-
Progress in Gliotoxin Research -
Fluorimetric Determination of Eosin Y in Water Samples and Drinks Using Deep Eutectic Solvent-Based Liquid-Phase Microextraction -
Synthesis, Structures and Corrosion Inhibition Properties of 4-Nitrophenylacetato-Rare-Earth(III) 1D Coordination Polymers -
Catechins and Human Health: Breakthroughs from Clinical Trials
Journal Description
Molecules
Molecules
is the leading international, peer-reviewed, open access journal of chemistry. Molecules is published semimonthly online by MDPI. The International Society of Nucleosides, Nucleotides & Nucleic Acids (IS3NA), the Spanish Society of Medicinal Chemistry (SEQT) and the International Society of Heterocyclic Chemistry (ISHC) are affiliated with Molecules and their members receive a discount on the article processing charges.
- Open Access— free for readers, with article processing charges (APC) paid by authors or their institutions.
- High Visibility: indexed within Scopus, SCIE (Web of Science), PubMed, MEDLINE, PMC, Reaxys, CaPlus / SciFinder, MarinLit, AGRIS, and other databases.
- Journal Rank: JCR - Q2 (Biochemistry and Molecular Biology) / CiteScore - Q1 (Organic Chemistry)
- Rapid Publication: manuscripts are peer-reviewed and a first decision is provided to authors approximately 16.1 days after submission; acceptance to publication is undertaken in 2.6 days (median values for papers published in this journal in the first half of 2025).
- Recognition of Reviewers: reviewers who provide timely, thorough peer-review reports receive vouchers entitling them to a discount on the APC of their next publication in any MDPI journal, in appreciation of the work done.
- Sections: published in 25 topical sections.
- Testimonials: See what our editors and authors say about Molecules.
- Companion journal: Foundations.
- Journal Cluster of Chemical Reactions and Catalysis: Catalysts, Chemistry, Electrochem, Inorganics, Molecules, Organics, Oxygen, Photochem, Reactions, Sustainable Chemistry.
Impact Factor:
4.6 (2024);
5-Year Impact Factor:
5.0 (2024)
Latest Articles
Negative Paper Spray Ionization Mass Spectrometry for the Determination of Endocrine-Disrupting Chemicals with Application to Paraben Analysis in Cosmetics
Molecules 2025, 30(22), 4356; https://doi.org/10.3390/molecules30224356 - 10 Nov 2025
Abstract
Paper spray ionization mass spectrometry (PSI-MS) enables rapid analysis with minimal sample preparation, yet negative-ion mode performance has been limited by poor sensitivity and unstable signals, similar to conventional electrospray ionization. In this study, we optimized negative PSI tandem MS (MS/MS) for twelve
[...] Read more.
Paper spray ionization mass spectrometry (PSI-MS) enables rapid analysis with minimal sample preparation, yet negative-ion mode performance has been limited by poor sensitivity and unstable signals, similar to conventional electrospray ionization. In this study, we optimized negative PSI tandem MS (MS/MS) for twelve endocrine-disrupting chemicals (EDCs) and related biomarkers—including bisphenols, phthalates, parabens, and substituted phenols—used as model analytes. A systematic solvent and additive screen identified 1 mM ammonium fluoride in methanol and 0.1% ammonium hydroxide in 9:1 MeOH/carbon tetrachloride as optimal conditions, providing enhanced deprotonated-ion intensities and improved stability. Calibration curves generated under these conditions showed excellent linearity, with limits of quantitation (LOQs) in the low-ppb range. Application to cosmetic formulations demonstrated reliable paraben quantitation. In fortified hand cream, LOQs below 1 mg/kg were achieved, with recoveries of 93–110% and intra- and inter-day precision below 10% RSD. Notably, PSI-MS/MS performance was comparable to LC–MS/MS, without a separation step. These results demonstrate the feasibility of optimized negative PSI-MS as a sensitive and robust tool for paraben determination in cosmetics and highlight its potential as a versatile platform for broader EDC quantification.
Full article
(This article belongs to the Section Analytical Chemistry)
Open AccessEditorial
Effects of Functional Foods and Dietary Bioactives on Human Health
by
Shaobo Zhou, Linhong Yuan and Xiao Hu
Molecules 2025, 30(22), 4355; https://doi.org/10.3390/molecules30224355 - 10 Nov 2025
Abstract
Functional foods and dietary bioactives are moving from discovery to translation because we can now engineer structure and exposure together—the two levers that largely determine real-world efficacy [...]
Full article
(This article belongs to the Special Issue Effects of Functional Foods and Dietary Bioactives on Human Health)
Open AccessArticle
Implementation of Replica-Averaged Restraints from Nuclear Magnetic Resonance Measurement with UNRES Coarse Grained Model of Polypeptide Chains
by
Leonid Shirkov, Cezary Czaplewski and Adam Liwo
Molecules 2025, 30(22), 4354; https://doi.org/10.3390/molecules30224354 - 10 Nov 2025
Abstract
We report the implementation of replica-averaged molecular dynamics in the UNRES coarse-grained model of polypeptide chains, with application to the restraints determined by nuclear magnetic resonance. The analytical ESCASA algorithm is used to estimate interproton distances from coarse-grained geometry. With synthetic restraints derived
[...] Read more.
We report the implementation of replica-averaged molecular dynamics in the UNRES coarse-grained model of polypeptide chains, with application to the restraints determined by nuclear magnetic resonance. The analytical ESCASA algorithm is used to estimate interproton distances from coarse-grained geometry. With synthetic restraints derived from two selected conformations of the L129–L153 loop of the Slr1183 protein from Synechocystis sp. (2KW5), the replica-averaged extension of UNRES retrieved the ensemble of conformations close to the parent structures, with residual content of those not similar to any of them, and comparable populations of both families. Tests with a small putatively multistate protein (PDB: 2LWA) and two proteins with disordered regions (2KW5 and 2KZN, respectively) run in multiplexed temperature replica exchange mode with replica averaging resulted in conformational ensembles that had fewer distance-restraint violations than those deposited in the Protein Data Bank. The ensembles obtained with replica averaging also had fewer distance-restraint violations than those obtained in our previous work, in which time-averaged restraints were implemented. The upgraded UNRES can be used in data-assisted simulations of multistate and intrinsically-disordered proteins and proteins with intrinsically disordered regions.
