Changes in Growth and Chemical Composition of the Essential Oil from Flowers and Leafy Stems of Lavandula angustifolia Grown in Media Amended with Bark and Sewage Sludge
Abstract
1. Introduction
2. Results
2.1. Plant Growth and Biomass Production
2.2. Essential Oil Content and Composition
3. Discussion
4. Materials and Methods
4.1. Plant Material, Experimental Design and Growing Conditions
4.2. Morphological Measurements
4.3. Essential Oils Analysis
4.3.1. Essential Oil Extraction
4.3.2. Gas Chromatography-Mass Spectrometry (GC-MS)
4.4. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Aprotosoaie, A.C.; Gille, E.; Trifan, A.; Luca, V.S.; Miron, A. Essential oils of Lavandula genus: A systematic review of their chemistry. Phytochem. Rev. 2017, 16, 761–799. [Google Scholar] [CrossRef]
- Denner, S.S. Lavandula angustifolia Miller: English lavender. Holist. Nurs. Pract. 2009, 23, 57–64. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wang, D.; Li, H.; Bai, H.; Sun, M.; Shi, L. Formation mechanism of glandular trichomes involved in the synthesis and storage of terpenoids in lavender. BMC Plant Biol. 2023, 23, 307. [Google Scholar] [CrossRef]
- Khan, S.U.; Hamza, B.; Mir, R.H.; Fatima, K.; Malik, F. Lavender plant: Farming and health benefits. Curr. Mol. Med. 2024, 24, 702–711. [Google Scholar] [CrossRef]
- Adaszyńska-Skwirzyńska, M.; Dzięcioł, M. Comparison of Chemical Composition and Antimicrobial Activity of Essential Oils Obtained from Different Cultivars and Morphological Parts of Lavandula angustifolia. J. Essent. Oil Bear. Plants 2018, 21, 1532–1541. [Google Scholar] [CrossRef]
- Gök, S.B.; Erdoğdu, Y. Chemical composition and antimicrobial activity of essential oils from six lavender (Lavandula angustifolia Mill.) cultivars. Plant Soil Environ. 2024, 70, 87–93. [Google Scholar] [CrossRef]
- Saeed, F.; Afzaal, M.; Raza, M.A.; Rasheed, A.; Hussain, M.; Nayik, G.A.; Ansari, M.J. Lavender essential oil: Nutritional, compositional, and therapeutic insights. In Essential Oils; Academic Press: Cambridge, MA, USA, 2023; pp. 85–101. [Google Scholar] [CrossRef]
- Hassiotis, C.N.; Vlachonasios, K.E. How Biological and Environmental Factors Affect the Quality of Lavender Essential Oils. Physiologia 2025, 5, 11. [Google Scholar] [CrossRef]
- Najar, B.; Demasi, S.; Caser, M.; Gaino, W.; Cioni, P.L.; Pistelli, L.; Scariot, V. Cultivation substrate composition influences morphology, volatilome and essential oil of Lavandula angustifolia Mill. Agronomy 2019, 9, 411. [Google Scholar] [CrossRef]
- Todorova, V.; Ivanov, K.; Georgieva, Y.; Karcheva-Bahchevanska, D.; Ivanova, S. Comparison between the chemical composition of essential oil from commercial products and biocultivated Lavandula angustifolia Mill. Int. J. Anal. Chem. 2023, 2023, 1997157. [Google Scholar] [CrossRef] [PubMed]
- Sevindik, M.; Kilibarda, S.; Uysal, I.; Šavikin, K.; Banjac, N.; Popović-Đorđević, J. Overview of phytochemical composition and bioactivity of Lavandula species. Phytochem. Rev. 2025, 1–26. [Google Scholar] [CrossRef]
- Crișan, I.; Ona, A.; Vârban, D.; Muntean, L.; Vârban, R.; Stoie, A.; Mihăiescu, T.; Morea, A. Current Trends for Lavender (Lavandula angustifolia Mill.) Crops and Products with Emphasis on Essential Oil Quality. Plants 2023, 12, 357. [Google Scholar] [CrossRef] [PubMed]
- Lavandula oil Market. Available online: https://www.futuremarketinsights.com/reports/lavandula-oil-lavender-oil-market (accessed on 18 September 2025).
