Promoter Specificity and Transcription Levels Modulate Trans-Splicing Efficiency at the mod(mdg4) Locus in Drosophila
Abstract
1. Introduction
2. Results
2.1. The Model System for Testing the Role of mod(mdg4) Sequences in Trans-Splicing
2.2. Testing the Functional Role of the mod(mdg4) Promoter in Trans-Splicing
2.3. Testing the Functional Role of Intron 3 and Exon 4 in mod(mdg4) in Trans-Splicing
2.4. Sequences in the Proximal Part of Intron 4 in mod(mdg4) are Sufficient to Induce Trans-Splicing
2.5. Correlation Between Transcription of the Donor and Trans-Splicing Level
3. Discussion
4. Materials and Methods
4.1. Construct Design and Molecular Cloning
4.2. Drosophila Stocks, Transgenesis, and Genetic Crosses
4.3. Quantification of Splicing Efficiency and Gene Expression
4.4. Luciferase Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gehring, N.H.; Roignant, J.Y. Anything but Ordinary—Emerging Splicing Mechanisms in Eukaryotic Gene Regulation. Trends Genet. 2021, 37, 355–372. [Google Scholar] [CrossRef] [PubMed]
- Braunschweig, U.; Gueroussov, S.; Plocik, A.M.; Graveley, B.R.; Blencowe, B.J. Dynamic integration of splicing within gene regulatory pathways. Cell 2013, 152, 1252–1269. [Google Scholar] [CrossRef]
- Shenasa, H.; Bentley, D.L. Pre-mRNA splicing and its cotranscriptional connections. Trends Genet. 2023, 39, 672–685. [Google Scholar] [CrossRef] [PubMed]
- Rogalska, M.E.; Mancini, E.; Bonnal, S.; Gohr, A.; Dunyak, B.M.; Arecco, N.; Smith, P.G.; Vaillancourt, F.H.; Valcarcel, J. Transcriptome-wide splicing network reveals specialized regulatory functions of the core spliceosome. Science 2024, 386, 551–560. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Manley, J.L. Mechanisms of alternative splicing regulation: Insights from molecular and genomics approaches. Nat. Rev. Mol. Cell Biol. 2009, 10, 741–754. [Google Scholar] [CrossRef]
- Baralle, F.E.; Giudice, J. Alternative splicing as a regulator of development and tissue identity. Nat. Rev. Mol. Cell Biol. 2017, 18, 437–451. [Google Scholar] [CrossRef]
- Lei, Q.; Li, C.; Zuo, Z.; Huang, C.; Cheng, H.; Zhou, R. Evolutionary Insights into RNA trans-Splicing in Vertebrates. Genome Biol. Evol. 2016, 8, 562–577. [Google Scholar] [CrossRef]
- Kong, Y.; Zhou, H.; Yu, Y.; Chen, L.; Hao, P.; Li, X. The evolutionary landscape of intergenic trans-splicing events in insects. Nat. Commun. 2015, 6, 8734. [Google Scholar] [CrossRef]
- Frenkel-Morgenstern, M.; Lacroix, V.; Ezkurdia, I.; Levin, Y.; Gabashvili, A.; Prilusky, J.; Del Pozo, A.; Tress, M.; Johnson, R.; Guigo, R.; et al. Chimeras taking shape: Potential functions of proteins encoded by chimeric RNA transcripts. Genome Res. 2012, 22, 1231–1242. [Google Scholar] [CrossRef]
- Mongelard, F.; Labrador, M.; Baxter, E.M.; Gerasimova, T.I.; Corces, V.G. Trans-splicing as a novel mechanism to explain interallelic complementation in Drosophila. Genetics 2002, 160, 1481–1487. [Google Scholar] [CrossRef]
