Bibenzyl Derivatives from Radula voluta (An Ecuadorian Liverwort): Bioprospecting for Antiprotozoal Properties
Abstract
1. Introduction
2. Results
2.1. Isolation and Characterization
2.2. Antiprotozoal Effect and Cytotoxicity
3. Discussion
4. Materials and Methods
4.1. General Information
4.2. Plant Material
4.3. Extraction and Isolation
4.3.1. 3,5-Dihydroxy-2-(3-methyl-2-butenyl) Bibenzyl (1)
4.3.2. 2-Geranyl-3,5-dihydroxy-bibenzyl (2)
4.3.3. 2,2-Dimethyl-5-phenethyl-2H-chromen-7-ol (3)
4.3.4. Radulanin L (4)
4.4. Cultures
4.5. Preliminary Antiprotozoal Activity
4.5.1. In Vitro Activity Against Epimastigote of Trypanosoma cruzi and Promastigote of Leishmania spp
4.5.2. In Vitro Activity Against Trophozoites of Acanthamoeba castellanii Neff and Naegleria fowleri
4.5.3. Results of the Screening
4.6. Cytotoxicity Assay
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, Q.; Liu, M.; Liang, W.; Li, X.; Jing, W.; Chen, Z.; Liu, J. Global distribution and health impact of infectious disease outbreaks, 1996–2023: A worldwide retrospective analysis of World Health Organization emergency event reports. J. Glob. Health 2025, 15, 04151. [Google Scholar] [CrossRef]
- Sangenito, L.S.; da Silva Santos, V.; d’Avila-Levy, C.M.; Branquinha, M.H.; Souza Dos Santos, A.L.; de Oliveira, S.S.C. Leishmaniasis and Chagas Disease—Neglected Tropical Diseases: Treatment Updates. Curr. Top. Med. Chem. 2019, 19, 174–177. [Google Scholar] [CrossRef] [PubMed]
- Pana, A.; Vijayan, V.; Anilkumar, A.C. Amebic Meningoencephalitis. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Raghavan, A.; Rammohan, R. Acanthamoeba keratitis—A review. Indian J. Ophthalmol. 2024, 72, 473–482. [Google Scholar] [PubMed]
- Gradstein, S.R. The Liverworts and Hornworts of Colombia and Ecuador, 1st ed.; William, R., Ed.; Buck: Bronx, NY, USA, 2021; p. 121. [Google Scholar]
- Gradstein, S.R. Checklist of the Liverworts and hornworts of Ecuador. Frahmia 2020, 17, 1–40. [Google Scholar]
- Jensen, S.; Omarsdottir, S.; Bwalya, A.G.; Nielsen, M.A.; Tasdemir, D.; Olafsdottir, E.S. Marchantin A, a macrocyclic bisbibenzyl ether, isolated from the liverwort Marchantia polymorpha, inhibits protozoal growth in vitro. Phytomedicine 2012, 19, 1191–1195. [Google Scholar] [CrossRef]
- Pannequin, A.; Quetin-Leclercq, J.; Costa, J.; Tintaru, A.; Muselli, A. First phytochemical profiling and in-vitro antiprotozoal activity of essential oil and extract of Plagiochila porelloides. Molecules 2023, 28, 616. [Google Scholar] [CrossRef]
- Ludwiczuk, A.; Nagashima, F.; Gradstein, R.S.; Asakawa, Y. Volatile components from selected Mexican, Ecuadorian, Greek, German and Japanese liverworts. Nat. Prod. Commun. 2008, 3, 133–140. [Google Scholar] [CrossRef]
- Asakawa, Y.; Ludwiczuk, A.; Nagashima, F.; Toyota, M.; Hashimoto, T.; Tori, M.; Harinantenaina, L. Bryophytes: Bio-and chemical diversity, bioactivity and chemosystematics. Heterocycles 2009, 77, 99–150. [Google Scholar] [CrossRef]
- Valarezo, E.; Tandazo, O.; Galán, K.; Rosales, J.; Benítez, Á. Volatile metabolites in Liverworts of Ecuador. Metabolites 2020, 10, 92. [Google Scholar] [CrossRef]
- Morocho, V.; Benitez, Á.; Carrión, B.; Cartuche, L. Novel study on chemical characterization and antimicrobial, antioxidant, and anticholinesterase activity of essential oil from Ecuadorian bryophyte Syzygiella rubricaulis (Nees) Stephani. Plants 2024, 13, 935. [Google Scholar] [CrossRef]