- Analysis of Trends in Lavender Cultivation in Poland in 2022–2024. Available online: https://lawenda.org/stowarzyszenie/aktualnosci/analiza-trendow-w-uprawach-lawendy-w-polsce-w-latach2022-2024?utm_source=chatgpt.com (accessed on 19 September 2025).
- Perović, A.B.; Karabegović, I.T.; Krstić, M.S.; Veličković, A.V.; Avramović, J.M.; Danilović, B.R.; Veljković, V.B. Modern Insights into Traditional Lavender Oil Production: Methods, Optimization, Kinetics, and Perspectives. Sep. Purif. Rev. 2025, 1–25. [Google Scholar] [CrossRef]
- Spagnuolo, D.; Jamal, A.; Prisa, D. Comparative Evaluation of Marine Algae-Based Biostimulants for Enhancing Growth, Physiological Performance, and Essential Oil Yield in Lavender (Lavandula angustifolia) Under Greenhouse Conditions. Phycology 2025, 5, 41. [Google Scholar] [CrossRef]
- Dobreva, A.; Petkova, N.; Todorova, M.; Gerdzhikova, M.; Zherkova, Z.; Grozeva, N. Organic vs. Conventional Farming of Lavender: Effect on Yield, Phytochemicals and Essential Oil Composition. Agronomy 2024, 14, 32. [Google Scholar] [CrossRef]
- Statistics Poland, Environment, Warsaw, Poland. 2024. Available online: https://stat.gov.pl/files/gfx/portalinformacyjny/pl/defaultaktualnosci/5484/1/25/1/ochrona_srodowiska_2024.pdf (accessed on 10 October 2025). (In Polish)
- Act of 14 December 2012 on Waste (Journal of Laws, 2013, Item 21, Poland). Available online: https://isap.sejm.gov.pl/isap.nsf/download.xsp/WDU20130000021/U/D20130021Lj.pdf (accessed on 25 October 2025).
- Kosobucki, P. Study of Compost Based on Sewage Sludge and Different Structural Materials. Biomass 2024, 4, 273–285. [Google Scholar] [CrossRef]
- Zawadzińska, A.; Salachna, P. Ivy pelargonium response to media containing sewage sludge and potato pulp. Plant Soil Environ. 2018, 64, 180–185. [Google Scholar] [CrossRef]
- Al-Huqail, A.A.; Kumar, P.; Abou Fayssal, S.; Adelodun, B.; Širić, I.; Goala, M.; Eid, E.M. Sustainable use of sewage sludge for marigold (Tagetes erecta L.) cultivation: Experimental and predictive modeling studies on heavy metal accumulation. Horticulturae 2023, 9, 447. [Google Scholar] [CrossRef]
- Patel, A.; Pandey, V.; Patra, D.D. Metal absorption properties of Mentha spicata grown under tannery sludge amended soil—Its effect on antioxidant system and oil quality. Chemosphere 2016, 147, 67–73. [Google Scholar] [CrossRef]
- Gautam, M.; Agrawal, M. Influence of metals on essential oil content and composition of lemongrass (Cymbopogon citratus (DC) Stapf.) grown under different levels of red mud in sewage sludge amended soil. Chemosphere 2017, 175, 315–322. [Google Scholar] [CrossRef]
- Agulló, E.; Bustamante, M.A.; Paredes, C.; Moral, R.; Pascual, J.A.; Suárez-Estrella, F. Use of functional biosolids-derived composts as growing media for the production of lavender (Lavandula dentata) and rosemary (Rosmarinus officinalis). Acta Hort. 2013, 1013, 351–358. [Google Scholar] [CrossRef]
- Seyedalikhani, S.; Esperschuetz, J.; Dickinson, N.M.; Hofmann, R.; Breitmeyer, J.; Horswell, J.; Robinson, B.H. Biowastes promote essential oil production on degraded soils. Ind. Crops Prod. 2020, 145, 112108. [Google Scholar] [CrossRef]