- Dorn, R.; Reuter, G.; Loewendorf, A. Transgene analysis proves mRNA trans-splicing at the complex mod(mdg4) locus in Drosophila. Proc. Natl. Acad. Sci. USA 2001, 98, 9724–9729. [Google Scholar] [CrossRef]
- Labrador, M.; Corces, V.G. Extensive exon reshuffling over evolutionary time coupled to trans-splicing in Drosophila. Genome Res. 2003, 13, 2220–2228. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Yu, S.; Waldholm, J.; Bohm, S.; Visa, N. Brahma regulates a specific trans-splicing event at the mod(mdg4) locus of Drosophila melanogaster. RNA Biol. 2014, 11, 134–145. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.L.; Fan, Y.J.; Wang, X.Y.; Zhang, Y.; Pu, J.; Li, L.; Shao, W.; Zhan, S.; Hao, J.; Xu, Y.Z. A conserved intronic U1 snRNP-binding sequence promotes trans-splicing in Drosophila. Genes Dev. 2015, 29, 760–771. [Google Scholar] [CrossRef] [PubMed]
- Tikhonov, M.; Utkina, M.; Maksimenko, O.; Georgiev, P. Conserved sequences in the Drosophila mod(mdg4) intron promote poly(A)-independent transcription termination and trans-splicing. Nucleic Acids Res. 2018, 46, 10608–10618. [Google Scholar] [CrossRef]
- Horiuchi, T.; Giniger, E.; Aigaki, T. Alternative trans-splicing of constant and variable exons of a Drosophila axon guidance gene, lola. Genes Dev. 2003, 17, 2496–2501. [Google Scholar] [CrossRef]
- McManus, C.J.; Duff, M.O.; Eipper-Mains, J.; Graveley, B.R. Global analysis of trans-splicing in Drosophila. Proc. Natl. Acad. Sci. USA 2010, 107, 12975–12979. [Google Scholar] [CrossRef]
- Cramer, P.; Pesce, C.G.; Baralle, F.E.; Kornblihtt, A.R. Functional association between promoter structure and transcript alternative splicing. Proc. Natl. Acad. Sci. USA 1997, 94, 11456–11460. [Google Scholar] [CrossRef]
- Smith, C.W.; Valcarcel, J. Alternative pre-mRNA splicing: The logic of combinatorial control. Trends Biochem. Sci. 2000, 25, 381–388. [Google Scholar] [CrossRef]
- Allemand, E.; Myers, M.P.; Garcia-Bernardo, J.; Harel-Bellan, A.; Krainer, A.R.; Muchardt, C. A Broad Set of Chromatin Factors Influences Splicing. PLoS Genet. 2016, 12, e1006318. [Google Scholar] [CrossRef]
- Rambout, X.; Dequiedt, F.; Maquat, L.E. Beyond Transcription: Roles of Transcription Factors in Pre-mRNA Splicing. Chem. Rev. 2018, 118, 4339–4364. [Google Scholar] [CrossRef]
- Alfonso-Gonzalez, C.; Hilgers, V. (Alternative) transcription start sites as regulators of RNA processing. Trends Cell Biol. 2024, 34, 1018–1028. [Google Scholar] [CrossRef] [PubMed]
- Alfonso-Gonzalez, C.; Legnini, I.; Holec, S.; Arrigoni, L.; Ozbulut, H.C.; Mateos, F.; Koppstein, D.; Rybak-Wolf, A.; Bonisch, U.; Rajewsky, N.; et al. Sites of transcription initiation drive mRNA isoform selection. Cell 2023, 186, 2438–2455.e2422. [Google Scholar] [CrossRef] [PubMed]
- Kwon, B.; Fansler, M.M.; Patel, N.D.; Lee, J.; Ma, W.; Mayr, C. Enhancers regulate 3’ end processing activity to control expression of alternative 3’UTR isoforms. Nat. Commun. 2022, 13, 2709. [Google Scholar] [CrossRef]