Full article
(This article belongs to the Special Issue Molecular Modeling: Advancements and Applications, 3rd Edition)
Open AccessArticle
Influence of Zeolite-A Doping and Solvent Mixing Ratio for Electrospun PVDF-Based Membrane
by
Ionut Procop, Viorica Mușat, Elena Maria Anghel, Nicolae Țigău, Felicia Stan, Irina Atkinson, Daniela Cristina Culiƫă, Alina Cantaragiu Ceoromila, Emanuela Elena Herbei, Radu-Robert Piticescu, Gabriela Ioniţă and Alexandru Petrică
Molecules 2025, 30(22), 4353; https://doi.org/10.3390/molecules30224353 - 10 Nov 2025
Abstract
The current study evaluates the characteristics of electrospun PVDF-based membranes doped with zeolite-A in terms of their structural, morphological, thermal, mechanical, hydrophobic, optoelectrical, and adsorption properties. The effects of the DMF–acetone ratio on solvent and zeolite-doping concentration have been evaluated using SEM-EDX, BET,
[...] Read more.
The current study evaluates the characteristics of electrospun PVDF-based membranes doped with zeolite-A in terms of their structural, morphological, thermal, mechanical, hydrophobic, optoelectrical, and adsorption properties. The effects of the DMF–acetone ratio on solvent and zeolite-doping concentration have been evaluated using SEM-EDX, BET, Raman, XRD, DSC-TGA, UV-VIS spectroscopy, contact angle measurements, and mechanical testing. The membranes prepared with solvents low in acetone and increased zeolite content exhibited a higher crystallinity degree exceeding 50%. Zeolite-enriched membranes have a slightly higher content in the α crystalline phase of PVDF when compared to zeolite-free membranes. Electrospinning processing decreased the sample’s subcooling, improving its thermal stability. Zeolite-doping reduced the band gap energy to 1.3 eV from a maximum of 2.7 eV in PVDF membranes. Membranes doped with 3 or 4 wt.% zeolite exhibit improved load-elongation values at break, reaching up to 4.2 N and 47 mm, respectively, and increased flexibility due to their porous structures and the ratio of crystalline to amorphous phases. The membranes adsorbed an MB equilibrium quantity up to 18.5 mg/g and obeyed the pseudo-second-order (PSO) kinetic model within the first 24 h. Thus, the synergistic effect of zeolite content and solvent ratio can effectively adjust the sample’s structure, texture, and properties.
Full article
(This article belongs to the Special Issue Novel Nanomaterials for Pollution Control and Environmental Remediation)
Open AccessArticle
Synthesis, Antibacterial Properties and Molecular Docking Studies of Nitrogen Substituted 9-(((4X-But-2-ynyloxy)methyl)-1,2,3-triazolyl)–Cinchona Alkaloid Conjugates
by
Gulim K. Mukusheva, Nurizat N. Toigambekova, Victor A. Savelyev, Andrey I. Khlebnikov, Liubov G. Burova, Sofiia D. Afanaseva, Oralgazy A. Nurkenov, Anarkul S. Kishkentayeva, Aikerim S. Olzhabayeva, Yurii V. Gatilov, Roza B. Seidakhmetova, Alexander N. Evstropov and Elvira E. Shults
Molecules 2025, 30(22), 4352; https://doi.org/10.3390/molecules30224352 - 10 Nov 2025
Abstract
The year 2024 marked the 80th anniversary of Woodward’s total synthesis of quinine. Quinine is a natural alkaloid from the bark of the cinchona tree that has been used for years as an antimalarial drug. The antibacterial effect of quinine salts has also
[...] Read more.
The year 2024 marked the 80th anniversary of Woodward’s total synthesis of quinine. Quinine is a natural alkaloid from the bark of the cinchona tree that has been used for years as an antimalarial drug. The antibacterial effect of quinine salts has also been regarded. With this in mind, a series of original 9-deoxycinchone alkaloid derivatives bearing a dialkylamino- or heterocyclic moiety at the 4 position of the 9-(((4-X-but-2-ynyloxy)methyl)-1,2,3-triazolyl)-substituent was synthesized. The copper-catalyzed three-component A3-coupling reaction of 9-(((4-prop-2-ynyloxy)methyl)-1,2,3-triazolyl)- substituted cinchona alkaloid derivatives with secondary amines and formaldehyde was the main route of synthesis. The present study attempted to examine the antibacterial properties of 9-substituted 9-desoxyquinine-derived compounds and their antibacterial activity against pathogenic bacterial strains, e.g., Staphylococcus aureus, Bacillus subtillis, Bacillus cereus, and Escherichia coli. The difference in the antibacterial activity profile of diastereoisomeric 9-(((4-X-but-2-ynyloxy)methyl)-1,2,3-triazolyl)-substituted derivatives of cinchona alkaloids indicated the importance of the nature of nitrogen substituents in the molecules. In a concentration-dependent pattern, (9R)- and (9S)- (((4-asocan-1yl)-but-2-ynyl-oxy)methyl)-1,2,3-triazolyl)-substituted compounds demonstrated considerable biofilm-inhibitory efficacy against the S. aureus bacterial strain. A detailed study of the molecular interactions with the targeted protein MurB was performed using docking simulations, and the obtained results are quite promising.
Full article
(This article belongs to the Special Issue Bioactive Natural Products and Derivatives)
►▼
Show Figures

Figure 1
Open AccessArticle
Phytochemical Characterisation and Antioxidant and Anti-Inflammatory Potential of Muscari neglectum (Asparagaceae) Bulbs
by
María del Carmen Villegas-Aguilar, Antonio Segura-Carretero and Víctor N. Suárez-Santiago
Molecules 2025, 30(22), 4351; https://doi.org/10.3390/molecules30224351 - 10 Nov 2025
Abstract
Muscari neglectum is a Mediterranean geophyte with a long tradition of ethnomedicinal use, yet the phytochemistry of its bulbs remains underexplored compared with aerial parts. This study aimed to characterise the metabolite profile of M. neglectum bulbs and to assess their antioxidant and
[...] Read more.