- Fascella, G.; Mammano, M.M.; D’Angiolillo, F.; Pannico, A.; Rouphael, Y. Coniferous wood biochar as substrate component of two containerized Lavender species: Effects on morpho-physiological traits and nutrients partitioning. Sci. Hortic. 2020, 267, 109356. [Google Scholar] [CrossRef]
- Mănescu, C.; Dudău, A.E. Effects of Organic and Mineral Fertilizers on Growth and Flowering of Young Lavender (Lavandula angustifolia Mill.) Plants. Sci. Pap. Ser. B. Hortic. 2024, 68, 1. [Google Scholar]
- Sdao, A.E.; Cacini, S.; Loconsole, D.; Conversa, G.; Cristiano, G.; Elia, A.; De Lucia, B. Partial Replacement of Peat: Effects on Substrate Physico-Hydrological Properties and Sage Growth. Plants 2025, 14, 2801. [Google Scholar] [CrossRef]
- Regulation of the Minister of Agriculture and Rural Development of 18 June 2008 on the implementation of certain provisions of the Act on Fertilizers and Fertilization. Journal of Laws. 7 July 2008; No. 119, item 765. (In Polish)
- Regulation of the Minister of Agriculture and Rural Development of 9 August 2024 on the implementation of certain provisions of the Act on Fertilizers and Fertilization. Journal of Laws. 21 August 2024; item 1261. (In Polish)
- Altland, J.E.; Owen Jr, J.S.; Jackson, B.E.; Fields, J.S. Physical and hydraulic properties of commercial pine-bark substrate products used in production of containerized crops. HortScience 2018, 53, 1883–1890. [Google Scholar] [CrossRef]
- English Lavender Sentivia. Culture Guide. Available online: https://www.syngentaflowers.com/ams/sites/g/files/kgtney2381/files/media/document/2023/02/01/culture_perennials_vegetative_lavenderenglish_sentivia.pdf (accessed on 22 August 2025).
- Schmilewski, G. The role of peat in assuring the quality of growing media. Mires Peat 2008, 3, 1–10. [Google Scholar] [CrossRef]
- Leghari, S.J.; Wahocho, N.A.; Laghari, G.M.; HafeezLaghari, A.; MustafaBhabhan, G.; HussainTalpur, K.; Lashari, A.A. Role of nitrogen for plant growth and development: A review. Adv. Environ. Biol. 2016, 10, 209–219. [Google Scholar]
- Ievinsh, G. Water content of plant tissues: So simple that almost forgotten? Plants 2023, 12, 1238. [Google Scholar] [CrossRef]
- Mazeed, A.; Lothe, N.B.; Kumar, A.; Sharma, S.K.; Srivastav, S.; Verma, R.K. Evaluation of phytoaccumulation potential of toxic metals from sewage sludge by high-value aromatic plant geranium. J. Environ. Biol. 2020, 41, 761–769. [Google Scholar] [CrossRef]
- Peçanha, D.A.; Freitas, M.S.M.; Vieira, M.E.; Cunha, J.M.; De Jesus, A.C. Phosphorus fertilization affects growth, essential oil yield and quality of true lavender in Brazil. Ind. Crops Prod. 2021, 170, 113803. [Google Scholar] [CrossRef]
- Pecanha, D.A.; Freitas, M.S.M.; Cunha, J.M.; Vieira, M.E.; de Jesus, A.C. Mineral composition, biomass and essential oil yield of french lavender grown under two sources of increasing potassium fertilization. J. Plant Nutr. 2023, 46, 344–355. [Google Scholar] [CrossRef]
