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Artificial intelligence (AI) is considered one of the core technologies of the Fourth
Industrial Revolution that is currently taking place. These approaches bridge the gap
between collecting data and interpreting them meaningfully, and have demonstrated
outstanding capabilities that have surpassed most previous classification and regression
methods. In addition to a variety of industrial applications, AI has made significant
contributions to solving a variety of biomedical problems, including cancer, over the
past decade.

Deep learning (DL), a branch of machine learning (ML) and AI, is based on artificial
neural networks but differs from them in the depth and number of hidden layers. Due to
its ability to learn from data, DL technology is increasingly used in various applications of
daily use such as visual recognition, text analysis and translation, cyber security or image
and text generation, but, of course, also in healthcare.

AI, and in particular DL, can play a helpful role in a variety of aspects of oncology:
tumor detection segmentation and classification, histopathological diagnosis, tracking
of tumor development, clinical decision making and validation of cancer therapies or
prognosis predictions. In oncology, there is a strong need for tools that can improve both
the routines of clinicians and patient care. In a decision-making area as crucial as healthcare,
transparency and reliability are essential to gain the trust of physicians and patients. The
scientific community therefore has the task of examining the application of AI algorithms
with regard to the high requirements for medical applications.

This topical collection, which has been running since the beginning of 2021, has thus
far included a total of 44 articles. In 2022, 22 articles (18 original articles and 4 reviews)
were published in it. The range of topics is broad, and the articles deal with the most
diverse aspects of the state of the art and future perspectives in the field of clinical research
on the application of “Artificial Intelligence in Oncology”. Of the 18 original articles,
7 dealt with the application of ML and DL to classify different aspects of tumors, followed by
6 articles on prediction. The remaining five articles dealt with image augmentation, quality
assessment, data extraction, tumor detection, and screening.

Two reviews gave an overview of new developments in the use of DL in computational
histopathology. The great success of DL technology in the field of computer vision has
boosted the considerable interest in digital pathology analysis. In their review, Wu et al. [1]
aimed to provide a comprehensive and up-to-date review of the deep learning methods for
digital H&E-stained pathology image analysis, including color normalization, nuclei/tissue
segmentation, and cancer diagnosis and prognosis. They also provided online resources
and discussed open research problems in pathological image analysis. They concluded
that the existing studies demonstrated that deep learning is a promising tool to assist
clinicians in the clinical management of human cancers. The second review focused on a
comprehensive summary of algorithms for AI-supported detection and classification of
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gastrointestinal cancers [2]. Wong et al. provided an overview of the current histological
practices in anatomical pathology laboratories with respect to challenges faced in image
preprocessing, presented the existing AI-based algorithms, discussed their limitations and
presented clinical insight with respect to the application of AI in the early detection and
diagnosis of gastrointestinal cancer.

One review addressed the role of ML in improving screening. Screening and early
detection of cancer are key factors in reducing the burden of this disease. Conventional
diagnostic approaches have made little use of the vast amounts of clinical and diagnostic
data that are routinely being collected along the diagnostic pathway. Computational and
“intelligent” support is required to handle this ever-increasing flood of data. Benning
et al. [3] gave an overview of the theoretical foundations of ML approaches and elaborated
on the established and potential use cases of ML algorithms in screening and early detection.
They discussed the relevant challenges and misconceptions of the applicability of ML-
based diagnostic approaches and emphasized the need for a clear regulatory framework to
responsibly introduce ML-based screening and early detection approaches in the clinical
routine. They concluded that ML has the potential to become another important driver in
addressing the global burden of cancer if scientists and practitioners consider identifying
and assembling appropriate input data within an ethical and regulatory framework to
ensure data safety and security.