- Toyota, M.; Kinugawa, T.; Asakawa, Y. Bibenzyl cannabinoid and bisbibenzyl derivative from the liverwort Radula perrottetii. Phytochemistry 1994, 37, 859–862. [Google Scholar] [CrossRef]
- Asakawa, Y.; Nagashima, F.; Ludwiczuk, A. Distribution of bibenzyls, prenyl bibenzyls, bis-bibenzyls, and terpenoids in the liverwort genus Radula. J. Nat. Prod. 2020, 83, 756–769. [Google Scholar] [CrossRef] [PubMed]
- Asakawa, Y.; Toyota, M.; Nakaishi, E.; Tada, Y. Distribution of terpenoids and aromatic compounds in New Zealand liverworts. J. Hattori Bot. Lab. 1996, 80, 271–295. [Google Scholar]
- Zhang, C.Y.; Gao, Y.; Zhu, R.X.; Qiao, Y.N.; Zhou, J.C.; Zhang, J.Z.; Li, Y.; Li, S.W.; Fan, S.H.; Lou, H.X. Prenylated bibenzyls from the Chinese Liverwort Radula constricta and their mitochondria-derived paraptotic cytotoxic activities. J. Nat. Prod. 2019, 82, 741–1751. [Google Scholar] [CrossRef]
- Kinghorn, A.; Falk, O.H.; Kobayashi, L.J. Chemical Constituents of Bryophyta. In Chemical Constituents of Bryophytes. Bio- and Chemical Diversity, Biological Activity, and Chemosystematics; Progress in the Chemistry of Organic Natural Products; Springer: Vienna, Austria, 2013; Volume 95, pp. 593–605. [Google Scholar]
- Mues, R.; Zinsmeister, H.D. The chemotaxonomy of phenolic compounds in bryophytes. J. Hattori Bot. Lab. 1988, 64, 109–141. [Google Scholar]
- Lorimer, S.D.; Perry, N.B.; Tangney, R.S. An antifungal bibenzyl from the New Zealand liverwort, Plagiochzla stephensonzana. Synthesis, and analysis Bioactivity-directed isolation. J. Nat. Prod. 1993, 56, 1444–1450. [Google Scholar] [CrossRef]
- Iwai, Y.; Murakami, K.; Gomi, Y.; Hashimoto, T.; Asakawa, Y.; Okuno, Y.; Ishikawa, T.; Hatakeyama, D.; Echigo, N.; Kusuhara, T. Anti-influenza activity of marchantins, macrocyclic bisbibenzyls contained in liverworts. PLoS ONE 2011, 6, e19825. [Google Scholar] [CrossRef]
- Nandy, S.; Dey, A. Bibenzyls and bisbibenzyls of bryophytic origin as promising source of novel therapeutics: Pharmacology, synthesis and structure-activity. J. Pharm. Sci. 2020, 28, 701–734. [Google Scholar]
- Asakawa, Y.; Hashimoto, T.; Takikawa, K.; Tori, M.; Ogawa, S. Prenyl bibenzyls from the liverworts Radula perrottetii and Radula complanata. Phytochemistry 1991, 30, 235–251. [Google Scholar] [CrossRef]
- Labbé, C.; Faini, F.; Villagrán, C.; Coll, J.; Rycroft, D.S. Bioactive polychlorinated bibenzyls from the liverwort Riccardia polyclada. J. Nat. Prod. 2007, 70, 2019–2021. [Google Scholar] [CrossRef]
- Otoguro, K.; Ishiyama, A.; Iwatsuki, M.; Namatame, M.; Tukashima, A.N.; Kiyohara, H.; Hashimoto, T.; Asakawa, Y.; Omura, S.; Yamada, H. In vitro antitrypanosomal activity of bis(bibenzyls) and bibenzyls from liverworts against Trypanosoma brucei. J. Nat. Med. 2012, 66, 377–382. [Google Scholar] [CrossRef]
- Nagashima, F.; Momosaki, S.; Watanabe, Y.; Toyota, M.; Huneck, S.; Asakawat, Y. Terpenoids and aromatic compounds from six liverworts. Phytochemistry 1996, 41, 207–211. [Google Scholar] [CrossRef]
- Kraut, L.; Must, R.; Dietmar, Z.H. Prenylated bibenzyl derivatives from Lethocolea glossophylla and Radula voluta. Phytochemistry 1997, 45, 1249–1255. [Google Scholar] [CrossRef]
- Nagashima, F.; Asakawa, Y. Terpenoids and bibenzyls from three Argentine liverworts. Molecules 2011, 16, 10471–10478. [Google Scholar] [CrossRef] [PubMed]
- Asakawa, Y.; Kondo, K.; Tori, M. Cyclopropanochroman derivatives from the liverwort Radula javanica. Phytochemistry 1991, 30, 325–328. [Google Scholar] [CrossRef]