- Silva, S.M.; Luz, J.M.Q.; Nogueira, P.A.M.; Blank, A.F.; Sampaio, T.S.; Pinto, J.A.O.; Junior, A.W. Organo-Mineral Fertilization Effects on Biomass and Essential Oil of Lavender (Lavandula dentata L.). Ind. Crops Prod. 2017, 103, 133–140. [Google Scholar] [CrossRef]
- Osińska, E.; Fornal-Pieniak, B. Cultivation and Processing of Lavender. 2022. Available online: https://www.cdr.gov.pl/images/Brwinow/wydawnictwa/2022/Uprawa_przetworstwo_lawendy.pdf (accessed on 22 August 2025). (In Polish)
- Wesołowska, A.; Jadczak, D.; Grzeszczuk, M. Influence of Distillation Time on the Content and Composition of Essential Oil Isolated from Lavender (Lavandula angustifolia Mill.). Herba Pol. 2010, 56, 24–36. [Google Scholar]
- Djenane, D.; Aïder, M.; Yangüela, J.; Idir, L.; Gómez, D.; Roncalés, P. Antioxidant and Antibacterial Effects of Lavandula and Mentha Essential Oils in Minced Beef Inoculated with E. coli O157:H7 and S. aureus during Storage at Abuse Refrigeration Temperature. Meat Sci. 2012, 92, 667–674. [Google Scholar] [CrossRef] [PubMed]
- Wilson, T.M.; Poulson, A.; Packer, C.; Carlson, R.E.; Buch, R.M. Essential oil profile and yield of corolla, calyx, leaf, and whole flowering top of cultivated Lavandula angustifolia Mill. (Lamiaceae) from Utah. Molecules 2021, 26, 2343. [Google Scholar] [CrossRef] [PubMed]
- Nurzyńska-Wierdak, R.; Zawiślak, G. Chemical composition and antioxidant activity of lavender (Lavandula angustifolia Mill.) aboveground parts. Acta Sci. Pol. Hortorum Cultus 2016, 15, 225–241. [Google Scholar]
- Carrasco, A.; Martinez-Gutierrez, R.; Tomas, V.; Tudela, J. Lavandula angustifolia and Lavandula latifolia essential oils from Spain: Aromatic profile and bioactivities. Planta Med. 2016, 82, 163–170. [Google Scholar]
- Pokajewicz, K.; Białoń, M.; Svydenko, L.; Hudz, N.; Balwierz, R.; Marciniak, D.; Wieczorek, P.P. Comparative evaluation of the essential oil of the new Ukrainian Lavandula angustifolia and Lavandula × intermedia cultivars grown on the same plots. Molecules 2022, 27, 2152. [Google Scholar] [CrossRef]
- Adaszyńska-Skwirzyńska, M.; Yu, Y.; Konieczka, P.; Kozłowski, K.; Witkowska, D.; Dybus, A.; Hukowska-Szematowicz, B.; Jędrzejczak-Silicka, M.; Bucław, M.; Bartkowiak, A. Chemical Composition, Cytotoxicity, and Encapsulation of Lavender Essential Oil (Lavandula angustifolia) in Alginate Hydrogel—Application and Therapeutic Effect on Animal Model. Molecules 2025, 30, 2931. [Google Scholar] [CrossRef] [PubMed]
- Elsharif, S.A.; Banerjee, A.; Buettner, A. Structure-odor relationships of linalool, linalyl acetate and their corresponding oxygenated derivatives. Front. Chem. 2015, 3, 163755. [Google Scholar] [CrossRef]
- Khayyat, S. Thermal, photo-oxidation and antimicrobial studies of linalyl acetate as a major ingredient of lavender essential oil. Arab. J. Chem. 2020, 13, 1575–1581. [Google Scholar] [CrossRef]
- Adaszyńska, M.; Swarcewicz, M.; Dzięcioł, M.; Dobrowolska, A. Comparison of chemical composition and antibacterial activity of lavender varieties from Poland. Nat. Prod. Res. 2013, 27, 1497–1501. [Google Scholar] [CrossRef] [PubMed]