Muscari neglectum is a Mediterranean geophyte with a long tradition of ethnomedicinal use, yet the phytochemistry of its bulbs remains underexplored compared with aerial parts. This study aimed to characterise the metabolite profile of M. neglectum bulbs and to assess their antioxidant and radical scavenging potential, and anti-inflammatory potential. Bulb extracts were obtained by hydroethanolic extraction and analysed through HPLC-ESI-qTOF-MS, leading to the annotation of 72 compounds spanning diverse chemical families, including flavonoids, hydroxycinnamic acids, terpenoids, fatty acids, and triterpenoid saponins. Flavonoids constituted the most abundant group, with homoisoflavanones representing a characteristic class of metabolites in the Muscari genus and reflecting its distinctive secondary metabolism. Quantitative analyses revealed a high total phenolic content (65.5 mg GAE/g DE) and total flavonoid content (14.3 mg Epi/g DE). Antioxidant assays demonstrated measurable reducing power (FRAP: 0.26 mmol Fe2+/g DE; TEAC: 0.45 mmol TE/g DE), while radical scavenging assays indicated activity against superoxide anion (IC50 = 848 mg/L) and hypochlorous acid (IC50 = 9.2 mg/L). Additionally, the extract inhibited xanthine oxidase (IC50 = 20.6 mg/L). Furthermore, the extract exhibited significant anti-inflammatory activity, effectively scavenging nitric oxide radicals (IC50 = 78 ± 3 mg/L) and inhibiting lipoxygenase (IC50 = 66 ± 2 mg/L), suggesting that phenolic compounds and triterpenoid saponins contribute to the modulation of oxidative and enzymatic inflammatory pathways. These findings highlight M. neglectum bulbs as a rich source of structurally diverse bioactive compounds with antioxidant and anti-inflammatory capacity. The results provide a chemical basis for their traditional use and reinforce the value of bulb-specific studies within the Asparagaceae family.
Full article
(This article belongs to the Special Issue Bioactive Phenolic and Polyphenolic Compounds, 3rd Edition)
Open AccessReview
Recent Advances in the Design and Structure–Activity Relationships of Oxygen Evolution Catalysts for Alkaline Water Electrolysis
by
Limin Wang, Xinyue Liu, Cunxiao Lai, Jiabao Liu, Wenqi Wang, Xiaomei Wang, Xin Bo, Tao Cheng, Jianfeng Li, Zenglin Wang and Xubin Lu
Molecules 2025, 30(22), 4350; https://doi.org/10.3390/molecules30224350 - 10 Nov 2025
Abstract
Electrocatalytic water splitting offers a promising route to sustainable H2, but the oxygen evolution reaction (OER) in alkaline media remains the principal bottleneck for activity and durability. This review focuses on alkaline OER and integrates mechanism, kinetics, materials design, and cell-level
[...] Read more.
Electrocatalytic water splitting offers a promising route to sustainable H2, but the oxygen evolution reaction (OER) in alkaline media remains the principal bottleneck for activity and durability. This review focuses on alkaline OER and integrates mechanism, kinetics, materials design, and cell-level considerations. Reaction mechanisms are outlined, including the adsorbate evolution mechanism (AEM) and the lattice oxygen mediated mechanism (LOM), together with universal scaling constraints and operando reconstruction of precatalysts into active oxyhydroxides. Strategies for electronic tuning, defect creation, and heterointerface design are linked to measurable kinetics, including iR-corrected overpotential, Tafel slope, charge transfer resistance, and electrochemically active surface area (ECSA). Representative catalyst families are critically evaluated, covering Ir and Ru oxides, Ni-, Fe-, and Co-based compounds, carbon-based materials, and heterostructure systems. Electrolyte engineering is discussed, including control of Fe impurities and cation and anion effects, and gas management at current densities of 100–500 mA·cm−2 and higher. Finally, we outline challenges and directions that include operando discrimination between mechanisms and possible crossover between AEM and LOM, strategies to relax scaling relations using dual sites and interfacial water control, and constant potential modeling with explicit solvation and electric fields to enable efficient, scalable alkaline electrolyzers.
Full article
(This article belongs to the Topic Electrocatalytic Advances for Sustainable Energy)
►▼
Show Figures

Figure 1
Open AccessArticle
Ginger Powder-Based Pickering Emulsions: An Innovative Platform for Anticancer Drug Delivery
by
Patrizia Formoso, Domenico Mammolenti, Adele Chimento, Maria Carmela Pellegrino, Ida Daniela Perrotta, Francesca Romana Lupi, Domenico Gabriele and Vincenzo Pezzi
Molecules 2025, 30(22), 4349; https://doi.org/10.3390/molecules30224349 - 10 Nov 2025
Abstract
Biodegradable Pickering emulsions are attracting increased appeal owing to their promising and diversifying therapeutic applications. In this study, for the first time, a novel therapeutic Pickering emulsion stabilized with ginger powder (GA4) was formulated, characterized, and tested for doxorubicin (DOX) delivery. GA4_Pes physicochemical
[...] Read more.
Biodegradable Pickering emulsions are attracting increased appeal owing to their promising and diversifying therapeutic applications. In this study, for the first time, a novel therapeutic Pickering emulsion stabilized with ginger powder (GA4) was formulated, characterized, and tested for doxorubicin (DOX) delivery. GA4_Pes physicochemical characterization by DLS (Dynamic Light Scattering), POM (Polarized Optical Microscopy), Cryo-SEM (Cryo-Scanning Electron Microscopy), TEM (Transmission Electron Microscopy), and rheology testing confirmed stability for at least one month, solid-like gel properties, and multiple morphology even at a low concentration of stabilizer. In addition, the morphological, dimensional, and rheological properties of some GA4_Pe loaded with DOX (GA4_Pe@DOX) were examined. These formulations were of the w/o/w type, stable for at least 28 days, and showed efficient doxorubicin internalization. A 24 h in vitro release assay displayed a sustained and pH-dependent release, with 30% and 50% chemotherapeutic released at pH 7.4 and 5.6, respectively. Furthermore, in vitro cell viability assessment performed using GA4_Pe showed no toxicity on immortalized 3T3 mouse embryonic fibroblasts but a small significant inhibitory effect on human breast cancer cell line MCF7. Interestingly, the GA4_Pe@DOX emulsion exerted a cytotoxic effect on MCF7 cells very similar to that of the free DOX solution with the same doses of DOX loaded in the same emulsion. Therefore, the total biocompatibility/biodegradability, good drug entrapment, and high stability, as well as the prolonged release and anti-tumor efficacy maintenance of the loaded drug, suggest a feasible application of ginger powder-based Pickering emulsions for topical delivery as a selective therapeutic platform in targeted formulations of antineoplastic drugs.
