase while facilitating extensive recovery of high dislocation density. Furthermore, EBSD analysis confirmed the development of a microstructure comprising 74.1% high-angle grain boundaries alongside a low dislocation density (KAM ≤ 2°). This specific microstructural configuration effectively minimizes electron scattering while providing moderate grain boundary strengthening, thereby synergistically achieving an optimal balance between strength and electrical conductivity. Consequently, this work elucidates the key quantitative relationships and competitive mechanisms among composition (Mg/Si ratio), processing parameters, microstructure evolution, and final properties within the studied Al-xMg-0.5Si alloy system. These findings establish a clear design guideline and provide a fundamental understanding for developing high-performance aluminum-based conductor alloys with tailored Mg/Si ratios. Full article
(This article belongs to the Special Issue Microstructure, Properties and Characterization of Aluminum Alloys)
Show Figures

Figure 1

26 pages, 485 KB  
Article
An Integrated Methodology and Novel Index for Assessing Distributed Photovoltaic Deployment in Energy Transition Pathways: Evidence from Ecuador
by Alfonso Gunsha-Morales, Marcos A. Ponce-Jara, G. Jiménez-Castillo, J. L. Sánchez-Jiménez and Catalina Rus-Casas
Processes 2026, 14(2), 388; https://doi.org/10.3390/pr14020388 - 22 Jan 2026
Abstract
This study aims to develop and apply a novel methodology to assess the scope, benefits and challenges of distributed photovoltaic generation (DG-PV). The research provides a replicable framework applicable to any country, as long as official energy consumption data are available and the [...] Read more.
This study aims to develop and apply a novel methodology to assess the scope, benefits and challenges of distributed photovoltaic generation (DG-PV). The research provides a replicable framework applicable to any country, as long as official energy consumption data are available and the nation is seeking to modify its energy matrix as part of a sustainable transition through the design of renewable-energy-based policies. To support the viability of the proposal, data from the Ecuadorian electrical system for the period between 2014 and 2024 were analyzed using technical, operational and socio-economic indicators defined in the methodology. These include renewable participation, energy diversification, DG-PV, technical efficiency, regulatory index, operational resilience and electrical coverage. The investigation concludes with the definition of a Distributed Photovoltaic Integration Index (DPII), which can be used to measure a country’s progress toward the proper implementation of renewable energy. The DPII supports informed decision-making by allowing utilities and policymakers to prioritize distributed photovoltaic integration and compare alternative energy transition scenarios. In the case of Ecuador, a DPII of 0.170 is obtained for 2024 compared to a value of 0 for 2014. This result is mainly due to an increase in renewable energy participation (P1), which rose from 0.49 to 0.76 during this period, largely supported by hydropower expansion. This value was obtained because over the last ten years, Ecuador has committed to implementing active policies that incorporate renewable energies, as well as other aspects such as technical efficiency and the expansion of electrical coverage. This approach offers a replicable quantitative tool for evaluating the integration of DG-PV, providing key information for energy planning and for the formulation of policies that promote the decarbonization, decentralization and digitalization of the national electrical system. Full article
(This article belongs to the Special Issue Design and Optimisation of Solar Energy Systems)
Show Figures