ML techniques also offer a promising solution for efficiently extracting clinically
relevant information from unstructured text found in patient documents. This was the
subject of the fourth review by Estevez et al. [4]. The extraction of real-world data (e.g.,
pathology reports and clinical notes) from unstructured text in electronic health records
by humans is both difficult and costly. The remarkable advances in natural language
processing and ML techniques provide promising solutions for a variety of information
extraction tasks. However, this also poses particular challenges in terms of assessing validity
and generalizability to different cohorts of interest. The authors proposed a research-centric
evaluation framework for model developers, ML-extracted data users and other real-world
data stakeholders in order to enable effective and accurate use of ML to extract real-
world data.

Two of the seven original articles on classification dealt with the diagnosis of ovarian
cancer. Saida et al. [5] explored the clinical applicability of a convolutional neural network
(CNN) as a reading assist for the differentiation of ovarian carcinomas and borderline
tumors on MRI, and compared the diagnostic performance with interpretations by ex-
perienced radiologists. The CNN in combination with maps of the apparent diffusion
coefficient (ADC) showed the highest diagnostic performance among all sequences includ-
ing T2-weighted and contrast-enhanced T1-weighted MRI that was equivalent to that of
the radiologists. They concluded that, although diagnostic imaging of ovarian tumors is
complex, deep learning has shown good diagnostic performance for diagnosing ovarian
carcinomas, including borderline tumors.

The pilot study of van Vliet-Perez et al. [6] evaluated the feasibility of near-infrared
hyperspectral imaging to detect ovarian cancer in images of surgically removed tissue
samples. The authors compared the hyperspectral imaging data with histopathology in
order to train a linear support vector machine. They were able to classify tumorous tis-
sue with a sensitivity of 0.81 and a specificity of 0.70, and concluded that the technique
has the potential to enable real-time image guidance during advanced-stage ovarian can-
cer surgery in order to intraoperatively detect microscopic tumors, which would be of
great value.

Two publications from the group of Kanavati and Tsuneki evaluated the utility of DL
for the classification of whole-slide images. Kanavati et al. [7] used of a DL model composed
of a CNN and a recurrent neural network (RNN) for the classification of whole-slide images
of liquid-based cytology specimens into neoplastic and non-neoplastic for cervical cancer
screening. Their ensemble network was trained with 1605 cervical whole-slide images,
and the model was evaluated on three test sets with a combined total of 1468 cervical
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whole-slide images. They achieved an area under the receiver operating characteristic
curve (AUROC) in the range of 0.89–0.96 and concluded that it represents a promising
potential use of such models for aiding screening processes.

In their second paper [8], they used transfer and weakly supervised learning of a pre-
trained DL model (ImageNet) to classify prostate whole-slide images from transurethral
resection into prostate adenocarcinoma and benign (non-neoplastic) lesions. The models
were evaluated on test sets from transurethral prostate resection, needle biopsy and a
public dataset from The Cancer Genome Atlas (TCGA). They achieved an AUROC of up
to 0.984 in transurethral prostate resection test sets for adenocarcinoma and concluded on
the promising potential of their model in a practical histopathological diagnostic workflow
system to improve the efficiency of pathologists.

In two other publications, a preoperative classification of brain tumors using tra-
ditional ML algorithms and MRI data was performed. In meningioma patients, a high
Ki-67 proliferative index is associated with an increased recurrent risk. The study of
Zhao et al. [9] explored the value of radiomic features from contrast-enhanced MRI for the
preoperative classification of the Ki-67 index in meningioma patients into low-expressed
and high-expressed groups with a threshold of 5% using ML models. Their predictive
model showed a high diagnostic performance with an AUROC of 0.837 and an accuracy
of 0.810 in an internal test dataset as well as a moderate diagnostic performance with an
AUROC of 0.700 and an accuracy of 0.557 in an external test dataset. They concluded from
their results that the ML models can efficiently predict the Ki-67 index of meningioma
patients to facilitate the therapeutic management.

In the second study on brain tumor classification, Stadlbauer et al. [10] combined nine
traditional machine learning algorithms with a physiological MRI technique to investigate
the effectiveness for multiclass classification of the five most frequent contrast-enhancing
brain tumor entities in a clinical setting. They were able to demonstrate that their ML-
based approach named radiophysiomics was superior to both human reading and the
ML-based classification of conventional MRI data for several performance parameters,
including accuracy and classification error. The authors concluded that radiophysiomics
could be helpful in the routine diagnostics of contrast-enhancing brain tumors, but the high
expenditure of time and work for data processing associated with traditional ML-based
technology requires further automation using deep neural networks.

