molecules-logo

Journal Browser

Journal Browser

Small-Molecule Drug Design and Discovery

A special issue of Molecules (ISSN 1420-3049). This special issue belongs to the section "Medicinal Chemistry".

Deadline for manuscript submissions: 31 December 2025 | Viewed by 1192

Special Issue Editor


E-Mail Website
Guest Editor
Department of Chemistry, Fudan University, Shanghai, China
Interests: drug design; small-molecule drugs; methodologies for synthetic drugs
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Small-molecule drug design involves creating novel chemical drugs that may achieve therapeutic effects based on the chemical structures of biological targets, utilizing the chemical structures, electrical charges, shapes, and other characteristics of organic small molecules. This process typically encompasses multiple steps, including target selection, molecular design, synthesis, and biological evaluation. The methods for small-molecule drug design are numerous, encompassing structure-based drug design, fragment-based drug discovery, and more contemporary advancements like PROTAC technology, molecular glue methodologies, and artificial intelligence technology. Through persistent exploration and groundbreaking innovations, we anticipate the emergence of numerous small-molecule drugs, thereby significantly enhancing our contributions to the advancement of human health.

Dr. Qiuqin He
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Molecules is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • small-molecule drug design
  • structure-based drug design
  • fragment-based drug discovery
  • PROTAC technology
  • artificial intelligence technology
  • biological evaluation

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Review

25 pages, 1400 KB  
Review
Designing a Small Molecule for PET Radiotracing: [18F]MC225 in Human Trials for Early Diagnosis in CNS Pathologies
by Francesco Mastropasqua, Gert Luurtsema, Cristina Filosa and Nicola Antonio Colabufo
Molecules 2025, 30(18), 3696; https://doi.org/10.3390/molecules30183696 - 11 Sep 2025
Abstract
P-Glycoprotein (P-gp, also known as MDR1 or ABCB1) is an ATP-binding cassette (ABC) transporter that actively effluxes a wide range of structurally and functionally diverse molecules, playing a crucial role in drug absorption, distribution, and excretion. P-gp is highly expressed at key biological [...] Read more.
P-Glycoprotein (P-gp, also known as MDR1 or ABCB1) is an ATP-binding cassette (ABC) transporter that actively effluxes a wide range of structurally and functionally diverse molecules, playing a crucial role in drug absorption, distribution, and excretion. P-gp is highly expressed at key biological barriers, such as the blood–brain barrier (BBB), intestine, liver, and kidneys, and it serves as a gatekeeper against xenobiotics and therapeutics. Its dysregulation is involved in multidrug resistance (MDR), epilepsy, cancer, infectious diseases, and neurodegenerative disorders. Several small molecules were synthesized using SAfIR and SAR, and, among them, [18F]MC225 showed the most promising results for in vivo human studies, with appropriate pharmacodynamics and pharmacokinetics profiles for in vivo use. [18F]MC225 is currently being employed in PHASE II human trials at the UMC Groningen, the Netherlands, in patients diagnosed with AD, PD and MCI, as well as PHASE II human trials at the Policlinico Gemelli in Rome Italy to diagnose P-gp resistant depression. Preliminary studies show that [18F]MC225 radiotracer is behaving according to the initial predictions, that is, it accurately diagnoses the aforementioned pathologies, more so than previously developed small molecules for the same goal. Full article
(This article belongs to the Special Issue Small-Molecule Drug Design and Discovery)
Show Figures

Figure 1

39 pages, 5729 KB  
Review
Metabolism, a Blossoming Target for Small-Molecule Anticancer Drugs
by Michela Puxeddu, Romano Silvestri and Giuseppe La Regina
Molecules 2025, 30(17), 3457; https://doi.org/10.3390/molecules30173457 - 22 Aug 2025
Viewed by 884
Abstract
Reprogramming is recognized as a promising target in cancer therapy. It is well known that the altered metabolism in cancer cells, in particular malignancies, are characterized by increased aerobic glycolysis (Warburg effect) which promotes rapid proliferation. The effort to design compounds able to [...] Read more.
Reprogramming is recognized as a promising target in cancer therapy. It is well known that the altered metabolism in cancer cells, in particular malignancies, are characterized by increased aerobic glycolysis (Warburg effect) which promotes rapid proliferation. The effort to design compounds able to modulate these hallmarks of cancer are gaining increasing attention in drug discovery. In this context, the present review explores recent progress in the development of small molecule inhibitors of key metabolic pathways, such as glycolysis, glutamine metabolism and fatty acid synthesis. In particular, different mechanisms of action of these compounds are analyzed, which can target distinct enzymes, including LDH, HK2, PKM2, GLS and FASN. The findings underscore the relevance of metabolism-based strategies in developing next-generation anticancer agents with potential for improved efficacy and reduced systemic toxicity. Full article
(This article belongs to the Special Issue Small-Molecule Drug Design and Discovery)
Show Figures

Graphical abstract

Back to TopTop