Full article
(This article belongs to the Section Nanochemistry)
Open AccessArticle
Adsorption of Algal-Derived 2-Methylisoborneol (MIB) and Dimethyl Disulfide (DMDS) onto Activated Carbon: The Role of Pore Structure and Hydrophobicity
by
Yuqin Zhao, Yulan Zhao, Hui Guo, Denghui Peng, Wenwen Kong, Fengjian Yan, Shumei Zhou, Quansheng Li, Boxiong Shen and Chongrui Lyu
Molecules 2025, 30(22), 4348; https://doi.org/10.3390/molecules30224348 - 10 Nov 2025
Abstract
►▼
Show Figures
2-methylisoborneol (MIB, d = 0.6 nm) and dimethyl disulfide (DMDS, d = 0.7 nm) produced by algal metabolism are the main olfactory contaminants of drinking water. Activated carbon (AC) adsorption is an effective method to remove MIB/DMDS, yet critical gaps remain regarding the
[...] Read more.
2-methylisoborneol (MIB, d = 0.6 nm) and dimethyl disulfide (DMDS, d = 0.7 nm) produced by algal metabolism are the main olfactory contaminants of drinking water. Activated carbon (AC) adsorption is an effective method to remove MIB/DMDS, yet critical gaps remain regarding the dominant factors and mechanisms governing their different adsorption performance. The microporous filling mechanism is the dominant mechanism for the adsorption of MIB and DMDS by AC. Surface functional groups play a supporting role in the adsorption process by modulating the hydrophilicity/hydrophobicity of the carbon surface. This study systematically evaluated the adsorption performance of three ACs—coconut shell-derived (CSC), coal-based (CAC), and Sargassum-derived (SAC)—for MIB and DMDS removal. Comparative analysis revealed the superior adsorption performance of CSC, achieving 87.41% removal of MIB and 71.2% removal of DMDS at 20 mg/L. Both MIB and DMDS adsorption adhere to the Langmuir isotherm, indicating monolayer coverage with uniform energy. Kinetic studies demonstrated that the PSO model fits the MIB adsorption process best, while the PFO model fits the DMDS adsorption process best. The FTIR confirmed physical adsorption, with no new chemical bonds formed. Furthermore, regenerated CSC retains significant adsorption capacities, achieving 85.89% and 68.49% of the original capacity for MIB and DMDS, respectively, after five regeneration cycles. This research provides fundamental insights into the mechanistic role of AC properties in odorant removal processes, supporting its sustainable application in water treatment.
Full article

Figure 1
Open AccessCorrection
Correction: Zeng et al. 2-Phenylacetamide Isolated from the Seeds of Lepidium apetalum and Its Estrogen-Like Effects In Vitro and In Vivo. Molecules 2018, 23, 2293
by
Mengnan Zeng, Meng Li, Miao Li, Beibei Zhang, Benke Li, Li Zhang, Weisheng Feng and Xiaoke Zheng
Molecules 2025, 30(22), 4347; https://doi.org/10.3390/molecules30224347 - 10 Nov 2025
Abstract
►▼
Show Figures
In the original publication [...]
Full article

Figure 1
Open AccessArticle
Synthesis, Physicochemical Characterization, Antimicrobial Properties, and DFT/ADMET Calculations of Imidazolium-Based Ionic Liquids with a Homologous Series of Oxychlorine Anions
by
Milan B. Vraneš, Eleonora Čapelja, Maja Karaman, Teona Teodora Borović, Andrija Vukov, Sara Klimenta, Vesna Rastija and Jovana J. Selak
Molecules 2025, 30(22), 4346; https://doi.org/10.3390/molecules30224346 - 10 Nov 2025
Abstract
Imidazolium-based ionic liquids bearing a homologous series of oxychlorine anions—1-butyl-3-methylimidazolium chlorite, chlorate, and perchlorate—were synthesized and characterized to relate anion oxygenation to density, thermal expansivity, viscosity, electrical and molar conductivity, ionicity, and antimicrobial performance. Temperature-dependent measurements were carried out from 293.15 to 323.15
[...] Read more.
Imidazolium-based ionic liquids bearing a homologous series of oxychlorine anions—1-butyl-3-methylimidazolium chlorite, chlorate, and perchlorate—were synthesized and characterized to relate anion oxygenation to density, thermal expansivity, viscosity, electrical and molar conductivity, ionicity, and antimicrobial performance. Temperature-dependent measurements were carried out from 293.15 to 323.15 K: density and viscosity were recorded and modeled to obtain thermal expansion coefficients; electrical and molar conductivities were measured under identical conditions; and activation parameters were extracted by Arrhenius analysis for viscous flow and for conductivity. Ionicity was assessed from Walden plots and quantified by vertical deviation from the potassium-chloride reference (Angell approach). Complementary DFT calculations provided optimized ion-pair geometries, noncovalent contact patterns, molecular electrostatic potential maps, and frontier-orbital descriptors. In silico ADMET properties were computed to contextualize pharmacokinetic and safety flags. Antimicrobial activity was evaluated by broth microdilution against Escherichia coli, Staphylococcus aureus, Bacillus cereus, and Candida quilliermondii; [Bmim]Cl was included as a comparator to isolate the effect of anion oxygenation. The combined experimental–computational workflow delineates how chlorite, chlorate, and perchlorate shape physicochemical behavior, ionicity, and bioactivity in [Bmim] ionic liquids, providing design guidance for future applications.