Figure 1

21 pages, 1482 KB  
Article
Advancing a Sustainable Human–AI Collaboration Ecosystem in Interface Design: A User-Centered Analysis of Interaction Processes and Design Opportunities Based on Participants from China
by Chang Xiong, Guangliang Sang and Ken Nah
Sustainability 2026, 18(2), 1139; https://doi.org/10.3390/su18021139 - 22 Jan 2026
Abstract
The application of Generative Artificial Intelligence (GenAI)—defined as a class of AI systems capable of autonomously generating new content such as images, texts, and design solutions based on learned data patterns—has become increasingly widespread in creative design. By supporting ideation, rapid trial-and-error, and [...] Read more.
The application of Generative Artificial Intelligence (GenAI)—defined as a class of AI systems capable of autonomously generating new content such as images, texts, and design solutions based on learned data patterns—has become increasingly widespread in creative design. By supporting ideation, rapid trial-and-error, and data-driven decision-making, GenAI enables designers to explore design alternatives more efficiently and enhances human–computer interaction experiences. In design practice, GenAI functions not only as a productivity-enhancing tool but also as a collaborative partner that assists users in visual exploration, concept refinement, and iterative development. However, users still face a certain learning curve before effectively adopting these technologies. Within the framework of human-centered artificial intelligence, contemporary design practices place greater emphasis on inclusivity across diverse user groups and on enabling intuitive “what-you-think-is-what-you-get” interaction experiences. From a sustainable design perspective, GenAI’s capabilities in digital simulation, rapid iteration, and automated feedback contribute to more efficient design workflows, reduced collaboration costs, and broader access to creative participation for users with varying levels of expertise. These characteristics play a crucial role in enhancing the accessibility of design resources and supporting the long-term sustainability of creative processes. Focusing on the context of China’s digital design industry, this study investigates the application of GenAI in design workflows through an empirical case study of Zhitu AI, a generative design tool developed by Beijing Didi Infinity Technology Development Co., Ltd. The study conducts a literature review to outline the role of GenAI in visual design processes and employs observation-based experiments and semi-structured interviews with users of varying levels of design expertise. The findings reveal key pain points across stages such as prompt formulation, secondary editing, and asset generation. Drawing on the Kano model, the study further identifies potential design opportunities and discusses their value in improving efficiency, supporting non-expert users, and promoting more sustainable and inclusive design practices. Full article
(This article belongs to the Section Sustainable Products and Services)
Show Figures

Figure 1

17 pages, 2271 KB  
Article
UBE4B Mediates Mitophagy via NIPSNAP1 Ubiquitination and NDP52 Recruitment
by Bo Jin, Junyao Qu, Ke Xu, Yufei Zhang, Peng Xu, Xin Wang, Bo Zhao and Xianting Jiao
Int. J. Mol. Sci. 2026, 27(2), 1119; https://doi.org/10.3390/ijms27021119 - 22 Jan 2026
Abstract
Mitophagy, as a critical form of selective autophagy, plays a central role in maintaining cellular homeostasis. While the canonical PTEN-Induced Kinase 1 (PINK1)–Parkin pathway is well established, mitophagy can still be effectively induced in Parkin-deficient cells such as HeLa, indicating the existence of [...] Read more.
Mitophagy, as a critical form of selective autophagy, plays a central role in maintaining cellular homeostasis. While the canonical PTEN-Induced Kinase 1 (PINK1)–Parkin pathway is well established, mitophagy can still be effectively induced in Parkin-deficient cells such as HeLa, indicating the existence of Parkin-independent alternative pathways. The mitochondrial matrix proteins 4-Nitrophenylphosphatase domain and non-neuronal SNAP25-like protein homolog 1 (NIPSNAP1) acts as a key effector in such pathways, yet its regulatory mechanisms remain incompletely understood. Here, we identify Ubiquitination Factor E4B (UBE4B) as an E3 ubiquitin ligase for NIPSNAP1 and demonstrate that it catalyzes NIPSNAP1 ubiquitination in both Human Embryonic Kidney 293 cells (HEK293T) and HeLa cells. Under mitochondrial depolarization, UBE4B not only promotes NIPSNAP1 ubiquitination and subsequent lysosome-dependent degradation, but also significantly enhances its interaction with the autophagy adaptors Nuclear Dot Protein 52 kDa (NDP52) and Sequestosome 1 (p62/SQSTM1). Notably, while Parkin does not ubiquitinate NIPSNAP1, UBE4B-mediated ubiquitination facilitates mitophagy in Parkin-null HeLa cells by strengthening the binding between NIPSNAP1 and NDP52. Collectively, this study unveils a novel mitophagy pathway regulated by the UBE4B-NIPSNAP1 axis, offering new insights into mitochondrial quality control. Full article
(This article belongs to the Special Issue Research on the Key Role of Ubiquitination in Signaling and Cancer)
Show Figures

Figure 1

Back to TopTop