In the remaining publication on tumor classification, Minami et al. [11] developed a
tool to classify the depth of submucosal invasion in early colorectal cancer in endoscopic
images from preoperative colonoscopy using DL. A convolutional neural network was
trained with 706 endoscopic images from 91 patients. The diagnostic accuracy of the CNN
was evaluated using 394 images from 49 patients and found to be as high as that of a
skilled endoscopist. The authors concluded that endoscopic image recognition by DL
might be able to predict the submucosal invasion depth in early-stage colorectal cancer in
clinical practice.

Another important area of application of ML and DL algorithms in oncology is prediction,
e.g., of the response to therapies, overall survival or other meaningful clinical parameters.

Umutlu et al. [12] assessed whether multiparametric 18F-FDG PET/MRI-based ra-
diomics analysis is able to predict pathological complete response to neoadjuvant chemother-
apy in breast cancer patients and hence potentially enhance pretherapeutic patient stratifi-
cation. They included 73 patients with newly diagnosed, therapy-naïve breast cancer that
underwent simultaneous 18F-FDG PET/MRI examinations. Radiomic data of both 18F-FDG
PET and MRI (T2-weighted, ADC, dynamic contrast-enhanced) were evaluated separately
and in combination with a support vector machine model and 5-fold cross-validation. They
obtained the best results for predicting complete pathological response in the entire cohort
with the combination of the radiomic features of 18F-FDG PET and all MR sequences, with
an AUROC of 0.8. In further subgroup analyses, they obtained an AUROC of 0.94 for
predicting complete pathologic response in the HR+/HER2– group by combining PET
and all MR data. The authors concluded that 18F-FDG PET/MRI enables comprehensive
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high-quality radiomics analysis for the prediction of complete pathological response to
neoadjuvant chemotherapy in breast cancer patients, especially in those with HR+/HER2–
receptor status.

Giannini et al. [13] developed and validated a delta-radiomics score to predict the
response of individual colorectal cancer liver metastases to first-line treatment based on
the combination of 5-fluorouracil, leucovorin and oxaliplatin (FOLFOX) chemotherapy.
Radiomic features were computed by subtracting textural features of computed tomogra-
phy (CT) scans at baseline from those after the first cycle of first-line FOLFOX and used to
create four different ML algorithms including a support vector machine, logistic regression,
decision tree and random forest. The ML models were tested with an external dataset.
They obtained a sensitivity of 85% and a specificity of 92%. They concluded that their delta-
radiomics signature approach can reliably predict the response of individual colorectal
cancer liver metastases to oxaliplatin-based chemotherapy. Furthermore, lesions predicted
by the signature to be poor or non-responders could be further investigated, potentially
paving the way to lesion-specific therapies.

Jalalifar et al. [14] investigated the impact of tumor segmentation accuracy on the
efficacy of quantitative MRI biomarkers of radiotherapy outcome in patients with brain
metastases. They used less accurate but automatically generated tumor outlines and studied
the impact on the efficacy of the derived imaging biomarkers for radiotherapy response
prediction. They were able to demonstrate that while the effect of tumor delineation
accuracy is considerable for automatic contours with low accuracy, imaging biomarkers
and prediction models are rather robust to imperfections in the produced tumor masks. The
authors concluded that their positive outcome paves the way for adopting high-throughput
automatically generated tumor masks for discovering diagnostic and prognostic imaging
biomarkers in patients with brain metastases without sacrificing accuracy.