Full article
(This article belongs to the Section Physical Chemistry)
►▼
Show Figures

Graphical abstract
Open AccessArticle
Living Cationic Polymerization of Silyl-Protected β-Methyl Vinyl Ethers (Propenyl Ethers): Synthesis of Hydroxy-Functional Polymers with High Tg and LCST-Type Thermoresponse
by
Kohei Watanabe, Ryuya Yamada and Takeshi Namikoshi
Molecules 2025, 30(22), 4345; https://doi.org/10.3390/molecules30224345 - 10 Nov 2025
Abstract
Hydroxy-functional poly(propenyl ether)s are promising thermoresponsive materials; here we establish a controlled synthesis via living cationic polymerization of silyl-protected monomers. Among the silyl protecting groups examined, only tert-butyldiphenylsilyl (TBDPS) enabled living cationic polymerization. The living cationic polymerization of tert-butyldiphenylsiloxybutyl propenyl ether
[...] Read more.
Hydroxy-functional poly(propenyl ether)s are promising thermoresponsive materials; here we establish a controlled synthesis via living cationic polymerization of silyl-protected monomers. Among the silyl protecting groups examined, only tert-butyldiphenylsilyl (TBDPS) enabled living cationic polymerization. The living cationic polymerization of tert-butyldiphenylsiloxybutyl propenyl ether (TBDPSBPE) afforded a high-molecular-weight polymer (poly(TBDPSBPE)) with a narrow molecular weight distribution (Mn = 12,900; Mw/Mn = 1.22). Additionally, chain propagation continued in monomer addition experiments, and the molecular weight increased further with a narrow molecular weight distribution, confirming the success of living cationic polymerization. Poly(TBDPSBPE) was successfully desilylated to afford poly(HBPE) with a narrow molecular weight distribution. Poly(HBPE) exhibited a glass transition temperature (Tg) of 44 °C, 82 °C higher than that of the corresponding polymer without β-methyl groups, poly(HBVE). The enhanced thermal properties of poly(HBPE) were attributed to the steric hindrance of the β-methyl group, which fixes the position of the hydroxy group and allows stronger hydrogen bonding. To investigate the aqueous thermoresponse, a hydroxylated analog with a shorter side-chain spacer (poly(HPPE)) was synthesized, and poly(HPPE) exhibited lower critical solution temperature (LCST)-type phase separation in water with a cloud-point temperature (Tcp) of 6 °C, showing reversible transitions with thermal hysteresis.
Full article
(This article belongs to the Section Macromolecular Chemistry)
►▼
Show Figures

Figure 1
Open AccessArticle
Defect Engineering in Laser-Induced Graphene (LIG) Through Temperature Control: A Reactive Molecular Dynamics Study
by
Sergey V. Pavlov
Molecules 2025, 30(22), 4344; https://doi.org/10.3390/molecules30224344 - 10 Nov 2025
Abstract
Scalable and low-cost graphene synthesis remains a critical challenge for applications in energy storage, sensing, and beyond. Laser-induced graphene (LIG), produced by the rapid local carbonization of polymers like polyimide using laser irradiation, offers a promising route for the one-step, scalable fabrication of
[...] Read more.
Scalable and low-cost graphene synthesis remains a critical challenge for applications in energy storage, sensing, and beyond. Laser-induced graphene (LIG), produced by the rapid local carbonization of polymers like polyimide using laser irradiation, offers a promising route for the one-step, scalable fabrication of porous graphene materials. This work employs reactive molecular dynamics simulations with the ReaxFF force field to investigate the temperature dependence of polyimide carbonization into LIG. We analyze the resulting structures with a focus on the formation of functional groups. Our simulations identify an optimal carbonization temperature window near 3000 K for maximizing graphene yield. Temperatures exceeding 3500 K cause a drastic reduction in six-membered carbon rings, indicative of structural degradation. Conversely, lower temperatures (2500–2750 K) decrease graphene yield but increase the concentration of carbonyl, pyrrolic, pyridinic, and nitrile functional groups. These oxygen- and nitrogen-containing groups are potentially valuable for tailoring functionalized graphene in electrochemical and sensing applications. Furthermore, the graphitization process was found to require extended simulation times (up to ∼5 ns) to reach equilibrium, underscoring the importance of timescale in modeling such processes.
Full article
(This article belongs to the Section Physical Chemistry)
►▼
Show Figures

Figure 1
Open AccessArticle
Characterization of a β-Galactosidase from Kosakonia oryzendophytica and Its Heterologous Expression in Bacillus subtilis for Galactooligosaccharides Production
by
Zhuo Cheng, Xiangpeng Jin, Yulei Zhang, Dawei Ni, Yingying Zhu, Wei Xu, Wenli Zhang and Wanmeng Mu
Molecules 2025, 30(22), 4343; https://doi.org/10.3390/molecules30224343 - 10 Nov 2025
Abstract
Galactooligosaccharides (GOS) typically consist of 2-8 D-galactose units linked together, terminating in a D-glucose unit. GOS are commonly used in dairy products, infant formulas, and functional foods. GOS offer beneficial properties for food processing, such as low caloric value, mild clean taste, and
[...] Read more.
Galactooligosaccharides (GOS) typically consist of 2-8 D-galactose units linked together, terminating in a D-glucose unit. GOS are commonly used in dairy products, infant formulas, and functional foods. GOS offer beneficial properties for food processing, such as low caloric value, mild clean taste, and excellent solubility in water. Additionally, GOS function as non-digestible prebiotics, supporting microbiota balance and offering benefits such as promoting infant health, immune modulation, laxative effects, and potential metabolic advantages. β-galactosidase plays a key role in GOS production, catalyzing both hydrolysis and transglycosylation reactions. In this study, a putative GH2 family β-galactosidase from Kosakonia oryzendophytica (Koor β-gal) was identified. The enzyme exhibited optimal activity at pH 7.0 and 45–50 °C with the addition of 1 mM Mg2+, showing a specific activity of approximately 288.6 U/mg towards o-nitrophenyl-β-D-galactopyranoside (ONPG). After optimizing the reaction conditions, Koor β-gal successfully produced 124.7 g/L of GOS from 300 g/L D-lactose, achieving a GOS yield of 41.6%. LC-MS analysis revealed that the primary products consisted of GOS with degrees of polymerization (DP) ranging from 2 to 4. Additionally, Koor β-gal was heterologously expressed in Bacillus subtilis following comprehensive optimization of the promoter and 5′-UTR, resulting in an enzyme activity in culture filtrate of 106.2 U/mL after 60 h.
