Topical Collection "Artificial Intelligence in Oncology"

Editors

Prof. Dr. Andreas Stadlbauer
E-Mail Website
Guest Editor
1. Department of Neurosurg, Friedrich-Alexander University of Erlangen Nürnberg, Erlangen, Germany
2. Institute of Medical Radiology, University Clinic St. Pölten, Karl Landsteiner University of Health Sciences, 3100 St. Pölten, Austria
Interests: metabolic imaging; brain tumors; Warburg effect; reverse Warburg effect; tumor microinvironment; metabolic coupling; energy metabolism; magentic resonance imaging; Förster resonance energy transfer imaging; artificial intelligence; deep learning
Special Issues, Collections and Topics in MDPI journals
Prof. Dr. Anke Meyer-Baese
E-Mail Website
Collection Editor
Dept. of Scientific Computing, The Florida State University, 400 Dirac Science Library, Tallahassee, FL 32306-4120, USA
Interests: breast MRI; breast tumors
Special Issues, Collections and Topics in MDPI journals
Dr. Max Zimmermann
E-Mail Website
Collection Editor
Department of Preclinical Imaging and Radiopharmacy, University of Tübingen, Tübingen, Germany
Interests: breast cancer; glioblastoma
Special Issues, Collections and Topics in MDPI journals

Topical Collection Information

Dear Colleagues, 

Artificial intelligence (AI) comprises a type of computer science that develops software programs for intelligent execution of tasks or decision making. These approaches allow for bridging the gap between the acquisition of data and its meaningful interpretation. Consequently, artificial intelligence has demonstrated outstanding capabilities for the resolution of a variety of biomedical problems, including cancer, over the past decade. 

Machine learning is a subfield of AI and applies mathematical and statistical algorithms to improve computer performance. Deep learning, a subfield of machine learning, is based on artificial neural networks with representation learning that supports automatic feature extraction and provides high flexibility. 

Artificial intelligence can play an essential role in a wide variety of aspects of oncology: tumor detection and segmentation, histopathological diagnosis, tracking tumor development, clinical decision making as well as cancer therapy development and validation or prognosis prediction. 

This Topical Collection will highlight several of the above issues. We welcome submissions of research and review articles addressing several facets of AI in both basic and clinical cancer research.

Prof. Dr. Andreas Stadlbauer
Prof. Dr. Anke Meyer-Baese
Dr. Max Zimmermann
Collection Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the collection website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Cancers is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • artificial intelligence
  • deep learning
  • machine learning
  • oncology
  • personalized medicine

Published Papers (32 papers)

2022

Jump to: 2021

Article
Radiophysiomics: Brain Tumors Classification by Machine Learning and Physiological MRI Data
Cancers 2022, 14(10), 2363; https://doi.org/10.3390/cancers14102363 - 10 May 2022
Viewed by 328
Abstract
The precise initial characterization of contrast-enhancing brain tumors has significant consequences for clinical outcomes. Various novel neuroimaging methods have been developed to increase the specificity of conventional magnetic resonance imaging (cMRI) but also the increased complexity of data analysis. Artificial intelligence offers new [...] Read more.
The precise initial characterization of contrast-enhancing brain tumors has significant consequences for clinical outcomes. Various novel neuroimaging methods have been developed to increase the specificity of conventional magnetic resonance imaging (cMRI) but also the increased complexity of data analysis. Artificial intelligence offers new options to manage this challenge in clinical settings. Here, we investigated whether multiclass machine learning (ML) algorithms applied to a high-dimensional panel of radiomic features from advanced MRI (advMRI) and physiological MRI (phyMRI; thus, radiophysiomics) could reliably classify contrast-enhancing brain tumors. The recently developed phyMRI technique enables the quantitative assessment of microvascular architecture, neovascularization, oxygen metabolism, and tissue hypoxia. A training cohort of 167 patients suffering from one of the five most common brain tumor entities (glioblastoma, anaplastic glioma, meningioma, primary CNS lymphoma, or brain metastasis), combined with nine common ML algorithms, was used to develop overall 135 classifiers. Multiclass classification performance was investigated using tenfold cross-validation and an independent test cohort. Adaptive boosting and random forest in combination with advMRI and phyMRI data were superior to human reading in accuracy (0.875 vs. 0.850), precision (0.862 vs. 0.798), F-score (0.774 vs. 0.740), AUROC (0.886 vs. 0.813), and classification error (5 vs. 6). The radiologists, however, showed a higher sensitivity (0.767 vs. 0.750) and specificity (0.925 vs. 0.902). We demonstrated that ML-based radiophysiomics could be helpful in the clinical routine diagnosis of contrast-enhancing brain tumors; however, a high expenditure of time and work for data preprocessing requires the inclusion of deep neural networks. Full article
Show Figures

Figure 1

Article
Multiparametric 18F-FDG PET/MRI-Based Radiomics for Prediction of Pathological Complete Response to Neoadjuvant Chemotherapy in Breast Cancer
Cancers 2022, 14(7), 1727; https://doi.org/10.3390/cancers14071727 - 29 Mar 2022
Viewed by 473
Abstract
Background: The aim of this study was to assess whether multiparametric 18F-FDG PET/MRI-based radiomics analysis is able to predict pathological complete response in breast cancer patients and hence potentially enhance pretherapeutic patient stratification. Methods: A total of 73 female patients (mean age [...] Read more.
Background: The aim of this study was to assess whether multiparametric 18F-FDG PET/MRI-based radiomics analysis is able to predict pathological complete response in breast cancer patients and hence potentially enhance pretherapeutic patient stratification. Methods: A total of 73 female patients (mean age 49 years; range 27–77 years) with newly diagnosed, therapy-naive breast cancer underwent simultaneous 18F-FDG PET/MRI and were included in this retrospective study. All PET/MRI datasets were imported to dedicated software (ITK-SNAP v. 3.6.0) for lesion annotation using a semi-automated method. Pretreatment biopsy specimens were used to determine tumor histology, tumor and nuclear grades, and immunohistochemical status. Histopathological results from surgical tumor specimens were used as the reference standard to distinguish between complete pathological response (pCR) and noncomplete pathological response. An elastic net was employed to select the most important radiomic features prior to model development. Sensitivity, specificity, positive predictive value, negative predictive value, and accuracy were calculated for each model. Results: The best results in terms of AUCs and NPV for predicting complete pathological response in the entire cohort were obtained by the combination of all MR sequences and PET (0.8 and 79.5%, respectively), and no significant differences from the other models were observed. In further subgroup analyses, combining all MR and PET data, the best AUC (0.94) for predicting complete pathologic response was obtained in the HR+/HER2− group. No difference between results with/without the inclusion of PET characteristics was observed in the TN/HER2+ group, each leading to an AUC of 0.92 for all MR and all MR + PET datasets. Conclusion: 18F-FDG PET/MRI enables comprehensive high-quality radiomics analysis for the prediction of pCR in breast cancer patients, especially in those with HR+/HER2− receptor status. Full article
Show Figures