- Asakawa, Y.; Kondo, K.; Takikawa, E.K.; Tori, M.; Hashimoto, T.; Ogawa, S. Prenyl bibenzyls from the liverworts Radula kojana. Phytochemistry 1991, 30, 219–234. [Google Scholar] [CrossRef]
- Bethencourt-Estrella, C.J.; López-Arencibia, A.; Lorenzo-Morales, J.; Piñero, J.E. Global Health Priority Box: Discovering Flucofuron as a Promising Antikinetoplastid Compound. Pharmaceuticals 2024, 17, 554. [Google Scholar] [CrossRef]
- Rodríguez-Expósito, R.L.; Nicolás-Hernández, D.S.; Sifaoui, I.; Cuadrado, C.; Salazar-Villatoro, L.; Reyes-Batlle, M.; Hernández-Daranas, A.; Omaña-Molina, M.; Fernández, J.J.; Díaz-Marrero, A.R.; et al. Gongolarones as antiamoeboid chemical scaffold. Biomed. Pharmacother. 2023, 158, 114185. [Google Scholar] [CrossRef]
- Chao-Pellicer, J.; Arberas-Jiménez, I.; Delgado-Hernández, S.; Sifaoui, I.; Tejedor, D.; García-Tellado, F.; Piñero, J.E.; Lorenzo-Morales, J. Cyanomethyl Vinyl Ethers Against Naegleria fowleri. ACS Chem. Neurosci. 2023, 14, 2123–2133. [Google Scholar] [CrossRef]
- Stuart, K.; Brun, R.; Croft, S.; Fairlamb, A.; Gütteridge, W.; McKerrow, J.; Reed, S.; Tarleton, R. Kinetoplastids: Related protozoan pathogens, different diseases. J. Clin. Investig. 2008, 118, 1301–1310. [Google Scholar] [CrossRef]
- Scorza, B.M.; Carvalho, E.M.; Wilson, M.E. Cutaneous manifestations of human and murine leishmaniasis. Int. J. Mol. Sci. 2017, 18, 1296. [Google Scholar] [CrossRef]
- Grace, E.; Asbill, S.; Virga, K. Naegleria fowleri: Pathogenesis, diagnosis, and treatment options. Antimicrob. Agents Chemother. 2015, 59, 6677–6881. [Google Scholar] [CrossRef] [PubMed]
- Asakawa, Y. Biologically active compounds from bryophytes. Pure Appl. Chem. 2007, 79, 557–580. [Google Scholar] [CrossRef]
- Rosa, L.H.; Furtado, G.P.; Barata, L.E.S. Antimicrobial activity of compounds isolated from liverworts: A review. Phytomedicine 2011, 18, 1135–1140. [Google Scholar]
- Roldos, V.; Nakayama, H.; Rolón, M.; Montero-Torres, A.; Truccu, F.; Torres, S.; Vega, C.; Marrero-Ponce, Y.; Heguaburu, V.; Yaluff, G.; et al. Activity of a hydroxybibenzyl bryophyte constituent against Leishamania spp. and Trypanosoma cruzi: In silico, in vitro and in vivo activity studies. Eur. J. Med. Chem. 2008, 43, 1797–1807. [Google Scholar] [CrossRef]
- Cos, P.; Maes, L.; Vlietinck, A.J.; Berghe, D.V. Plant-derived leading compounds for chemotherapy of human protozoan infections. Planta Med. 2004, 70, 501–518. [Google Scholar]
- Siddiqui, R.; Khan, N.A. Biology and pathogenesis of Naegleria fowleri. Acta Trop. 2014, 132, 173–177. [Google Scholar]
- Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokineZcs, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 2017, 7, 42717. [Google Scholar]
- Daina, A.; Zoete, V. A BOILED-Egg To Predict GastrointesZnal AbsorpZon and Brain PenetraZon of Small Molecules. ChemMedChem 2016, 11, 1117. [Google Scholar] [CrossRef]
- Asakawa, Y.; Ludwiczuk, A.; Nagashima, F. Biologically Active Compounds of the Marchantiophyta and Bryophyta. In Chemical Constituents of Bryophytes: Bio- and Chemical Diversity, Biological Activity, and Chemosystematics; Progress in the Chemistry of Organic Natural Products; Springer: Vienna, Austria, 2013; Volume 95, pp. 619–638. [Google Scholar]
- Zhang, X.; Liu, J.; Liang, J.; Wang, Z.; Wang, C. Structure-activity relationships of prenylated natural products with antiprotozoal activity. Molecules 2021, 26, 2537. [Google Scholar]
- Cartuche, L.; Sifaoui, I.; López-Arencibia, A.; Bethencourt-Estrella, C.J.; San Nicolás-Hernández, D.; Lorenzo-Morales, J.; Piñero, J.E.; Díaz-Marrero, A.R.; Fernández, J.J. Antikinetoplastid Activity of Indolocarbazoles from Streptomyces sanyensis. Biomolecules 2020, 10, 657. [Google Scholar] [CrossRef]