Full article
(This article belongs to the Special Issue New Achievements and Challenges in Food Chemistry)
►▼
Show Figures

Figure 1
Open AccessArticle
Redox Potential (E0′) of the β-Chain 93Cys of HbS Measured with the Equilibrium Technique in a Heterozygous Sickle Cell Carrier Subject
by
Federico Maria Rubino, Aldijana Sadikovic, Camillo Morano, Michele Dei Cas, Monica Bignotto, Sara Ottolenghi, Michele Mondoni, Davide Chiumello, Michele Samaja and Rita Paroni
Molecules 2025, 30(22), 4342; https://doi.org/10.3390/molecules30224342 - 10 Nov 2025
Abstract
The hitherto unknown thiol-disulfide redox potential (E0′) of the β93Cys residue in the HbS (β6Glu→Val) variant of human hemoglobin was calculated by MALDI-ToF mass spectrometry, which analyzes blood from a heterozygous carrier. To calculate the (E0′) value,
[...] Read more.
The hitherto unknown thiol-disulfide redox potential (E0′) of the β93Cys residue in the HbS (β6Glu→Val) variant of human hemoglobin was calculated by MALDI-ToF mass spectrometry, which analyzes blood from a heterozygous carrier. To calculate the (E0′) value, a redox equilibrium model was adopted, and the previously calculated value for wild-type β-Hb chain (E0′ −121 mV) was used. An E0′ value of −130.5 ± 1.7 mV for the β93Cys residue of HbS was obtained, thus a more reducing value than E0′ in the wild-type isoform. Glutathionylation from this residue in the HbS tetramer lowers the extent of protein aggregation in fibrils and the clinical consequences, such as painful capillary occlusion and hemolysis. This finding confirmed the peculiar property of HbS as a more reactive scavenger of glutathione sulphinic acid (E0′ = −264 mV), which forms in the cytoplasm of red blood cells and reacts with structural and regulatory proteins, including hemoglobin. The ability to assess the erythrocyte oxidative status in sickle cell carriers can be developed into an additional functional test to rationally assess the effect of drug treatment and antioxidant dietary interventions on improving disease control.
Full article
(This article belongs to the Section Analytical Chemistry)
►▼
Show Figures

Graphical abstract
Open AccessArticle
Sevoflurane and Desflurane Spin–Decoherence Effect on Fe(III)acetylacetonate Redox Process
by
Neha Kumari, Andrea Severini, Mauro Borghi, Monica Montecchi, Luca Pasquali, Elena Colombini, Gabriele Melegari, Alberto Barbieri, Enrico Giuliani, Massimo Innocenti, Fabrizio Roncaglia, Tapan Das Kumar and Claudio Fontanesi
Molecules 2025, 30(22), 4341; https://doi.org/10.3390/molecules30224341 - 10 Nov 2025
Abstract
This study investigates the influence of sevoflurane and desflurane on the electrochemical behavior of the Fe(III)-acetylacetonate (Fe(acac)3) complex. Using cyclic voltammetry (CV), we demonstrate that while Fe(acac)3 exhibits reversible redox behavior in an oxygen-free environment, the presence of dissolved oxygen
[...] Read more.
This study investigates the influence of sevoflurane and desflurane on the electrochemical behavior of the Fe(III)-acetylacetonate (Fe(acac)3) complex. Using cyclic voltammetry (CV), we demonstrate that while Fe(acac)3 exhibits reversible redox behavior in an oxygen-free environment, the presence of dissolved oxygen renders the system irreversible, leading to the formation of a thick, reddish film on the electrode surface upon potential cycling. Notably, the addition of sevoflurane and desflurane restores the electrochemical reversibility and dramatically inhibits this film formation. Raman spectroscopy of the resulting films confirmed structural changes which are consistent with this inhibiting action. Furthermore, X-ray photoelectron spectroscopy (XPS) analysis reveals that the iron in the film remains predominantly in the Fe3+ oxidation state even after prolonged electrochemical reduction cycles. These findings suggest that the anesthetics act by inhibiting the interaction between the Fe(acac)3 complex and oxygen, likely through a spin–decoherence mechanism. This work highlights the critical role of anesthetics in modifying the electrochemical behavior of metal-oxygen complexes, with potential implications for sensing, electrocatalysis, and bio-oriented systems.
Full article
(This article belongs to the Section Medicinal Chemistry)
►▼
Show Figures

Figure 1
Open AccessArticle
Structural Characterization and Protective Effects of CPAP-1, an Arabinogalactan from Curcuma phaeocaulis Val., Against H2O2-Induced Oxidative Damage in HUVECs
by
Yuhao Long, Sirui Yi, Huizhi Zhou, Fangrou Chen, Yiping Guo and Li Guo
Molecules 2025, 30(22), 4340; https://doi.org/10.3390/molecules30224340 - 9 Nov 2025
Abstract
Curcuma phaeocaulis, a perennial herb of the ginger family, has been used to treat many diseases in traditional medicine systems. This study aimed to extract, isolate, and purify a homogeneous polysaccharide from C. phaeocaulis, conduct preliminary structural characterization, and evaluate its
[...] Read more.