Figure 1

Article
Hyperspectral Imaging for Tissue Classification after Advanced Stage Ovarian Cancer Surgery—A Pilot Study
Cancers 2022, 14(6), 1422; https://doi.org/10.3390/cancers14061422 - 10 Mar 2022
Viewed by 642
Abstract
The most important prognostic factor for the survival of advanced-stage epithelial ovarian cancer (EOC) is the completeness of cytoreductive surgery (CRS). Therefore, an intraoperative technique to detect microscopic tumors would be of great value. The aim of this pilot study is to assess [...] Read more.
The most important prognostic factor for the survival of advanced-stage epithelial ovarian cancer (EOC) is the completeness of cytoreductive surgery (CRS). Therefore, an intraoperative technique to detect microscopic tumors would be of great value. The aim of this pilot study is to assess the feasibility of near-infrared hyperspectral imaging (HSI) for EOC detection in ex vivo tissue samples. Images were collected during CRS in 11 patients in the wavelength range of 665–975 nm, and processed by calibration, normalization, and noise filtering. A linear support vector machine (SVM) was employed to classify healthy and tumorous tissue (defined as >50% tumor cells). Classifier performance was evaluated using leave-one-out cross-validation. Images of 26 tissue samples from 10 patients were included, containing 26,446 data points that were matched to histopathology. Tumorous tissue could be classified with an area under the curve of 0.83, a sensitivity of 0.81, a specificity of 0.70, and Matthew’s correlation coefficient of 0.41. This study paves the way to in vivo and intraoperative use of HSI during CRS. Hyperspectral imaging can scan a whole tissue surface in a fast and non-contact way. Our pilot study demonstrates that HSI and SVM learning can be used to discriminate EOC from surrounding tissue. Full article
Show Figures

Figure 1

Review
Recent Advances of Deep Learning for Computational Histopathology: Principles and Applications
Cancers 2022, 14(5), 1199; https://doi.org/10.3390/cancers14051199 - 25 Feb 2022
Viewed by 765
Abstract
With the remarkable success of digital histopathology, we have witnessed a rapid expansion of the use of computational methods for the analysis of digital pathology and biopsy image patches. However, the unprecedented scale and heterogeneous patterns of histopathological images have presented critical computational [...] Read more.
With the remarkable success of digital histopathology, we have witnessed a rapid expansion of the use of computational methods for the analysis of digital pathology and biopsy image patches. However, the unprecedented scale and heterogeneous patterns of histopathological images have presented critical computational bottlenecks requiring new computational histopathology tools. Recently, deep learning technology has been extremely successful in the field of computer vision, which has also boosted considerable interest in digital pathology applications. Deep learning and its extensions have opened several avenues to tackle many challenging histopathological image analysis problems including color normalization, image segmentation, and the diagnosis/prognosis of human cancers. In this paper, we provide a comprehensive up-to-date review of the deep learning methods for digital H&E-stained pathology image analysis. Specifically, we first describe recent literature that uses deep learning for color normalization, which is one essential research direction for H&E-stained histopathological image analysis. Followed by the discussion of color normalization, we review applications of the deep learning method for various H&E-stained image analysis tasks such as nuclei and tissue segmentation. We also summarize several key clinical studies that use deep learning for the diagnosis and prognosis of human cancers from H&E-stained histopathological images. Finally, online resources and open research problems on pathological image analysis are also provided in this review for the convenience of researchers who are interested in this exciting field. Full article
Show Figures

Figure 1

Article
A Deep Learning Model for Cervical Cancer Screening on Liquid-Based Cytology Specimens in Whole Slide Images
Cancers 2022, 14(5), 1159; https://doi.org/10.3390/cancers14051159 - 24 Feb 2022
Viewed by 1241
Abstract
Liquid-based cytology (LBC) for cervical cancer screening is now more common than the conventional smears, which when digitised from glass slides into whole-slide images (WSIs), opens up the possibility of artificial intelligence (AI)-based automated image analysis. Since conventional screening processes by cytoscreeners and [...] Read more.
Liquid-based cytology (LBC) for cervical cancer screening is now more common than the conventional smears, which when digitised from glass slides into whole-slide images (WSIs), opens up the possibility of artificial intelligence (AI)-based automated image analysis. Since conventional screening processes by cytoscreeners and cytopathologists using microscopes is limited in terms of human resources, it is important to develop new computational techniques that can automatically and rapidly diagnose a large amount of specimens without delay, which would be of great benefit for clinical laboratories and hospitals. The goal of this study was to investigate the use of a deep learning model for the classification of WSIs of LBC specimens into neoplastic and non-neoplastic. To do so, we used a dataset of 1605 cervical WSIs. We evaluated the model on three test sets with a combined total of 1468 WSIs, achieving ROC AUCs for WSI diagnosis in the range of 0.89–0.96, demonstrating the promising potential use of such models for aiding screening processes. Full article
Show Figures

Figure 1

Article
Diagnosing Ovarian Cancer on MRI: A Preliminary Study Comparing Deep Learning and Radiologist Assessments
Cancers 2022, 14(4), 987; https://doi.org/10.3390/cancers14040987 - 16 Feb 2022
Viewed by 973
Abstract
Background: This study aimed to compare deep learning with radiologists’ assessments for diagnosing ovarian carcinoma using MRI. Methods: This retrospective study included 194 patients with pathologically confirmed ovarian carcinomas or borderline tumors and 271 patients with non-malignant lesions who underwent MRI between January [...] Read more.
Background: This study aimed to compare deep learning with radiologists’ assessments for diagnosing ovarian carcinoma using MRI. Methods: This retrospective study included 194 patients with pathologically confirmed ovarian carcinomas or borderline tumors and 271 patients with non-malignant lesions who underwent MRI between January 2015 and December 2020. T2WI, DWI, ADC map, and fat-saturated contrast-enhanced T1WI were used for the analysis. A deep learning model based on a convolutional neural network (CNN) was trained using 1798 images from 146 patients with malignant tumors and 1865 images from 219 patients with non-malignant lesions for each sequence, and we tested with 48 and 52 images of patients with malignant and non-malignant lesions, respectively. The sensitivity, specificity, accuracy, and AUC were compared between the CNN and interpretations of three experienced radiologists. Results: The CNN of each sequence had a sensitivity of 0.77–0.85, specificity of 0.77–0.92, accuracy of 0.81–0.87, and an AUC of 0.83–0.89, and it achieved a diagnostic performance equivalent to the radiologists. The CNN showed the highest diagnostic performance on the ADC map among all sequences (specificity = 0.85; sensitivity = 0.77; accuracy = 0.81; AUC = 0.89). Conclusion: The CNNs provided a diagnostic performance that was non-inferior to the radiologists for diagnosing ovarian carcinomas on MRI. Full article
Show Figures