- Cartuche, L.; Reyes-Batlle, M.; Sifaoui, I.; Arberas-Jiménez, I.; Piñero, J.E.; Fernández, J.J.; Lorenzo-Morales, J.; Díaz-Marrero, A.R. Antiamoebic Activities of Indolocarbazole Metabolites Isolated from Streptomyces sanyensis Cultures. Mar. Drugs 2019, 17, 588. [Google Scholar] [CrossRef]
- Rizo-Liendo, A.; Sifaoui, I.; Reyes-Batlle, M.; Chiboub, O.; Rodríguez-Expósito, R.L.; Bethencourt-Estrella, C.J.; San Nicolás-Hernández, D.; Hendiger, E.B.; López-Arencibia, A.; Rocha-Cabrera, P.; et al. In Vitro Activity of Statins against Naegleria fowleri. Pathogens 2019, 8, 122. [Google Scholar] [CrossRef]

| Parasite | T cruzi | L. amazonensis | L. donovani | N. fowleri | A. castellanii Neff | |||||
|---|---|---|---|---|---|---|---|---|---|---|
| Concentration (µg/mL) | 25 | 50 | 25 | 50 | 25 | 50 | 25 | 50 | 25 | 50 |
| 1 | - | + | + | + | - | - | + | + | - | + |
| 2 | + | + | + | + | - | + | + | + | - | - |
| 3 | - | + | - | + | - | - | + | + | - | + |
| 4 | + | + | + | + | - | + | + | + | - | + |
| Compound | CC50 |
|---|---|
| 1 | 50.11 ± 12.38 |
| 2 | 14.32 ± 0.51 |
| 3 | 57.85 ± 10.94 |
| 4 | 18.18 ± 2.38 |
| Drug | Target Organism/Cell Line | Parameter | Mean ± SD (µg/mL) |
|---|---|---|---|
| Miltefosine | L. donovani | IC50 | 1.35 ± 0.11 |
| L. amazonensis | IC50 | 2.64 ± 0.10 | |
| J774A.1 macrophages | CC50 | 29.43 ± 3.61 | |
| Benznidazole | T. cruzi | IC50 | 1.80 ± 0.20 |
| J774A.1 macrophages | CC50 | 104.08 ± 0.36 | |
| Chlorhexidine | A. castellanii Neff | IC50 | 1.53 ± 0.89 |
| J774A.1 macrophages | CC50 | 15.11 ± 0.19 | |
| Voriconazole | A. castellanii Neff | IC50 | 0.35 ± 0.04 |
| J774A.1 macrophages | CC50 | 7.56 ± 2.20 | |
| Amphotericin B | N. fowleri | IC50 | 0.16 ± 0.01 |
| J774A.1 macrophages | CC50 | >200 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Andrade, J.M.; Bethencourt-Estrella, C.J.; Chao-Pellicer, J.; Cartuche, L.; Morocho, V.; Benítez, Á.; Rodríguez-Expósito, R.L.; Piñero, J.E.; Lorenzo-Morales, J.; Díaz-Marrero, A.R.; et al. Bibenzyl Derivatives from Radula voluta (An Ecuadorian Liverwort): Bioprospecting for Antiprotozoal Properties. Molecules 2025, 30, 4543. https://doi.org/10.3390/molecules30234543
Andrade JM, Bethencourt-Estrella CJ, Chao-Pellicer J, Cartuche L, Morocho V, Benítez Á, Rodríguez-Expósito RL, Piñero JE, Lorenzo-Morales J, Díaz-Marrero AR, et al. Bibenzyl Derivatives from Radula voluta (An Ecuadorian Liverwort): Bioprospecting for Antiprotozoal Properties. Molecules. 2025; 30(23):4543. https://doi.org/10.3390/molecules30234543
Chicago/Turabian StyleAndrade, José Miguel, Carlos J. Bethencourt-Estrella, Javier Chao-Pellicer, Luis Cartuche, Vladimir Morocho, Ángel Benítez, Rubén L. Rodríguez-Expósito, José E. Piñero, Jacob Lorenzo-Morales, Ana R. Díaz-Marrero, and et al. 2025. "Bibenzyl Derivatives from Radula voluta (An Ecuadorian Liverwort): Bioprospecting for Antiprotozoal Properties" Molecules 30, no. 23: 4543. https://doi.org/10.3390/molecules30234543
APA StyleAndrade, J. M., Bethencourt-Estrella, C. J., Chao-Pellicer, J., Cartuche, L., Morocho, V., Benítez, Á., Rodríguez-Expósito, R. L., Piñero, J. E., Lorenzo-Morales, J., Díaz-Marrero, A. R., & Fernandez, J. J. (2025). Bibenzyl Derivatives from Radula voluta (An Ecuadorian Liverwort): Bioprospecting for Antiprotozoal Properties. Molecules, 30(23), 4543. https://doi.org/10.3390/molecules30234543