Curcuma phaeocaulis, a perennial herb of the ginger family, has been used to treat many diseases in traditional medicine systems. This study aimed to extract, isolate, and purify a homogeneous polysaccharide from C. phaeocaulis, conduct preliminary structural characterization, and evaluate its antioxidant activity at the cellular level. The structure of the purified polysaccharide (CPAP-1) was characterized using size exclusion chromatography (SEC), chemical derivatization analysis (CDA), GC-MS, FT-IR, and NMR. The results showed that CPAP-1 has an apparent molecular weight of 118.122 kDa and is hypothesized to be an arabinogalactan with a backbone composed of →3,6)-β-d-Galp-(1→ and →3)-β-d-Galp-(1→ residues, a structure that is relatively novel in Curcuma longa. In vitro antioxidant assays demonstrated that CPAP-1 possesses potent antioxidative stress activity, effectively scavenging both DPPH and hydroxyl radicals. Furthermore, cellular experiments revealed that at concentrations of 500 and 750 mg/L, CPAP-1 significantly protected human umbilical vein endothelial cells (HUVECs) against H2O2-induced oxidative damage. In conclusion, these findings suggest that CPAP-1 could be developed as a natural antioxidant, functional food, or therapeutic agent for preventing and mitigating oxidative stress-related vascular injury, providing a theoretical basis for further development and application.
Full article
(This article belongs to the Special Issue Natural Bioactives and Functional Ingredients in Foods)
Open AccessArticle
Bioactivity-Directed Isolation of Anticancer Constituents from Underexplored Folklore: Rhus punjabensis Stewart
by
Saira Tabassum, Joham Sarfraz Ali, Rida Fatima Saeed, Madiha Asghar, Myra Akhtar, Abdul Momin Rizwan Ahmad and Muhammad Zia
Molecules 2025, 30(22), 4339; https://doi.org/10.3390/molecules30224339 - 8 Nov 2025
Abstract
Background: Medicinal plants continue to offer a promising source of novel bioactive compounds for cancer therapy due to their affordability, biocompatibility, and low toxicity. Rhus punjabensis Stewart, an ethnomedicinal species from the family Anacardiaceae, has long been used in the traditional medicine of
[...] Read more.
Background: Medicinal plants continue to offer a promising source of novel bioactive compounds for cancer therapy due to their affordability, biocompatibility, and low toxicity. Rhus punjabensis Stewart, an ethnomedicinal species from the family Anacardiaceae, has long been used in the traditional medicine of northern Pakistan to treat inflammatory, hepatic, and infectious diseases. However, its phytochemical composition and anticancer potential remain largely unexplored. Methods: This study employed a bioactivity-guided isolation strategy to identify and characterize anticancer constituents from R. punjabensis leaves. The plant material was sequentially fractionated using solvents of increasing polarity, followed by purification via column chromatography. Each fraction and purified compound was evaluated using antioxidant (DPPH, total antioxidant capacity, and total reducing power) and cytotoxic assays, including brine shrimp lethality, Sulfo-rhodamine B (SRB) against five human cancer cell lines, protein kinase inhibition, and NF-κB chemo-preventive assays. Results: Comparative analysis of spectral data (UV, 1D/2D NMR, and ESI-MS) led to the identification of three triterpenoid compounds—Lupeol, Cycloartenol, and β-sitosterol—reported for the first time from R. punjabensis. Among them, Lupeol displayed the most potent cytotoxicity against DU-145 prostate (IC50 = 11.2 ± 1.2 μg/mL) and HL-60 leukemia (IC50 = 15.2 ± 1.1 μg/mL) cell lines and showed significant NF-κB inhibitory activity (IC50 = 19.4 ± 1.1 μg/mL), indicating its chemo-preventive potential. Cycloartenoland β-sitosterol exhibited moderate antioxidant and antimicrobial activities. Conclusion: The findings validate the ethnopharmacological use of R. punjabensis and confirm it as a new source of triterpenoids with notable anticancer activity. This study provides the first comprehensive account of its bioactive metabolites, reinforcing the significance of bioactivity-directed isolation as a powerful approach for discovering natural anticancer agents. Further in vivo and mechanistic evaluations are warranted to establish their therapeutic efficacy and safety profiles.
Full article
(This article belongs to the Special Issue Natural Products Chemistry in Asia)
►▼
Show Figures

Graphical abstract
Open AccessArticle
Effects of Aronia melanocarpa Tannins on Oxidative Stress and Immune Dysfunction
by
Kseniya Bushmeleva, Alexandra Vyshtakalyuk, Dmitriy Terenzhev, Timur Belov, Kamila Kazimova and Vladimir Zobov
Molecules 2025, 30(22), 4338; https://doi.org/10.3390/molecules30224338 - 8 Nov 2025
Abstract
Natural polyphenols, particularly tannins, are of interest due to their complex composition and multi-target biological activities. A highly purified tannin fraction was isolated from Aronia melanocarpa fruits, and its composition was characterized by HPLC-MS and IR spectroscopy. The Aronia tannin fraction exhibited comprehensive
[...] Read more.
Natural polyphenols, particularly tannins, are of interest due to their complex composition and multi-target biological activities. A highly purified tannin fraction was isolated from Aronia melanocarpa fruits, and its composition was characterized by HPLC-MS and IR spectroscopy. The Aronia tannin fraction exhibited comprehensive antioxidant properties, demonstrating superior DPPH radical scavenging activity compared to quercetin and a membrane-protective effect exceeding reference antioxidants. In vivo, Aronia tannins showed a delayed but potent antioxidant effect against cyclophosphamide (CP)-induced oxidative stress, significantly reducing malondialdehyde (MDA) levels, with the maximum effect observed at days 14–21. The immunomodulatory effect involved a complex regulation of the phagocytic system: selective activation of the monocytic arm with simultaneous modulation of neutrophilic activity. Crucially, a high phagocytic completion rate was maintained, indicating support for both bacterial uptake and intracellular killing. Tannins accelerated recovery post-CP, restoring leukocyte and platelet counts. Modulation of neutrophil oxidative metabolism, measured by chemiluminescence, indicates an ability to balance defense activation with prevention of excessive oxidative stress. These findings confirm the potential of the Aronia melanocarpa tannin fraction for correcting oxidative stress and immune dysfunction.
Full article
(This article belongs to the Special Issue Natural Products with Pharmaceutical Activities, 2nd Edition)
►▼
Show Figures

Figure 1
Open AccessArticle
Application of VHH-Immobilized Cryogel-Based Immunoaffinity Chromatography for Isolation of Extracellular Vesicles
by
Jovana Terzić, Lidija Filipović, Ninoslav Mitić, Sanja Stevanović, Jugoslav Krstić, Ario de Marco, Julie Courraud and Milica Popović
Molecules 2025, 30(22), 4337; https://doi.org/10.3390/molecules30224337 - 8 Nov 2025
Abstract
Extracellular vesicles (EVs) are nanosized structures involved in intercellular communication that have high potential as disease biomarkers and for the delivery of therapeutic cargos. However, translation to the clinic is hampered by time-consuming, low-yield, and poorly reproducible EV isolation methods. We describe a
[...] Read more.