Figure 1

Article
Development of High-Resolution Dedicated PET-Based Radiomics Machine Learning Model to Predict Axillary Lymph Node Status in Early-Stage Breast Cancer
Cancers 2022, 14(4), 950; https://doi.org/10.3390/cancers14040950 - 14 Feb 2022
Viewed by 544
Abstract
Purpose of the Report: Accurate clinical axillary evaluation plays an important role in the diagnosis and treatment planning for early-stage breast cancer (BC). This study aimed to develop a scalable, non-invasive and robust machine learning model for predicting of the pathological node status [...] Read more.
Purpose of the Report: Accurate clinical axillary evaluation plays an important role in the diagnosis and treatment planning for early-stage breast cancer (BC). This study aimed to develop a scalable, non-invasive and robust machine learning model for predicting of the pathological node status using dedicated-PET integrating the clinical characteristics in early-stage BC. Materials and Methods: A total of 420 BC patients confirmed by postoperative pathology were retrospectively analyzed. 18F-fluorodeoxyglucose (18F-FDG) Mammi-PET, ultrasound, physical examination, Lymph-PET, and clinical characteristics were analyzed. The least absolute shrinkage and selection operator (LASSO) regression analysis were used in developing prediction models. The characteristic curve (ROC) of the area under receiver-operator (AUC) and DeLong test were used to evaluate and compare the performance of the models. The clinical utility of the models was determined via decision curve analysis (DCA). Then, a nomogram was developed based on the model with the best predictive efficiency and clinical utility and was validated using the calibration plots. Results: A total of 290 patients were enrolled in this study. The AUC of the integrated model diagnosed performance was 0.94 (95% confidence interval (CI), 0.91–0.97) in the training set (n = 203) and 0.93 (95% CI, 0.88–0.99) in the validation set (n = 87) (both p < 0.05). In clinical N0 subgroup, the negative predictive value reached 96.88%, and in clinical N1 subgroup, the positive predictive value reached 92.73%. Conclusions: The use of a machine learning integrated model can greatly improve the true positive and true negative rate of identifying clinical axillary lymph node status in early-stage BC. Full article
Show Figures

Figure 1

Review
Advances in and the Applicability of Machine Learning-Based Screening and Early Detection Approaches for Cancer: A Primer
Cancers 2022, 14(3), 623; https://doi.org/10.3390/cancers14030623 - 26 Jan 2022
Cited by 1 | Viewed by 719
Abstract
Despite the efforts of the past decades, cancer is still among the key drivers of global mortality. To increase the detection rates, screening programs and other efforts to improve early detection were initiated to cover the populations at a particular risk for developing [...] Read more.
Despite the efforts of the past decades, cancer is still among the key drivers of global mortality. To increase the detection rates, screening programs and other efforts to improve early detection were initiated to cover the populations at a particular risk for developing a specific malignant condition. These diagnostic approaches have, so far, mostly relied on conventional diagnostic methods and have made little use of the vast amounts of clinical and diagnostic data that are routinely being collected along the diagnostic pathway. Practitioners have lacked the tools to handle this ever-increasing flood of data. Only recently, the clinical field has opened up more for the opportunities that come with the systematic utilisation of high-dimensional computational data analysis. We aim to introduce the reader to the theoretical background of machine learning (ML) and elaborate on the established and potential use cases of ML algorithms in screening and early detection. Furthermore, we assess and comment on the relevant challenges and misconceptions of the applicability of ML-based diagnostic approaches. Lastly, we emphasise the need for a clear regulatory framework to responsibly introduce ML-based diagnostics in clinical practice and routine care. Full article
Show Figures

Figure 1

Article
Machine Learning to Discern Interactive Clusters of Risk Factors for Late Recurrence of Metastatic Breast Cancer
Cancers 2022, 14(1), 253; https://doi.org/10.3390/cancers14010253 - 05 Jan 2022
Viewed by 538
Abstract
Background: Risk of metastatic recurrence of breast cancer after initial diagnosis and treatment depends on the presence of a number of risk factors. Although most univariate risk factors have been identified using classical methods, machine-learning methods are also being used to tease out [...] Read more.
Background: Risk of metastatic recurrence of breast cancer after initial diagnosis and treatment depends on the presence of a number of risk factors. Although most univariate risk factors have been identified using classical methods, machine-learning methods are also being used to tease out non-obvious contributors to a patient’s individual risk of developing late distant metastasis. Bayesian-network algorithms can identify not only risk factors but also interactions among these risks, which consequently may increase the risk of developing metastatic breast cancer. We proposed to apply a previously developed machine-learning method to discern risk factors of 5-, 10- and 15-year metastases. Methods: We applied a previously validated algorithm named the Markov Blanket and Interactive Risk Factor Learner (MBIL) to the electronic health record (EHR)-based Lynn Sage Database (LSDB) from the Lynn Sage Comprehensive Breast Center at Northwestern Memorial Hospital. This algorithm provided an output of both single and interactive risk factors of 5-, 10-, and 15-year metastases from the LSDB. We individually examined and interpreted the clinical relevance of these interactions based on years to metastasis and reliance on interactivity between risk factors. Results: We found that, with lower alpha values (low interactivity score), the prevalence of variables with an independent influence on long-term metastasis was higher (i.e., HER2, TNEG). As the value of alpha increased to 480, stronger interactions were needed to define clusters of factors that increased the risk of metastasis (i.e., ER, smoking, race, alcohol usage). Conclusion: MBIL identified single and interacting risk factors of metastatic breast cancer, many of which were supported by clinical evidence. These results strongly recommend the development of further large data studies with different databases to validate the degree to which some of these variables impact metastatic breast cancer in the long term. Full article
Show Figures

Figure 1

Article
Delta-Radiomics Predicts Response to First-Line Oxaliplatin-Based Chemotherapy in Colorectal Cancer Patients with Liver Metastases
Cancers 2022, 14(1), 241; https://doi.org/10.3390/cancers14010241 - 04 Jan 2022
Viewed by 754
Abstract
The purpose of this paper is to develop and validate a delta-radiomics score to predict the response of individual colorectal cancer liver metastases (lmCRC) to first-line FOLFOX chemotherapy. Three hundred one lmCRC were manually segmented on both CT performed at baseline and after [...] Read more.
The purpose of this paper is to develop and validate a delta-radiomics score to predict the response of individual colorectal cancer liver metastases (lmCRC) to first-line FOLFOX chemotherapy. Three hundred one lmCRC were manually segmented on both CT performed at baseline and after the first cycle of first-line FOLFOX, and 107 radiomics features were computed by subtracting textural features of CT at baseline from those at timepoint 1 (TP1). LmCRC were classified as nonresponders (R−) if they showed progression of disease (PD), according to RECIST1.1, before 8 months, and as responders (R+), otherwise. After feature selection, we developed a decision tree statistical model trained using all lmCRC coming from one hospital. The final output was a delta-radiomics signature subsequently validated on an external dataset. Sensitivity, specificity, positive (PPV), and negative (NPV) predictive values in correctly classifying individual lesions were assessed on both datasets. Per-lesion sensitivity, specificity, PPV, and NPV were 99%, 94%, 95%, 99%, 85%, 92%, 90%, and 87%, respectively, in the training and validation datasets. The delta-radiomics signature was able to reliably predict R− lmCRC, which were wrongly classified by lesion RECIST as R+ at TP1, (93%, averaging training and validation set, versus 67% of RECIST). The delta-radiomics signature developed in this study can reliably predict the response of individual lmCRC to oxaliplatin-based chemotherapy. Lesions forecasted as poor or nonresponders by the signature could be further investigated, potentially paving the way to lesion-specific therapies. Full article
Show Figures