- Wesołowska, A.; Jadczak, P.; Kulpa, D.; Przewodowski, W. Gas chromatography–mass spectrometry (GC–MS) analysis of essential oils from AgNPs- and AuNPs-elicited Lavandula angustifolia in vitro cultures. Molecules 2019, 24, 606. [Google Scholar] [CrossRef]
- Natsheh, H.; Qneibi, M.; Kittana, N.; Jaradat, N.; Assali, M.; Shaqour, B.; Abualhasan, M.; Mayyala, A.; Dawoud, Y.; Melhem, T.; et al. Transethosomal system for enhanced transdermal delivery and therapeutic effect of caryophyllene oxide. Int. J. Pharm. 2025, 670, 125111. [Google Scholar] [CrossRef]
- Gyrdymova, Y.V.; Rubtsova, S.A. Caryophyllene and caryophyllene oxide: A variety of chemical transformations and biological activities. Chem. Papers 2022, 76, 1–39. [Google Scholar] [CrossRef]
- Héral, B.; Stierlin, É.; Fernandez, X.; Michel, T. Phytochemicals from the genus Lavandula: A review. Phytochem. Rev. 2021, 20, 751–771. [Google Scholar] [CrossRef]
- Mavandi, P.; Abbaszadeh, B.; Emami Bistgani, Z.; Barker, A.V.; Hashemi, M. Biomass, nutrient concentration and the essential oil composition of lavender (Lavandula angustifolia Mill.) grown with organic fertilizers. J. Plant Nutr. 2021, 44, 3061–3071. [Google Scholar] [CrossRef]
- Fascella, G.; D’Angiolillo, F.; Ruberto, G.; Napoli, E. Agronomic performance, essential oils and hydrodistillation wastewaters of Lavandula angustifolia grown on biochar-based substrates. Ind. Crops Prod. 2020, 154, 112733. [Google Scholar] [CrossRef]
- Nurzyńska-Wierdak, R. Does mineral fertilization modify essential oil content and chemical composition in medicinal plants? Acta Sci. Pol. Hortorum Cultus 2013, 12, 3–16. [Google Scholar]
- Naguib, N.Y.M. Organic vs chemical fertilization of medicinal plants: A concise review of researches. Adv. Environ. Biol. 2011, 5, 394–400. [Google Scholar]
- Rostaei, M.; Fallah, S.; Carrubba, A.; Lorigooini, Z. Organic manures enhance biomass and improve content, chemical compounds of essential oil and antioxidant capacity of medicinal plants: A review. Heliyon 2024, 10, e27626. [Google Scholar] [CrossRef] [PubMed]
- Zawadzińska, A.; Salachna, P.; Nowak, J.S.; Kowalczyk, W.; Piechocki, R.; Łopusiewicz, Ł.; Pietrak, A. Compost based on pulp and paper mill sludge, fruit-vegetable waste, mushroom spent substrate and rye straw improves yield and nutritional value of tomato. Agronomy 2022, 12, 13. [Google Scholar] [CrossRef]
- Ostrowska, A.; Gawliński, S.; Szczubiałka, Z. Methods for Analyzing and Assessing the Properties of Soil and Plants; Instytut Ochrony Środowiska: Warsaw, Poland, 1991; pp. 1–333. (In Polish) [Google Scholar]
- EN-13040:2007; Soil Improvers and Growing Media—Sample Preparation for Chemical and Physical Tests, Determination of Dry Matter Content, Moisture Content and Laboratory Compacted Bulk Density. CEN—European Committee for Standardization: Brussels, Belgium, 2007.
- European Pharmacopoeia 5.0; EDQM: Strasbourg, France, 2005; p. 1894.
- NIST Chemistry WebBook. Available online: http://webbook.nist.gov/chemistry/ (accessed on 10 October 2025).