Hou et al. [15] constructed a DL prediction model (DeepSurv) based on CT radiomics
and key clinical features to generate a personalized survival curve for individual patients
with non-small cell lung cancer. Their results showed a good performance in discriminating
high and low risks of survival with C-index values between 0.74 and 0.75, and an AUROC
between 0.73 and 0.76, respectively. Furthermore, the authors generated personalized
survival curves, which could be intuitively applied for individuals in survival prediction
in clinical practice. They concluded that the proposed prediction model could benefit
physicians, patients and caregivers in managing non-small cell lung cancer and facilitate
personalized medicine.

The study of Gomez Marti et al. [16] investigated and clustered risk factors predicting
late recurrence of metastatic breast cancer. They applied a previously validated algorithm
named Markov Blanket and Interactive Risk Factor Learner (MBIL) to the electronic health
records of a publicly available clinical database of breast cancer. Their algorithm provided
an output of both single and interacting risk factors of 5-, 10- and 15-year metastases from
the database. The clinical relevance of these interactions based on years to metastasis
and the reliance on interactivity between risk factors were individually examined and
interpreted. They found that a lower interactivity score was associated with a higher
prevalence of variables with an independent influence on long-term metastasis (i.e., HER2,
TNEG). Increasing interactivity scores, however, required stronger interactions to define
clusters of factors that increased the risk of metastasis (i.e., ER, smoking, race, alcohol
usage). They concluded that their approach identified single and interacting risk factors
of metastatic breast cancer, many of which were supported by clinical evidence, and
recommended the development of further large data studies with different databases to
validate the degree to which some of these variables impact metastatic breast cancer in the
long term.

In another study, Cheng et al. [17] developed a scalable, non-invasive and robust ML
model for predicting the axillary lymph node status in early-stage breast cancer integrating
18F-FDG Mammi-PET, Lymph-PET, ultrasound, physical examination and clinical char-
acteristics. Least absolute shrinkage and selection operator (LASSO) regression analysis
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was used in developing the prediction models. In the next step, the authors developed a
nomogram based on this model with the best predictive efficiency and clinical utility. The
integrated model showed a high performance in identifying pN0 and pN1 with an AUROC
of 0.93 in an external validation set. For the clinical N0 subgroup, the negative predictive
value was 97%, and for the clinical N1 subgroup, the positive predictive value was 93%.
The authors concluded that the use of an integrated ML model can greatly improve the
true positive and true negative rate of identifying clinical axillary lymph node status in
early-stage breast cancer.

The articles published in 2022 in the topical collection “Artificial Intelligence in Oncol-
ogy” also showed that there are interesting applications of ML and DL in oncology beyond
classification and prediction.

The study of Brahim et al. [18] was also on the subject of improved diagnosis of
breast tumors. The authors proposed an approach for an automatic assessment of breast
positioning quality in screening mammography using CNNs in order to ensure an adequate
breast positioning quality according to predefined criteria. Their approach was intended
to assist radiology technicians in identifying inadequately positioned mammograms in
real time, reduce the number of returned patients and improve the efficiency of cancer
detection. For each predefined criterion, a specific CNN was separately trained and then
combined into an overall system that analyzes whether the breast is well positioned or
not, achieving an efficient accuracy of 96.5% for craniocaudal and 93.3% for mediolateral
oblique images. They concluded that their approach differs from already available studies
and commercial tools by taking into account more useful breast positioning criteria that
have to be considered by the expert, and thus providing more holistic assistance.

The purpose of the study of Son et al. [19] was to provide guidelines for collecting chest
CT scans to facilitate research on the automation of DL-based lung nodule detection. The
authors collected chest CT scans from 515 patients with lung nodules from three hospitals
and high-quality lung nodule annotations reviewed by radiologists, and included publicly
available data from LUNA16 in their experiments. They achieved a better performance
when the model was trained on the collected data rather than publicly available LUNA16
data, albeit with a large amount of data. However, they demonstrated that weight transfer
learning from pre-trained open data is very useful when it is difficult to collect large
amounts of data, and more than 100 patients are required to obtain a good performance.
They concluded that their study offers valuable insights for guiding data collection in
future lung nodule studies.