Figure 1

2021

Jump to: 2022

Article
Feasibility of Synthetic Computed Tomography Images Generated from Magnetic Resonance Imaging Scans Using Various Deep Learning Methods in the Planning of Radiation Therapy for Prostate Cancer
Cancers 2022, 14(1), 40; https://doi.org/10.3390/cancers14010040 - 23 Dec 2021
Viewed by 1102
Abstract
We aimed to evaluate and compare the qualities of synthetic computed tomography (sCT) generated by various deep-learning methods in volumetric modulated arc therapy (VMAT) planning for prostate cancer. Simulation computed tomography (CT) and T2-weighted simulation magnetic resonance image from 113 patients were used [...] Read more.
We aimed to evaluate and compare the qualities of synthetic computed tomography (sCT) generated by various deep-learning methods in volumetric modulated arc therapy (VMAT) planning for prostate cancer. Simulation computed tomography (CT) and T2-weighted simulation magnetic resonance image from 113 patients were used in the sCT generation by three deep-learning approaches: generative adversarial network (GAN), cycle-consistent GAN (CycGAN), and reference-guided CycGAN (RgGAN), a new model which performed further adjustment of sCTs generated by CycGAN with available paired images. VMAT plans on the original simulation CT images were recalculated on the sCTs and the dosimetric differences were evaluated. For soft tissue, a significant difference in the mean Hounsfield unites (HUs) was observed between the original CT images and only sCTs from GAN (p = 0.03). The mean relative dose differences for planning target volumes or organs at risk were within 2% among the sCTs from the three deep-learning approaches. The differences in dosimetric parameters for D98% and D95% from original CT were lowest in sCT from RgGAN. In conclusion, HU conservation for soft tissue was poorest for GAN. There was the trend that sCT generated from the RgGAN showed best performance in dosimetric conservation D98% and D95% than sCTs from other methodologies. Full article
Show Figures

Figure 1

Review
A Comprehensive Survey on Deep-Learning-Based Breast Cancer Diagnosis
Cancers 2021, 13(23), 6116; https://doi.org/10.3390/cancers13236116 - 04 Dec 2021
Cited by 3 | Viewed by 1245
Abstract
Breast cancer is now the most frequently diagnosed cancer in women, and its percentage is gradually increasing. Optimistically, there is a good chance of recovery from breast cancer if identified and treated at an early stage. Therefore, several researchers have established deep-learning-based automated [...] Read more.
Breast cancer is now the most frequently diagnosed cancer in women, and its percentage is gradually increasing. Optimistically, there is a good chance of recovery from breast cancer if identified and treated at an early stage. Therefore, several researchers have established deep-learning-based automated methods for their efficiency and accuracy in predicting the growth of cancer cells utilizing medical imaging modalities. As of yet, few review studies on breast cancer diagnosis are available that summarize some existing studies. However, these studies were unable to address emerging architectures and modalities in breast cancer diagnosis. This review focuses on the evolving architectures of deep learning for breast cancer detection. In what follows, this survey presents existing deep-learning-based architectures, analyzes the strengths and limitations of the existing studies, examines the used datasets, and reviews image pre-processing techniques. Furthermore, a concrete review of diverse imaging modalities, performance metrics and results, challenges, and research directions for future researchers is presented. Full article
Show Figures

Figure 1

Review
Scope of Artificial Intelligence in Gastrointestinal Oncology
Cancers 2021, 13(21), 5494; https://doi.org/10.3390/cancers13215494 - 01 Nov 2021
Viewed by 1281
Abstract
Gastrointestinal cancers are among the leading causes of death worldwide, with over 2.8 million deaths annually. Over the last few decades, advancements in artificial intelligence technologies have led to their application in medicine. The use of artificial intelligence in endoscopic procedures is a [...] Read more.
Gastrointestinal cancers are among the leading causes of death worldwide, with over 2.8 million deaths annually. Over the last few decades, advancements in artificial intelligence technologies have led to their application in medicine. The use of artificial intelligence in endoscopic procedures is a significant breakthrough in modern medicine. Currently, the diagnosis of various gastrointestinal cancer relies on the manual interpretation of radiographic images by radiologists and various endoscopic images by endoscopists. This can lead to diagnostic variabilities as it requires concentration and clinical experience in the field. Artificial intelligence using machine or deep learning algorithms can provide automatic and accurate image analysis and thus assist in diagnosis. In the field of gastroenterology, the application of artificial intelligence can be vast from diagnosis, predicting tumor histology, polyp characterization, metastatic potential, prognosis, and treatment response. It can also provide accurate prediction models to determine the need for intervention with computer-aided diagnosis. The number of research studies on artificial intelligence in gastrointestinal cancer has been increasing rapidly over the last decade due to immense interest in the field. This review aims to review the impact, limitations, and future potentials of artificial intelligence in screening, diagnosis, tumor staging, treatment modalities, and prediction models for the prognosis of various gastrointestinal cancers. Full article
Article
Breast Invasive Ductal Carcinoma Classification on Whole Slide Images with Weakly-Supervised and Transfer Learning
Cancers 2021, 13(21), 5368; https://doi.org/10.3390/cancers13215368 - 26 Oct 2021
Cited by 2 | Viewed by 1481
Abstract
Invasive ductal carcinoma (IDC) is the most common form of breast cancer. For the non-operative diagnosis of breast carcinoma, core needle biopsy has been widely used in recent years for the evaluation of histopathological features, as it can provide a definitive diagnosis between [...] Read more.
Invasive ductal carcinoma (IDC) is the most common form of breast cancer. For the non-operative diagnosis of breast carcinoma, core needle biopsy has been widely used in recent years for the evaluation of histopathological features, as it can provide a definitive diagnosis between IDC and benign lesion (e.g., fibroadenoma), and it is cost effective. Due to its widespread use, it could potentially benefit from the use of AI-based tools to aid pathologists in their pathological diagnosis workflows. In this paper, we trained invasive ductal carcinoma (IDC) whole slide image (WSI) classification models using transfer learning and weakly-supervised learning. We evaluated the models on a core needle biopsy (n = 522) test set as well as three surgical test sets (n = 1129) obtaining ROC AUCs in the range of 0.95–0.98. The promising results demonstrate the potential of applying such models as diagnostic aid tools for pathologists in clinical practice. Full article
Show Figures