- Babushok, V.I.; Linstrom, P.J.; Zenkevich, I.G. Retention indices for frequently reported compounds of plant essential oils. J. Phys. Chem. Ref. 2011, 40, 043101. [Google Scholar] [CrossRef]

| Parameters | Growing Media | ||
|---|---|---|---|
| P + F | PBC | PBC + F | |
| Plant height (cm) | 35.2 ± 0.93 a | 25.3 ± 0.87 b | 27.3 ± 1.20 b |
| Plant width (cm) | 36.0 ± 2.16 a | 28.7 ± 2.79 c | 31.1 ± 1.16 b |
| Inflorescences (no./plant) | 13.3 ± 0.58 c | 18.7 ± 1.53 b | 23.0 ± 2.00 a |
| Leaf greenness (SPAD) | 54.5 ± 1.32 b | 56.1 ± 1.63 b | 67.0 ± 1.29 a |
| Inflorescence fresh weight (g/plant) | 8.11 ± 0.11 a | 6.47 ± 0.49 b | 8.07 ± 0.10 a |
| Leafy stems fresh weight (g/plant) | 32.2 ± 0.41 a | 34.2 ± 1.74 a | 33.1 ± 0.27 a |
| Inflorescence dry weight (g/plant) | 2.28 ± 0.07 b | 1.88 ± 0.04 c | 2.55 ± 0.08 a |
| Leafy stems dry weight (g/plant) | 5.60 ± 0.04 b | 5.71 ± 0.03 b | 5.96 ± 0.04 a |
| Compound | Rt [min] | RI | Inflorescence | Leafy stem | ||||
|---|---|---|---|---|---|---|---|---|
| Growing Media | Growing Media | |||||||
| P + F | PBC | PBC + F | P + F | PBC | PBC + F | |||
| Essential oil content % (v/w) | 1.20 ± 0.12 | 1.01 ± 0.09 | 1.23 ± 0.15 | 0.20 ± 0.02 | 0.24 ± 0.02 | 0.20 ± 0.02 | ||
| β-Pinene | 7.27 | 974 | 1.40 ± 0.03 | 1.21 ± 0.08 | 1.16 ± 0.11 | 3.74 ± 0.07 | 3.09 ± 1.21 | 2.98 ± 0.45 |
| m-Cymene | 8.47 | 1020 | 0.41 ± 0.03 | 0.44 ± 0.03 | 0.39 ± 0.05 | 1.12 ± 0.06 | 1.12 ± 0.25 | 1.23 ± 0.13 |
| p-Cymene | 8.54 | 1022 | 0.79 ± 0.04 | 0.85 ± 0.05 | 0.74 ± 0.08 | 2.23 ± 0.15 | 2.34 ± 0.56 | 2.37 ± 0.31 |
| Eucalyptol | 8.71 | 1028 | 1.11 ± 0.04 | 1.23 ± 0.07 | 1.39 ± 0.09 | 1.53 ± 0.16 | 1.32 ± 0.35 | 1.40 ± 0.19 |
| cis-Linalool oxide | 9.85 | 1069 | 5.52 ± 0.04 a | 4.49 ± 0.25 b | 5.17 ± 0.13 a | 0.48 ± 0.01 c | 0.53 ± 0.06 c | 0.63 ± 0.07 c |
| α-Terpinolene | 10.30 | 1084 | 4.35 ± 0.21 a | 3.39 ± 0.18 b | 3.93 ± 0.18 ab | 0.14 ± 0.01 c | 0.12 ± 0.02 c | 0.16 ± 0.03 c |
| Linalool | 10.77 | 1101 | 15.17 ± 0.04 b | 17.13 ± 0.99 a | 17.60 ± 0.21 a | 3.77 ± 0.13 c | 3.64 ± 0.24 c | 4.15 ± 0.57 c |
| 1,2-Dihydrolinalool | 11.73 | 1137 | 1.65 ± 0.19 | 2.00 ± 0.05 | 1.67 ± 0.18 | 2.34 ± 0.16 | 2.61 ± 0.15 | 2.23 ± 0.20 |
| Camphor | 11.87 | 1142 | 0.84 ± 0.02 | 0.81 ± 0.03 | 0.82 ± 0.04 | 1.89 ± 0.09 | 1.52 ± 0.15 | 1.57 ± 0.32 |
| Pinocarvone | 1239 | 1161 | 0.96 ± 0.05 | 1.00 ± 0.04 | 0.86 ± 0.05 | 2.35 ± 0.18 | 2.29 ± 0.25 | 2.12 ± 0.39 |
| Borneol | 12.55 | 1167 | 3.73 ± 0.01 | 3.26 ± 0.12 | 3.41 ± 0.05 | 9.38 ± 0.75 | 7.13 ± 0.49 | 6.92 ± 1.01 |