- Luco, R.F.; Pan, Q.; Tominaga, K.; Blencowe, B.J.; Pereira-Smith, O.M.; Misteli, T. Regulation of alternative splicing by histone modifications. Science 2010, 327, 996–1000. [Google Scholar] [CrossRef]
- Marasco, L.E.; Kornblihtt, A.R. The physiology of alternative splicing. Nat. Rev. Mol. Cell Biol. 2023, 24, 242–254. [Google Scholar] [CrossRef]
- Brodsky, A.S.; Meyer, C.A.; Swinburne, I.A.; Hall, G.; Keenan, B.J.; Liu, X.S.; Fox, E.A.; Silver, P.A. Genomic mapping of RNA polymerase II reveals sites of co-transcriptional regulation in human cells. Genome Biol. 2005, 6, R64. [Google Scholar] [CrossRef]
- Zhou, H.L.; Hinman, M.N.; Barron, V.A.; Geng, C.; Zhou, G.; Luo, G.; Siegel, R.E.; Lou, H. Hu proteins regulate alternative splicing by inducing localized histone hyperacetylation in an RNA-dependent manner. Proc. Natl. Acad. Sci. USA 2011, 108, E627–E635. [Google Scholar] [CrossRef]
- Ameyar-Zazoua, M.; Rachez, C.; Souidi, M.; Robin, P.; Fritsch, L.; Young, R.; Morozova, N.; Fenouil, R.; Descostes, N.; Andrau, J.C.; et al. Argonaute proteins couple chromatin silencing to alternative splicing. Nat. Struct. Mol. Biol. 2012, 19, 998–1004. [Google Scholar] [CrossRef]
- Hsin, J.P.; Manley, J.L. The RNA polymerase II CTD coordinates transcription and RNA processing. Genes Dev. 2012, 26, 2119–2137. [Google Scholar] [CrossRef]
- Shenasa, H.; Hertel, K.J. Combinatorial regulation of alternative splicing. Biochim. Et Biophys. Acta Gene Regul. Mech. 2019, 1862, 194392. [Google Scholar] [CrossRef] [PubMed]
- Proudfoot, N.J. Transcriptional termination in mammals: Stopping the RNA polymerase II juggernaut. Science 2016, 352, aad9926. [Google Scholar] [CrossRef] [PubMed]
- Monsalve, M.; Wu, Z.; Adelmant, G.; Puigserver, P.; Fan, M.; Spiegelman, B.M. Direct coupling of transcription and mRNA processing through the thermogenic coactivator PGC-1. Mol. Cell 2000, 6, 307–316. [Google Scholar] [CrossRef]
- Rosonina, E.; Ip, J.Y.; Calarco, J.A.; Bakowski, M.A.; Emili, A.; McCracken, S.; Tucker, P.; Ingles, C.J.; Blencowe, B.J. Role for PSF in mediating transcriptional activator-dependent stimulation of pre-mRNA processing in vivo. Mol. Cell. Biol. 2005, 25, 6734–6746. [Google Scholar] [CrossRef]
- Oktaba, K.; Zhang, W.; Lotz, T.S.; Jun, D.J.; Lemke, S.B.; Ng, S.P.; Esposito, E.; Levine, M.; Hilgers, V. ELAV links paused Pol II to alternative polyadenylation in the Drosophila nervous system. Mol. Cell 2015, 57, 341–348. [Google Scholar] [CrossRef]
- Du, J.; Wang, Q.; Ziegler, S.F.; Zhou, B. FOXP3 interacts with hnRNPF to modulate pre-mRNA alternative splicing. J. Biol. Chem. 2018, 293, 10235–10244. [Google Scholar] [CrossRef]
- Kolathur, K.K. Role of promoters in regulating alternative splicing. Gene 2021, 782, 145523. [Google Scholar] [CrossRef]
- Shukla, S.; Kavak, E.; Gregory, M.; Imashimizu, M.; Shutinoski, B.; Kashlev, M.; Oberdoerffer, P.; Sandberg, R.; Oberdoerffer, S. CTCF-promoted RNA polymerase II pausing links DNA methylation to splicing. Nature 2011, 479, 74–79. [Google Scholar] [CrossRef]