Figure 1

Article
Skin Lesion Classification Based on Surface Fractal Dimensions and Statistical Color Cluster Features Using an Ensemble of Machine Learning Techniques
Cancers 2021, 13(21), 5256; https://doi.org/10.3390/cancers13215256 - 20 Oct 2021
Cited by 1 | Viewed by 974
Abstract
(1) Background: An approach for skin cancer recognition and classification by implementation of a novel combination of features and two classifiers, as an auxiliary diagnostic method, is proposed. (2) Methods: The predictions are made by k-nearest neighbor with a 5-fold cross validation algorithm [...] Read more.
(1) Background: An approach for skin cancer recognition and classification by implementation of a novel combination of features and two classifiers, as an auxiliary diagnostic method, is proposed. (2) Methods: The predictions are made by k-nearest neighbor with a 5-fold cross validation algorithm and a neural network model to assist dermatologists in the diagnosis of cancerous skin lesions. As a main contribution, this work proposes a descriptor that combines skin surface fractal dimension and relevant color area features for skin lesion classification purposes. The surface fractal dimension is computed using a 2D generalization of Higuchi’s method. A clustering method allows for the selection of the relevant color distribution in skin lesion images by determining the average percentage of color areas within the nevi and melanoma lesion areas. In a classification stage, the Higuchi fractal dimensions (HFDs) and the color features are classified, separately, using a kNN-CV algorithm. In addition, these features are prototypes for a Radial basis function neural network (RBFNN) classifier. The efficiency of our algorithms was verified by utilizing images belonging to the 7-Point, Med-Node, and PH2 databases; (3) Results: Experimental results show that the accuracy of the proposed RBFNN model in skin cancer classification is 95.42% for 7-Point, 94.71% for Med-Node, and 94.88% for PH2, which are all significantly better than that of the kNN algorithm. (4) Conclusions: 2D Higuchi’s surface fractal features have not been previously used for skin lesion classification purpose. We used fractal features further correlated to color features to create a RBFNN classifier that provides high accuracies of classification. Full article
Show Figures

Graphical abstract

Review
Artificial Intelligence in Brain Tumour Surgery—An Emerging Paradigm
Cancers 2021, 13(19), 5010; https://doi.org/10.3390/cancers13195010 - 07 Oct 2021
Cited by 4 | Viewed by 1754
Abstract
Artificial intelligence (AI) platforms have the potential to cause a paradigm shift in brain tumour surgery. Brain tumour surgery augmented with AI can result in safer and more effective treatment. In this review article, we explore the current and future role of AI [...] Read more.
Artificial intelligence (AI) platforms have the potential to cause a paradigm shift in brain tumour surgery. Brain tumour surgery augmented with AI can result in safer and more effective treatment. In this review article, we explore the current and future role of AI in patients undergoing brain tumour surgery, including aiding diagnosis, optimising the surgical plan, providing support during the operation, and better predicting the prognosis. Finally, we discuss barriers to the successful clinical implementation, the ethical concerns, and we provide our perspective on how the field could be advanced. Full article
Show Figures

Figure 1

Article
Melanoma Recognition by Fusing Convolutional Blocks and Dynamic Routing between Capsules
Cancers 2021, 13(19), 4974; https://doi.org/10.3390/cancers13194974 - 03 Oct 2021
Cited by 2 | Viewed by 1130
Abstract
Skin cancer is one of the most common types of cancers in the world, with melanoma being the most lethal form. Automatic melanoma diagnosis from skin images has recently gained attention within the machine learning community, due to the complexity involved. In the [...] Read more.
Skin cancer is one of the most common types of cancers in the world, with melanoma being the most lethal form. Automatic melanoma diagnosis from skin images has recently gained attention within the machine learning community, due to the complexity involved. In the past few years, convolutional neural network models have been commonly used to approach this issue. This type of model, however, presents disadvantages that sometimes hamper its application in real-world situations, e.g., the construction of transformation-invariant models and their inability to consider spatial hierarchies between entities within an image. Recently, Dynamic Routing between Capsules architecture (CapsNet) has been proposed to overcome such limitations. This work is aimed at proposing a new architecture which combines convolutional blocks with a customized CapsNet architecture, allowing for the extraction of richer abstract features. This architecture uses high-quality 299×299×3 skin lesion images, and a hyper-tuning of the main parameters is performed in order to ensure effective learning under limited training data. An extensive experimental study on eleven image datasets was conducted where the proposal significantly outperformed several state-of-the-art models. Finally, predictions made by the model were validated through the application of two modern model-agnostic interpretation tools. Full article
Show Figures

Figure 1

Article
Machine-Learning Assisted Discrimination of Precancerous and Cancerous from Healthy Oral Tissue Based on Multispectral Autofluorescence Lifetime Imaging Endoscopy
Cancers 2021, 13(19), 4751; https://doi.org/10.3390/cancers13194751 - 23 Sep 2021
Cited by 1 | Viewed by 1205
Abstract
Multispectral autofluorescence lifetime imaging (maFLIM) can be used to clinically image a plurality of metabolic and biochemical autofluorescence biomarkers of oral epithelial dysplasia and cancer. This study tested the hypothesis that maFLIM-derived autofluorescence biomarkers can be used in machine-learning (ML) models to discriminate [...] Read more.
Multispectral autofluorescence lifetime imaging (maFLIM) can be used to clinically image a plurality of metabolic and biochemical autofluorescence biomarkers of oral epithelial dysplasia and cancer. This study tested the hypothesis that maFLIM-derived autofluorescence biomarkers can be used in machine-learning (ML) models to discriminate dysplastic and cancerous from healthy oral tissue. Clinical widefield maFLIM endoscopy imaging of cancerous and dysplastic oral lesions was performed at two clinical centers. Endoscopic maFLIM images from 34 patients acquired at one of the clinical centers were used to optimize ML models for automated discrimination of dysplastic and cancerous from healthy oral tissue. A computer-aided detection system was developed and applied to a set of endoscopic maFLIM images from 23 patients acquired at the other clinical center, and its performance was quantified in terms of the area under the receiver operating characteristic curve (ROC-AUC). Discrimination of dysplastic and cancerous from healthy oral tissue was achieved with an ROC-AUC of 0.81. This study demonstrates the capabilities of widefield maFLIM endoscopy to clinically image autofluorescence biomarkers that can be used in ML models to discriminate dysplastic and cancerous from healthy oral tissue. Widefield maFLIM endoscopy thus holds potential for automated in situ detection of oral dysplasia and cancer. Full article
Show Figures

Figure 1

Review
Reinforcement Learning for Precision Oncology
Cancers 2021, 13(18), 4624; https://doi.org/10.3390/cancers13184624 - 15 Sep 2021
Cited by 2 | Viewed by 1001
Abstract
Precision oncology is grounded in the increasing understanding of genetic and molecular mechanisms that underly malignant disease and offer different treatment pathways for the individual patient. The growing complexity of medical data has led to the implementation of machine learning techniques that are [...] Read more.
Precision oncology is grounded in the increasing understanding of genetic and molecular mechanisms that underly malignant disease and offer different treatment pathways for the individual patient. The growing complexity of medical data has led to the implementation of machine learning techniques that are vastly applied for risk assessment and outcome prediction using either supervised or unsupervised learning. Still largely overlooked is reinforcement learning (RL) that addresses sequential tasks by exploring the underlying dynamics of an environment and shaping it by taking actions in order to maximize cumulative rewards over time, thereby achieving optimal long-term outcomes. Recent breakthroughs in RL demonstrated remarkable results in gameplay and autonomous driving, often achieving human-like or even superhuman performance. While this type of machine learning holds the potential to become a helpful decision support tool, it comes with a set of distinctive challenges that need to be addressed to ensure applicability, validity and safety. In this review, we highlight recent advances of RL focusing on studies in oncology and point out current challenges and pitfalls that need to be accounted for in future studies in order to successfully develop RL-based decision support systems for precision oncology. Full article
Show Figures