| p-Cymen-8-ol | 12.95 | 1182 | 0.71 ± 0.09 | 0.68 ± 0.01 | 0.67 ± 0.10 | 1.04 ± 0.03 | 1.33 ± 0.01 | 1.30 ± 0.28 |
| α-Terpineol | 13.18 | 1190 | 1.05 ± 0.02 b | 1.51 ± 0.04 a | 1.50 ± 0.02 a | 0.60 ± 0.04 c | 0.65 ± 0.04 c | 0.62 ± 0.16 c |
| Myrtenol | 13.34 | 1196 | 1.68 ± 0.04 | 1.82 ± 0.05 | 1.62 ± 0.04 | 2.93 ± 0.23 | 2.91 ± 0.23 | 2.59 ± 0.37 |
| Verbenone | 13.67 | 1208 | 1.46 ± 0.10 | 1.42 ± 0.01 | 1.37 ± 0.06 | 1.26 ± 0.06 | 1.55 ± 0.07 | 1.40 ± 0.28 |
| Bornyl formate | 14.20 | 1228 | 0.26 ± 0.06 | 0.36 ± 0.00 | 0.31 ± 0.08 | 1.13 ± 0.07 | 1.04 ± 0.04 | 1.06 ± 0.27 |
| Linalyl acetate | 14.94 | 1255 | 9.59 ± 0.56 a | 8.01 ± 0.04 a | 8.79 ± 0.75 a | 1.47 ± 0.01 b | 1.77 ± 0.08 b | 1.93 ± 0.37 b |
| Lavandulyl acetate | 15.89 | 1290 | 3.07 ± 0.03 | 3.39 ± 0.06 | 3.20 ± 0.13 | 0.77 ± 0.02 | 1.02 ± 0.07 | 1.09 ± 0.12 |
| Geranyl acetate | 18.35 | 1384 | 1.44 ± 0.08 | 1.77 ± 0.27 | 1.47 ± 0.09 | 5.93 ± 0.15 | 5.62 ± 0.28 | 5.69 ± 0.42 |
| α-Santalene | 19.28 | 1421 | 1.33 ± 0.05 c | 1.16 ± 0.12 cd | 0.94 ± 0.01 d | 2.19 ± 0.04 b | 2.53 ± 0.06 a | 2.14 ± 0.08 b |
| γ-Cadinene | 21.61 | 1515 | 0.69 ± 0.03 | 0.48 ± 0.05 | 0.37 ± 0.01 | 1.82 ± 0.08 | 1.61 ± 0.01 | 1.61 ± 0.04 |
| β-Sesquiphellandrene | 21.72 | 1520 | 0.74 ± 0.03 c | 0.81 ± 0.12 c | 0.73 ± 0.01 c | 1.36 ± 0.06 b | 1.62 ± 0.06 a | 1.80 ± 0.05 a |
| Elemol | 22.52 | 1554 | 1.11 ± 0.06 | 1.32 ± 0.13 | 1.17 ± 0.04 | 1.14 ± 0.08 | 1.30 ± 0.14 | 1.25 ± 0.06 |
| Caryophyllene oxide | 23.31 | 1588 | 11.1 ± 0.69 | 12.7 ± 0.74 | 11.9 ± 0.57 | 10.2 ± 0.38 | 11.8 ± 0.35 | 10.9 ± 0.66 |
| τ-Cadinol | 24.58 | 1644 | 2.11 ± 0.17 | 1.78 ± 0.07 | 1.54 ± 0.18 | 5.64 ± 0.49 | 4.91 ± 0.28 | 5.61 ± 1.33 |
| α-Eudesmol | 24.92 | 1659 | 2.13 ± 0.01 | 2.39 ± 0.03 | 2.10 ± 0.18 | 0.90 ± 0.10 | 1.31 ± 0.13 | 1.28 ± 0.16 |
| Cadalene | 25.23 | 1673 | 2.08 ± 0.18 | 2.80 ± 0.04 | 2.50 ± 0.16 | 2.25 ± 0.25 | 2.67 ± 0.25 | 2.21 ± 0.30 |
| epi-α-Bisabolol | 25.60 | 1689 | 0.61 ± 0.02 | 0.45 ± 0.01 | 0.57 ± 0.05 | 1.52 ± 0.16 | 1.40 ± 0.21 | 1.53 ± 0.88 |
| Compound | Plant Part | Growing Media | Plant Part × Growing Media |
|---|---|---|---|
| β-Pinene | *** | ns | ns |
| m-Cymene | *** | ns | ns |
| p-Cymene | *** | ns | ns |
| Eucalyptol | ns | ns | ns |
| cis-Linalool oxide | *** | ** | ** |
| α-Terpinolene | *** | ** | ** |
| Linalool | *** | * | * |
| 1,2-Dihydrolinalool | ** | * | ns |
| Camphor | *** | ns | ns |
| Pinocarvone | *** | ns | ns |
| Borneol | *** | * | ns |
| p-Cymen-8-ol | *** | ns | ns |