- Wu, W.; Ahmad, K.; Henikoff, S. Chromatin-bound U2AF2 splicing factor ensures exon inclusion. Mol. Cell 2025, 85, 1982–1998.e1984. [Google Scholar] [CrossRef]
- Bischof, J.; Maeda, R.K.; Hediger, M.; Karch, F.; Basler, K. An optimized transgenesis system for Drosophila using germ-line-specific phiC31 integrases. Proc. Natl. Acad. Sci. USA 2007, 104, 3312–3317. [Google Scholar] [CrossRef]
- Hernandez, G.; Vazquez-Pianzola, P.; Sierra, J.M.; Rivera-Pomar, R. Internal ribosome entry site drives cap-independent translation of reaper and heat shock protein 70 mRNAs in Drosophila embryos. RNA 2004, 10, 1783–1797. [Google Scholar] [CrossRef]
- Stevens, N.M. A study of the germ cells of certain diptera, with reference to the heterochromosomes and the phenomena of synapsis. J. Exp. Zool. 1908, 5, 359–374. [Google Scholar] [CrossRef]
- Soldatova, I.V.; Shepelev, M.V.; Georgiev, P.; Tikhonov, M. A Novel Mechanism for Transcription Termination in the mod(mdg4) Locus of Drosophila melanogaster. Biology 2024, 13, 994. [Google Scholar] [CrossRef] [PubMed]
- Bonde, M.M.; Voegeli, S.; Baudrimont, A.; Seraphin, B.; Becskei, A. Quantification of pre-mRNA escape rate and synergy in splicing. Nucleic Acids Res. 2014, 42, 12847–12860. [Google Scholar] [CrossRef] [PubMed]
- Ozbulut, H.C.; Hilgers, V. Neuronal RNA processing: Cross-talk between transcriptional regulation and RNA-binding proteins. Front. Mol. Neurosci. 2024, 17, 1426410. [Google Scholar] [CrossRef]
- Brand, A.H.; Perrimon, N. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 1993, 118, 401–415. [Google Scholar] [CrossRef]
- Karess, R.E.; Rubin, G.M. Analysis of P transposable element functions in Drosophila. Cell 1984, 38, 135–146. [Google Scholar] [CrossRef]





Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Beginyazova, O.; Soldatova, I.V.; Georgiev, P.; Tikhonov, M. Promoter Specificity and Transcription Levels Modulate Trans-Splicing Efficiency at the mod(mdg4) Locus in Drosophila. Int. J. Mol. Sci. 2025, 26, 11609. https://doi.org/10.3390/ijms262311609
Beginyazova O, Soldatova IV, Georgiev P, Tikhonov M. Promoter Specificity and Transcription Levels Modulate Trans-Splicing Efficiency at the mod(mdg4) Locus in Drosophila. International Journal of Molecular Sciences. 2025; 26(23):11609. https://doi.org/10.3390/ijms262311609
Chicago/Turabian StyleBeginyazova, Oguljan, Iuliia V. Soldatova, Pavel Georgiev, and Maxim Tikhonov. 2025. "Promoter Specificity and Transcription Levels Modulate Trans-Splicing Efficiency at the mod(mdg4) Locus in Drosophila" International Journal of Molecular Sciences 26, no. 23: 11609. https://doi.org/10.3390/ijms262311609
APA StyleBeginyazova, O., Soldatova, I. V., Georgiev, P., & Tikhonov, M. (2025). Promoter Specificity and Transcription Levels Modulate Trans-Splicing Efficiency at the mod(mdg4) Locus in Drosophila. International Journal of Molecular Sciences, 26(23), 11609. https://doi.org/10.3390/ijms262311609