Figure 1

Article
A Comprehensive Evaluation and Benchmarking of Convolutional Neural Networks for Melanoma Diagnosis
Cancers 2021, 13(17), 4494; https://doi.org/10.3390/cancers13174494 - 06 Sep 2021
Cited by 4 | Viewed by 1114
Abstract
Melanoma is the most invasive skin cancer with the highest risk of death. While it is a serious skin cancer, it is highly curable if detected early. Melanoma diagnosis is difficult, even for experienced dermatologists, due to the wide range of morphologies in [...] Read more.
Melanoma is the most invasive skin cancer with the highest risk of death. While it is a serious skin cancer, it is highly curable if detected early. Melanoma diagnosis is difficult, even for experienced dermatologists, due to the wide range of morphologies in skin lesions. Given the rapid development of deep learning algorithms for melanoma diagnosis, it is crucial to validate and benchmark these models, which is the main challenge of this work. This research presents a new benchmarking and selection approach based on the multi-criteria analysis method (MCDM), which integrates entropy and the preference ranking organization method for enrichment of evaluations (PROMETHEE) methods. The experimental study is carried out in four phases. Firstly, 19 convolution neural networks (CNNs) are trained and evaluated on a public dataset of 991 dermoscopic images. Secondly, to obtain the decision matrix, 10 criteria, including accuracy, classification error, precision, sensitivity, specificity, F1-score, false-positive rate, false-negative rate, Matthews correlation coefficient (MCC), and the number of parameters are established. Third, entropy and PROMETHEE methods are integrated to determine the weights of criteria and rank the models. Fourth, the proposed benchmarking framework is validated using the VIKOR method. The obtained results reveal that the ResNet101 model is selected as the optimal diagnosis model for melanoma in our case study data. Thus, the presented benchmarking framework is proven to be useful at exposing the optimal melanoma diagnosis model targeting to ease the selection process of the proper convolutional neural network architecture. Full article
Show Figures

Figure 1

Article
Automated PD-L1 Scoring Using Artificial Intelligence in Head and Neck Squamous Cell Carcinoma
Cancers 2021, 13(17), 4409; https://doi.org/10.3390/cancers13174409 - 31 Aug 2021
Cited by 2 | Viewed by 1297
Abstract
Immune checkpoint inhibitors (ICI) represent a new therapeutic approach in recurrent and metastatic head and neck squamous cell carcinoma (HNSCC). The patient selection for the PD-1/PD-L1 inhibitor therapy is based on the degree of PD-L1 expression in immunohistochemistry reflected by manually determined PD-L1 [...] Read more.
Immune checkpoint inhibitors (ICI) represent a new therapeutic approach in recurrent and metastatic head and neck squamous cell carcinoma (HNSCC). The patient selection for the PD-1/PD-L1 inhibitor therapy is based on the degree of PD-L1 expression in immunohistochemistry reflected by manually determined PD-L1 scores. However, manual scoring shows variability between different investigators and is influenced by cognitive and visual traps and could therefore negatively influence treatment decisions. Automated PD-L1 scoring could facilitate reliable and reproducible results. Our novel approach uses three neural networks sequentially applied for fully automated PD-L1 scoring of all three established PD-L1 scores: tumor proportion score (TPS), combined positive score (CPS) and tumor-infiltrating immune cell score (ICS). Our approach was validated using WSIs of HNSCC cases and compared with manual PD-L1 scoring by human investigators. The inter-rater correlation (ICC) between human and machine was very similar to the human-human correlation. The ICC was slightly higher between human-machine compared to human-human for the CPS and ICS, but a slightly lower for the TPS. Our study provides deeper insights into automated PD-L1 scoring by neural networks and its limitations. This may serve as a basis to improve ICI patient selection in the future. Full article
Show Figures

Figure 1

Article
Validation of a Point-of-Care Optical Coherence Tomography Device with Machine Learning Algorithm for Detection of Oral Potentially Malignant and Malignant Lesions
Cancers 2021, 13(14), 3583; https://doi.org/10.3390/cancers13143583 - 17 Jul 2021
Cited by 2 | Viewed by 1006
Abstract
Non-invasive strategies that can identify oral malignant and dysplastic oral potentially-malignant lesions (OPML) are necessary in cancer screening and long-term surveillance. Optical coherence tomography (OCT) can be a rapid, real time and non-invasive imaging method for frequent patient surveillance. Here, we report the [...] Read more.
Non-invasive strategies that can identify oral malignant and dysplastic oral potentially-malignant lesions (OPML) are necessary in cancer screening and long-term surveillance. Optical coherence tomography (OCT) can be a rapid, real time and non-invasive imaging method for frequent patient surveillance. Here, we report the validation of a portable, robust OCT device in 232 patients (lesions: 347) in different clinical settings. The device deployed with algorithm-based automated diagnosis, showed efficacy in delineation of oral benign and normal (n = 151), OPML (n = 121), and malignant lesions (n = 75) in community and tertiary care settings. This study showed that OCT images analyzed by automated image processing algorithm could distinguish the dysplastic-OPML and malignant lesions with a sensitivity of 95% and 93%, respectively. Furthermore, we explored the ability of multiple (n = 14) artificial neural network (ANN) based feature extraction techniques for delineation high grade-OPML (moderate/severe dysplasia). The support vector machine (SVM) model built over ANN, delineated high-grade dysplasia with sensitivity of 83%, which in turn, can be employed to triage patients for tertiary care. The study provides evidence towards the utility of the robust and low-cost OCT instrument as a point-of-care device in resource-constrained settings and the potential clinical application of device in screening and surveillance of oral cancer. Full article
Show Figures

Figure 1

Article
Deep Learning with Quantitative Features of Magnetic Resonance Images to Predict Biochemical Recurrence of Radical Prostatectomy: A Multi-Center Study
Cancers 2021, 13(12), 3098; https://doi.org/10.3390/cancers13123098 - 21 Jun 2021
Cited by 2 | Viewed by 1064
Abstract
Biochemical recurrence (BCR) occurs in up to 27% of patients after radical prostatectomy (RP) and often compromises oncologic survival. To determine whether imaging signatures on clinical prostate magnetic resonance imaging (MRI) could noninvasively characterize biochemical recurrence and optimize treatment. We retrospectively enrolled 485 [...] Read more.
Biochemical recurrence (BCR) occurs in up to 27% of patients after radical prostatectomy (RP) and often compromises oncologic survival. To determine whether imaging signatures on clinical prostate magnetic resonance imaging (MRI) could noninvasively characterize biochemical recurrence and optimize treatment. We retrospectively enrolled 485 patients underwent RP from 2010 to 2017 in three institutions. Quantitative and interpretable features were extracted from T2 delineated tumors. Deep learning-based survival analysis was then applied to develop the deep-radiomic signature (DRS-BCR). The model’s performance was further evaluated, in comparison with conventional clinical models. The model achieved C-index of 0.802 in both primary and validating cohorts, outweighed the CAPRA-S score (0.677), NCCN model (0.586) and Gleason grade group systems (0.583). With application analysis, DRS-BCR model can significantly reduce false-positive predictions, so that nearly one-third of patients could benefit from the model by avoiding overtreatments. The deep learning-based survival analysis assisted quantitative image features from MRI performed well in prediction for BCR and has significant potential in optimizing systemic neoadjuvant or adjuvant therapies for prostate cancer patients. Full article
Show Figures