| α-Terpineol | *** | ** | * |
| Myrtenol | *** | ns | ns |
| Verbenone | ns | ns | ns |
| Bornyl formate | *** | ns | ns |
| Linalyl acetate | *** | ns | * |
| Lavandulyl acetate | *** | ** | ns |
| Geranyl acetate | *** | ns | ns |
| α-Santalene | *** | ** | ** |
| γ-Cadinene | *** | *** | ns |
| β-Sesquiphellandrene | *** | ** | ** |
| Elemol | ns | ns | ns |
| Caryophyllene oxide | * | * | ns |
| τ-Cadinol | *** | ns | ns |
| α-Eudesmol | *** | * | ns |
| Cadalene | ns | * | ns |
| epi-α-Bisabolol | ** | ns | ns |
| Growing Media | Name |
|---|---|
| 100% peat + chemical fertilizer | P + F |
| 40% peat + 50% bark + 10% sewage sludge compost | PBC |
| 40% peat + 50% bark + 10% sewage sludge compost + chemical fertilizer | PBC + F |
| Parameters | Peat (P) | Bark (B) | Compost (C) | PBC |
|---|---|---|---|---|
| pH (H2O, 1:2, v:v) | 6.40 | 5.20 | 7.50 | 6.30 |
| Salinity (g NaCl dm−3) | 0.29 | 0.15 | 3.92 | 0.84 |
| NO3-N (mg dm−3) | 7 | 5 | 290 | 16 |
| P (mg dm−3) | 21 | 38 | 596 | 118 |
| K (mg dm−3) | 28 | 185 | 3013 | 610 |
| Ca (mg dm−3) | 1574 | 319 | 1730 | 1314 |
| Mg (mg dm−3) | 131 | 75 | 625 | 167 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zawadzińska, A.; Wesołowska, A.; Skutnik, E.; Rabiza-Świder, J.; Salachna, P. Changes in Growth and Chemical Composition of the Essential Oil from Flowers and Leafy Stems of Lavandula angustifolia Grown in Media Amended with Bark and Sewage Sludge. Molecules 2025, 30, 4545. https://doi.org/10.3390/molecules30234545
Zawadzińska A, Wesołowska A, Skutnik E, Rabiza-Świder J, Salachna P. Changes in Growth and Chemical Composition of the Essential Oil from Flowers and Leafy Stems of Lavandula angustifolia Grown in Media Amended with Bark and Sewage Sludge. Molecules. 2025; 30(23):4545. https://doi.org/10.3390/molecules30234545
Chicago/Turabian StyleZawadzińska, Agnieszka, Aneta Wesołowska, Ewa Skutnik, Julita Rabiza-Świder, and Piotr Salachna. 2025. "Changes in Growth and Chemical Composition of the Essential Oil from Flowers and Leafy Stems of Lavandula angustifolia Grown in Media Amended with Bark and Sewage Sludge" Molecules 30, no. 23: 4545. https://doi.org/10.3390/molecules30234545
APA StyleZawadzińska, A., Wesołowska, A., Skutnik, E., Rabiza-Świder, J., & Salachna, P. (2025). Changes in Growth and Chemical Composition of the Essential Oil from Flowers and Leafy Stems of Lavandula angustifolia Grown in Media Amended with Bark and Sewage Sludge. Molecules, 30(23), 4545. https://doi.org/10.3390/molecules30234545

