You are currently viewing a new version of our website. To view the old version click .

Molecules

Molecules is a leading international, peer-reviewed, open access journal of chemistry, and is published semimonthly online by MDPI.
Indexed in PubMed | Quartile Ranking JCR - Q2 (Biochemistry and Molecular Biology | Chemistry, Multidisciplinary)

All Articles (62,186)

Species of the Neltuma syn Prosopis genus are known for their use in traditional medicine in America, Asia and Africa. The use of the leaves, bark and inflorescences of one species widely distributed in the arid zones of Mexico, Neltuma laevigata (Humb. & Bonpl. Ex Willd) Britton & Rose, has been reported for the treatment of ocular, gastric and skin infections. Its activities have been related to different secondary metabolites, particularly phenylpropanoids and alkaloids. In the present study, the antibacterial activity of the alkaloidal fraction of inflorescences of P. laevigata collected in Zapotitlán Salinas, Puebla, México, against Staphylococcus aureus ATCC 25,923 and Vibrio cholerae CDBB-1159 was studied by Kirby–Baüer and broth microdilution tests, and its activity on plasmatic membranes was later identified using a protein leakage assay and fluorescence microscopy. Subsequently, the alkaloidal fraction was separated via chromatographic methods, and the purified compounds were elucidated using nuclear NMR and HRESIMS analysis. The alkaloidal fraction showed an important antibacterial activity, with a possible effect on the cytoplasmic membrane of the tested strains. Julifloridine, a piperidine alkaloid previously reported in the genus, was identified for the first time in this species.

9 December 2025

Protein leakage kinetics on Staphylococcus aureus ATCC 25923. (A) Time-course of protein released into the supernatant (µg/mL) over 120 min exposure. The protein released into the supernatant (µg/mL) was quantified after exposure to MIC, 2MIC, and 3MIC. (B) Endpoint at 120 min displayed as bars (mean ± SD, n = 3). Leakage increased with the increase from MIC to 3MIC, consistent with progressive membrane damage. Letters above the bars denote significant differences in multiple comparisons (one-way ANOVA, p < 0.0001): a = different vs. control; b = different vs. MIC; c = different vs. 2 × MIC.

Bulk nanobubbles (NBs) are remarkably long-lived in liquids, yet the molecular mechanisms underpinning their stability remain unresolved. In this work, 50 ns all-atom molecular dynamics simulations were performed to investigate how gas identity (O2, N2, and air with N2:O2 = 4:1), initial gas loading, alkalinity (pH 7 and 13), and organic additives (acetic acid/acetate, ethanol/ethoxide, and hexane) influence the stability of 5 nm NBs in water. Stability was evaluated by the percentage of gas atoms retained in the bubble, density profiles, hydrogen-bond statistics, and radial distribution functions. Higher initial gas density markedly enhanced stability, and N2-NBs consistently outperformed O2-NBs, consistent with the lower solubility of N2. Alkaline conditions exerted only a minor stabilizing effect, most pronounced for air-NBs. Organic additives affected stability according to their hydrophobicity: hydrophobic hexane substantially increased gas retention, especially at low gas loading, by promoting gas clustering and re-adsorption at the NB interface, whereas hydrophilic solutes had negligible influence. RDF analyses revealed that this stabilization correlates with weakened gas–water hydrogen bonding and enhanced gas–gas and gas–hexane interactions. These results elucidate the molecular determinants of NB persistence and offer design guidelines for tuning bubble longevity in environmental and industrial systems.

9 December 2025

The widespread presence of estrogenic pollutants in aquatic environments poses a significant threat to ecosystems and human health, necessitating the development of efficient and sustainable removal technologies. This study aimed to develop a cost-effective biocatalyst for estrogen biodegradation using a fungal laccase. The enzyme was produced by the native strain Dichostereum sordulentum under semi-solid-state fermentation conditions optimized using a statistical Design of Experiments. The design evaluated carbon sources (glucose/glycerol), nitrogen sources (peptone/urea), inoculum size, and Eucalyptus dunnii bark as a solid support/substrate. The resulting laccase was entrapped within a hydrogel made of lignocellulosic biopolymers derived from a second-generation bioethanol by-product. Maximum laccase production was achieved with a high concentration of peptone (12 g/L), a low amount of bark (below 2.8 g), 8.5 g/L glucose and 300 mg/flask of inoculum. The subsequent immobilized laccase achieved 98.8 ± 0.5% removal of ethinylestradiol, outperforming the soluble enzyme. Furthermore, the treatment reduced the estrogenic biological activity by more than 170-fold. These findings demonstrate that the developed biocatalyst not only valorizes an industrial by-product but also represents an effective and sustainable platform for mitigating hazardous estrogenic pollution in water.

9 December 2025

Hydrophilic interaction liquid chromatography (HILIC) is widely used for the analysis of glycans and oligosaccharides, yet the molecular basis of retention remains incompletely understood. In this study, we investigated dextran ladders labelled with 2-aminobenzamide (2-AB) and Rapifluor-MS™ (Waters, Milford, MA, USA) across a wide range of degrees of polymerization (DP 2–15), temperature conditions (10 °C to 70 °C), and gradient programs using a Acquity™ Premier Glycan BEH Amide column (Bridged Ethylene Hybrid, Waters, Milford, MA, USA). Van’t Hoff analysis revealed distinct enthalpic and entropic contributions to retention, allowing identification of a mechanistic transition from enthalpy-dominated docking interactions at low DP to entropy-driven dynamic adsorption at higher DP. This transition occurred reproducibly between DP 4–6, depending on the fluorescent label, while gradient steepness primarily influenced the location of the minimum enthalpy. Molecular dynamics simulations provided additional evidence, showing increased conformational flexibility and end-to-end distance variability for longer oligomers. This finding is consistent with entropy-dominated adsorption accompanied by displacement of structured interfacial water. Together, these results establish a molecular-level framework linking retention thermodynamics, conformational behavior, and solvation effects, thereby advancing our mechanistic understanding of glycan separation in HILIC.

9 December 2025

News & Conferences

Issues

Open for Submission

Editor's Choice

Reprints of Collections

Molecular Simulations of Energy Materials
Reprint

Molecular Simulations of Energy Materials

Editors: Viorel Chihaia, Godehard Sutmann
State of the Art of Natural Antioxidants
Reprint

State of the Art of Natural Antioxidants

Extraction, Detection and Biofunctions
Editors: Mostafa Gouda, Yong He, Alaa El-Din A. Bekhit, Xiaoli Li

Get Alerted

Add your email address to receive forthcoming issues of this journal.

XFacebookLinkedIn
Molecules - ISSN 1420-3049