Figure 1

Reply
Reply to Orlhac, F.; Buvat, I. Comment on “Ibrahim et al. The Effects of In-Plane Spatial Resolution on CT-Based Radiomic Features’ Stability with and without ComBat Harmonization. Cancers 2021, 13, 1848”
Cancers 2021, 13(12), 3080; https://doi.org/10.3390/cancers13123080 - 21 Jun 2021
Cited by 5 | Viewed by 915
Abstract
We would like to thank Orlhac and Buvat [...] Full article
Show Figures

Figure 1

Comment
Comment on Ibrahim et al. The Effects of In-Plane Spatial Resolution on CT-Based Radiomic Features’ Stability with and without ComBat Harmonization. Cancers 2021, 13, 1848
Cancers 2021, 13(12), 3037; https://doi.org/10.3390/cancers13123037 - 18 Jun 2021
Cited by 2 | Viewed by 630
Abstract
We read with great interest the paper by Ibrahim et al. [...] Full article
Show Figures

Figure 1

Article
Modeling-Based Decision Support System for Radical Prostatectomy Versus External Beam Radiotherapy for Prostate Cancer Incorporating an In Silico Clinical Trial and a Cost–Utility Study
Cancers 2021, 13(11), 2687; https://doi.org/10.3390/cancers13112687 - 29 May 2021
Viewed by 1410
Abstract
The aim of this study is to build a decision support system (DSS) to select radical prostatectomy (RP) or external beam radiotherapy (EBRT) for low- to intermediate-risk prostate cancer patients. We used an individual state-transition model based on predictive models for estimating tumor [...] Read more.
The aim of this study is to build a decision support system (DSS) to select radical prostatectomy (RP) or external beam radiotherapy (EBRT) for low- to intermediate-risk prostate cancer patients. We used an individual state-transition model based on predictive models for estimating tumor control and toxicity probabilities. We performed analyses on a synthetically generated dataset of 1000 patients with realistic clinical parameters, externally validated by comparison to randomized clinical trials, and set up an in silico clinical trial for elderly patients. We assessed the cost-effectiveness (CE) of the DSS for treatment selection by comparing it to randomized treatment allotment. Using the DSS, 47.8% of synthetic patients were selected for RP and 52.2% for EBRT. During validation, differences with the simulations of late toxicity and biochemical failure never exceeded 2%. The in silico trial showed that for elderly patients, toxicity has more influence on the decision than TCP, and the predicted QoL depends on the initial erectile function. The DSS is estimated to result in cost savings (EUR 323 (95% CI: EUR 213–433)) and more quality-adjusted life years (QALYs; 0.11 years, 95% CI: 0.00–0.22) than randomized treatment selection. Full article
Show Figures

Graphical abstract

Review
Enhancing Clinical Translation of Cancer Using Nanoinformatics
Cancers 2021, 13(10), 2481; https://doi.org/10.3390/cancers13102481 - 19 May 2021
Cited by 8 | Viewed by 1229
Abstract
Application of drugs in high doses has been required due to the limitations of no specificity, short circulation half-lives, as well as low bioavailability and solubility. Higher toxicity is the result of high dosage administration of drug molecules that increase the side effects [...] Read more.
Application of drugs in high doses has been required due to the limitations of no specificity, short circulation half-lives, as well as low bioavailability and solubility. Higher toxicity is the result of high dosage administration of drug molecules that increase the side effects of the drugs. Recently, nanomedicine, that is the utilization of nanotechnology in healthcare with clinical applications, has made many advancements in the areas of cancer diagnosis and therapy. To overcome the challenge of patient-specificity as well as time- and dose-dependency of drug administration, artificial intelligence (AI) can be significantly beneficial for optimization of nanomedicine and combinatorial nanotherapy. AI has become a tool for researchers to manage complicated and big data, ranging from achieving complementary results to routine statistical analyses. AI enhances the prediction precision of treatment impact in cancer patients and specify estimation outcomes. Application of AI in nanotechnology leads to a new field of study, i.e., nanoinformatics. Besides, AI can be coupled with nanorobots, as an emerging technology, to develop targeted drug delivery systems. Furthermore, by the advancements in the nanomedicine field, AI-based combination therapy can facilitate the understanding of diagnosis and therapy of the cancer patients. The main objectives of this review are to discuss the current developments, possibilities, and future visions in naoinformatics, for providing more effective treatment for cancer patients. Full article
Show Figures

Figure 1

Article
Prediction of Microvascular Invasion in Hepatocellular Carcinoma via Deep Learning: A Multi-Center and Prospective Validation Study
Cancers 2021, 13(10), 2368; https://doi.org/10.3390/cancers13102368 - 14 May 2021
Cited by 10 | Viewed by 1289
Abstract
Microvascular invasion (MVI) is a critical risk factor for postoperative recurrence of hepatocellular carcinoma (HCC). Preknowledge of MVI would assist tailored surgery planning in HCC management. In this multicenter study, we aimed to explore the validity of deep learning (DL) in MVI prediction [...] Read more.
Microvascular invasion (MVI) is a critical risk factor for postoperative recurrence of hepatocellular carcinoma (HCC). Preknowledge of MVI would assist tailored surgery planning in HCC management. In this multicenter study, we aimed to explore the validity of deep learning (DL) in MVI prediction using two imaging modalities—contrast-enhanced computed tomography (CE-CT) and gadoxetic acid-enhanced magnetic resonance imaging (EOB-MRI). A total of 750 HCCs were enrolled from five Chinese tertiary hospitals. Retrospective CE-CT (n = 306, collected between March, 2013 and July, 2019) and EOB-MRI (n = 329, collected between March, 2012 and March, 2019) data were used to train two DL models, respectively. Prospective external validation (n = 115, collected between July, 2015 and February, 2018) was performed to assess the developed models. Furthermore, DL-based attention maps were utilized to visualize high-risk MVI regions. Our findings revealed that the EOB-MRI-based DL model achieved superior prediction outcome to the CE-CT-based DL model (area under receiver operating characteristics curve (AUC): 0.812 vs. 0.736, p = 0.038; sensitivity: 70.4% vs. 57.4%, p = 0.015; specificity: 80.3% vs. 86.9%, p = 0.052). DL attention maps could visualize peritumoral high-risk areas with genuine histopathologic confirmation. Both DL models could stratify high and low-risk groups regarding progression free survival and overall survival (p < 0.05). Thus, DL can be an efficient tool for MVI prediction, and EOB-MRI was proven to be the modality with advantage for MVI assessment than CE-CT. Full article
Show Figures