Extracellular vesicles (EVs) are nanosized structures involved in intercellular communication that have high potential as disease biomarkers and for the delivery of therapeutic cargos. However, translation to the clinic is hampered by time-consuming, low-yield, and poorly reproducible EV isolation methods. We describe a cryogel-based immunoaffinity chromatography system that exploits single-domain VHH antibodies as capture elements for the selective isolation of EVs from human plasma. Supermacroporous cryogels functionalized with five unique anti-EV VHHs (total immobilization capacity ~500 µg/g) were prepared, yielding a highly permeable and hydrophilic support. They were captured and eluted under mild conditions, and their morphology and identity were confirmed by SEM, AFM, NTA, and flow cytometry. Proteomic profiling of the isolated samples identified 234 proteins, of which 63% were ExoCarta-listed exosomal proteins; contaminants such as albumin and apolipoproteins were also identified. The purification method provided samples with ~2 × 109 EVs/mL, with EV median size of 135 nm and consistent protein-to-lipid ratio across three independent isolations (CV < 10%). This study demonstrates that VHH-functionalized cryogels (VHH-SMC) are a rapid and reproducible EV purification method that represents a promising alternative to conventional ultracentrifugation- or precipitation-based protocols. While optimization of nanobody density and reduction in plasma protein carryover are still necessary, the platform holds potential for scalable EV enrichment, a condition that can significantly speed up biomarker research and clinical diagnostics.
Full article
(This article belongs to the Section Chemical Biology)
►▼
Show Figures

Figure 1
Journal Menu
► ▼ Journal Menu-
- Molecules Home
- Aims & Scope
- Editorial Board
- Reviewer Board
- Topical Advisory Panel
- Instructions for Authors
- Special Issues
- Topics
- Sections & Collections
- Article Processing Charge
- Indexing & Archiving
- Editor’s Choice Articles
- Most Cited & Viewed
- Journal Statistics
- Journal History
- Journal Awards
- Society Collaborations
- Conferences
- Editorial Office
Journal Browser
► ▼ Journal Browser-
arrow_forward_ios
Forthcoming issue
arrow_forward_ios Current issue - Vol. 30 (2025)
- Vol. 29 (2024)
- Vol. 28 (2023)
- Vol. 27 (2022)
- Vol. 26 (2021)
- Vol. 25 (2020)
- Vol. 24 (2019)
- Vol. 23 (2018)
- Vol. 22 (2017)
- Vol. 21 (2016)
- Vol. 20 (2015)
- Vol. 19 (2014)
- Vol. 18 (2013)
- Vol. 17 (2012)
- Vol. 16 (2011)
- Vol. 15 (2010)
- Vol. 14 (2009)
- Vol. 13 (2008)
- Vol. 12 (2007)
- Vol. 11 (2006)
- Vol. 10 (2005)
- Vol. 9 (2004)
- Vol. 8 (2003)
- Vol. 7 (2002)
- Vol. 6 (2001)
- Vol. 5 (2000)
- Vol. 4 (1999)
- Vol. 3 (1998)
- Vol. 2 (1997)
- Volumes not published by MDPI
Highly Accessed Articles
Latest Books
E-Mail Alert
News
Topics
Topic in
Cells, Chemistry, IJMS, Molecules, Metabolites
Bioactive Compounds and Therapeutics: Molecular Aspects, Metabolic Profiles, and Omics Studies 2nd Edition
Topic Editors: Michele Costanzo, Giovanni N. Roviello, Armando CeveniniDeadline: 20 November 2025
Topic in
Chemistry, Membranes, Molecules, Processes, Separations, Polymers
Membranes for Contaminant Separation in Fluids
Topic Editors: Jing Wang, Guoliang YangDeadline: 30 November 2025
Topic in
Biomass, Energies, Materials, Molecules, Nanomaterials, Polymers
Biomass for Energy, Chemicals and Materials
Topic Editors: Shaohua Jiang, Changlei Xia, Shifeng Zhang, Xiaoshuai HanDeadline: 31 December 2025
Topic in
Clean Technol., Materials, Molecules, Recycling, Water, Nanomaterials, Catalysts
Advanced Composites for Waste Valorization and Pollutant Degradation
Topic Editors: Iwona Kuzniarska-Biernacka, Ana Sofia MestreDeadline: 31 January 2026
Conferences
Special Issues
Special Issue in
Molecules
Recent Insights into Biopolymer Processing, from Preparation to Fundamental Properties and Industrial Applications, 2nd Edition
Guest Editors: Paula Berton, Julia L. ShamshinaDeadline: 15 November 2025
Special Issue in
Molecules
Functional Adsorption Materials for Catalytic Degradation in Pollution Chemistry
Guest Editor: Chirangano MangwandiDeadline: 15 November 2025
Special Issue in
Molecules
Deep Eutectic Solvents for the Extraction of Bioactive Compounds from Natural Sources
Guest Editors: Kristina Radošević, Giorgio GrilloDeadline: 15 November 2025
Special Issue in
Molecules
Studies in Polymer Degradation
Guest Editors: Anna Raffaela de Matos Costa, Edcleide Maria Araujo, Bastos De AlmeidaDeadline: 15 November 2025
Topical Collections
Topical Collection in
Molecules
Versatility of G-quadruplexes
Collection Editors: Bernard Juskowiak, Anna Renata Dembska, Anna S. Kichkailo, Joanna Kosman
Topical Collection in
Molecules
Preanalytical Methods for Natural Products Production
Collection Editors: Young Hae Choi, Farid Chemat, Giancarlo Cravotto, Erica G. Wilson
Topical Collection in
Molecules
Antibiotics & Superbugs: New Strategies to Combat Antimicrobial Resistance
Collection Editor: Peter J. Rutledge