Figure 1

Article
A Neural Network Approach to Identify Glioblastoma Progression Phenotype from Multimodal MRI
Cancers 2021, 13(9), 2006; https://doi.org/10.3390/cancers13092006 - 21 Apr 2021
Cited by 1 | Viewed by 973
Abstract
The phenotypes of glioblastoma (GBM) progression after treatment are heterogeneous in both imaging and clinical prognosis. This study aims to apply radiomics and neural network analysis to preoperative multimodal MRI data to characterize tumor progression phenotypes. We retrospectively reviewed 41 patients with newly [...] Read more.
The phenotypes of glioblastoma (GBM) progression after treatment are heterogeneous in both imaging and clinical prognosis. This study aims to apply radiomics and neural network analysis to preoperative multimodal MRI data to characterize tumor progression phenotypes. We retrospectively reviewed 41 patients with newly diagnosed cerebral GBM from 2009–2016 who comprised the machine learning training group, and prospectively included 18 patients from 2017–2018 for data validation. Preoperative MRI examinations included structural MRI, diffusion tensor imaging, and perfusion MRI. Tumor progression patterns were categorized as diffuse or localized. A supervised machine learning model and neural network-based models (VGG16 and ResNet50) were used to establish the prediction model of the pattern of progression. The diffuse progression pattern showed a significantly worse prognosis regarding overall survival (p = 0.032). A total of 153 of the 841 radiomic features were used to classify progression patterns using different machine learning models with an overall accuracy of 81% (range: 77.5–82.5%, AUC = 0.83–0.89). Further application of the pretrained ResNet50 and VGG 16 neural network models demonstrated an overall accuracy of 93.1 and 96.1%. The progression patterns of GBM are an important prognostic factor and can potentially be predicted by combining multimodal MR radiomics with machine learning. Full article
Show Figures

Graphical abstract

Article
The Effects of In-Plane Spatial Resolution on CT-Based Radiomic Features’ Stability with and without ComBat Harmonization
Cancers 2021, 13(8), 1848; https://doi.org/10.3390/cancers13081848 - 13 Apr 2021
Cited by 14 | Viewed by 1202
Abstract
While handcrafted radiomic features (HRFs) have shown promise in the field of personalized medicine, many hurdles hinder its incorporation into clinical practice, including but not limited to their sensitivity to differences in acquisition and reconstruction parameters. In this study, we evaluated the effects [...] Read more.
While handcrafted radiomic features (HRFs) have shown promise in the field of personalized medicine, many hurdles hinder its incorporation into clinical practice, including but not limited to their sensitivity to differences in acquisition and reconstruction parameters. In this study, we evaluated the effects of differences in in-plane spatial resolution (IPR) on HRFs, using a phantom dataset (n = 14) acquired on two scanner models. Furthermore, we assessed the effects of interpolation methods (IMs), the choice of a new unified in-plane resolution (NUIR), and ComBat harmonization on the reproducibility of HRFs. The reproducibility of HRFs was significantly affected by variations in IPR, with pairwise concordant HRFs, as measured by the concordance correlation coefficient (CCC), ranging from 42% to 95%. The number of concordant HRFs (CCC > 0.9) after resampling varied depending on (i) the scanner model, (ii) the IM, and (iii) the NUIR. The number of concordant HRFs after ComBat harmonization depended on the variations between the batches harmonized. The majority of IMs resulted in a higher number of concordant HRFs compared to ComBat harmonization, and the combination of IMs and ComBat harmonization did not yield a significant benefit. Our developed framework can be used to assess the reproducibility and harmonizability of RFs. Full article
Show Figures

Figure 1

Article
ImmunoAIzer: A Deep Learning-Based Computational Framework to Characterize Cell Distribution and Gene Mutation in Tumor Microenvironment
Cancers 2021, 13(7), 1659; https://doi.org/10.3390/cancers13071659 - 01 Apr 2021
Cited by 4 | Viewed by 1384
Abstract
Spatial distribution of tumor infiltrating lymphocytes (TILs) and cancer cells in the tumor microenvironment (TME) along with tumor gene mutation status are of vital importance to the guidance of cancer immunotherapy and prognoses. In this work, we developed a deep learning-based computational framework, [...] Read more.
Spatial distribution of tumor infiltrating lymphocytes (TILs) and cancer cells in the tumor microenvironment (TME) along with tumor gene mutation status are of vital importance to the guidance of cancer immunotherapy and prognoses. In this work, we developed a deep learning-based computational framework, termed ImmunoAIzer, which involves: (1) the implementation of a semi-supervised strategy to train a cellular biomarker distribution prediction network (CBDPN) to make predictions of spatial distributions of CD3, CD20, PanCK, and DAPI biomarkers in the tumor microenvironment with an accuracy of 90.4%; (2) using CBDPN to select tumor areas on hematoxylin and eosin (H&E) staining tissue slides and training a multilabel tumor gene mutation detection network (TGMDN), which can detect APC, KRAS, and TP53 mutations with area-under-the-curve (AUC) values of 0.76, 0.77, and 0.79. These findings suggest that ImmunoAIzer could provide comprehensive information of cell distribution and tumor gene mutation status of colon cancer patients efficiently and less costly; hence, it could serve as an effective auxiliary tool for the guidance of immunotherapy and prognoses. The method is also generalizable and has the potential to be extended for application to other types of cancers other than colon cancer. Full article
Show Figures

Graphical abstract

Article
Breast Tumor Characterization Using [18F]FDG-PET/CT Imaging Combined with Data Preprocessing and Radiomics
Cancers 2021, 13(6), 1249; https://doi.org/10.3390/cancers13061249 - 12 Mar 2021
Cited by 8 | Viewed by 1638
Abstract
Background: This study investigated the performance of ensemble learning holomic models for the detection of breast cancer, receptor status, proliferation rate, and molecular subtypes from [18F]FDG-PET/CT images with and without incorporating data pre-processing algorithms. Additionally, machine learning (ML) models were [...] Read more.
Background: This study investigated the performance of ensemble learning holomic models for the detection of breast cancer, receptor status, proliferation rate, and molecular subtypes from [18F]FDG-PET/CT images with and without incorporating data pre-processing algorithms. Additionally, machine learning (ML) models were compared with conventional data analysis using standard uptake value lesion classification. Methods: A cohort of 170 patients with 173 breast cancer tumors (132 malignant, 38 benign) was examined with [18F]FDG-PET/CT. Breast tumors were segmented and radiomic features were extracted following the imaging biomarker standardization initiative (IBSI) guidelines combined with optimized feature extraction. Ensemble learning including five supervised ML algorithms was utilized in a 100-fold Monte Carlo (MC) cross-validation scheme. Data pre-processing methods were incorporated prior to machine learning, including outlier and borderline noisy sample detection, feature selection, and class imbalance correction. Feature importance in each model was assessed by calculating feature occurrence by the R-squared method across MC folds. Results: Cross validation demonstrated high performance of the cancer detection model (80% sensitivity, 78% specificity, 80% accuracy, 0.81 area under the curve (AUC)), and of the triple negative tumor identification model (85% sensitivity, 78% specificity, 82% accuracy, 0.82 AUC). The individual receptor status and luminal A/B subtype models yielded low performance (0.46–0.68 AUC). SUVmax model yielded 0.76 AUC in cancer detection and 0.70 AUC in predicting triple negative subtype. Conclusions: Predictive models based on [18F]FDG-PET/CT images in combination with advanced data pre-processing steps aid in breast cancer diagnosis and in ML-based prediction of the aggressive triple negative breast cancer subtype. Full article
Show Figures

Figure 1

Back to TopTop