The study by Abazari et al. [20] is also in the field of medical imaging. They developed
a multi-scale computational framework to generate synthetic 18F-FDG PET images similar
to the real ones in different stages of solid tumor growth and angiogenesis. Their framework
is based on the bio-physiological phenomena of FDG radiotracer uptake in solid tumors
combining a biomathematical model and a generative adversarial network (GAN). They
achieved a structural similarity index measure of 0.72 and a peak signal-to-noise ratio of
28.53 for the generated PET sample and the experimental sample. With their results, the
authors demonstrated that a combination of biomathematical modeling and GAN-based
augmentation models provides a robust framework for the non-invasive and accurate
generation of synthetic PET images of solid tumors in different stages.

Torrente et al. [21] developed an AI-based tool for cancer patient data analysis that
assists clinicians in identifying the clinical factors associated with a poor prognosis, re-
lapse and survival as well as a prognostic model that stratifies patients by risk. For that
purpose, the authors evaluated clinical data from 5275 patients diagnosed with non-small
cell lung cancer, breast cancer and non-Hodgkin lymphoma in combination with clinical
parameters measured with a wearable device and quality of life questionnaire data. They
concluded that their AI tools have potential applications in clinical settings to improve risk
stratification, early detection and surveillance management of cancer patients.

Finally, in their paper, Böcking et al. [22] presented an AI-powered microscope-based
scanner that is able to identify cancer cells in smears from the oral cavity or in body cavity
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fluids and to determine the degree of malignancy of prostate cancer. Supervised ML
algorithms in combination with image features of stained nuclei as well as their DNA
content were used to estimate the degree of malignancy. The overall percentage of correct
device-derived diagnoses on oral smears was 91.3%, as compared to 75.0% for conventional,
subjective investigation. They concluded that their automated microscope-based scanner is
able to identify malignant cells in different types of human specimens with a diagnostic
accuracy comparable to that of subjective cytological assessment.

The studies published in the topical collection in 2022 impressively show the range of
possible and useful applications of ML and DL in oncology. AI will not only revolutionize
work processes in industrial manufacturing, but also, if carefully evaluated, have a major
impact in healthcare over the next few years. Gaining the acceptance and trust of clinicians
and patients in AI-based applications in the clinical routine will be crucial.

Author Contributions: Conceptualization, writing and editing: A.S. and A.M.-B. All authors have
read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Wu, Y.; Cheng, M.; Huang, S.; Pei, Z.; Zuo, Y.; Liu, J.; Yang, K.; Zhu, Q.; Zhang, J.; Hong, H.; et al. Recent Advances of Deep

Learning for Computational Histopathology: Principles and Applications. Cancers 2022, 14, 1199. [CrossRef] [PubMed]
2. Wong, A.N.N.; He, Z.; Leung, K.L.; To, C.C.K.; Wong, C.Y.; Wong, S.C.C.; Yoo, J.S.; Chan, C.K.R.; Chan, A.Z.; Lacambra, M.D.; et al.

Current Developments of Artificial Intelligence in Digital Pathology and Its Future Clinical Applications in Gastrointestinal
Cancers. Cancers 2022, 14, 3780. [CrossRef]

3. Benning, L.; Peintner, A.; Peintner, L. Advances in and the Applicability of Machine Learning-Based Screening and Early Detection
Approaches for Cancer: A Primer. Cancers 2022, 14, 623. [CrossRef]

4. Estevez, M.; Benedum, C.M.; Jiang, C.; Cohen, A.B.; Phadke, S.; Sarkar, S.; Bozkurt, S. Considerations for the Use of Machine
Learning Extracted Real-World Data to Support Evidence Generation: A Research-Centric Evaluation Framework. Cancers 2022,
14, 3063. [CrossRef]

5. Saida, T.; Mori, K.; Hoshiai, S.; Sakai, M.; Urushibara, A.; Ishiguro, T.; Minami, M.; Satoh, T.; Nakajima, T. Diagnosing Ovarian
Cancer on MRI: A Preliminary Study Comparing Deep Learning and Radiologist Assessments. Cancers 2022, 14, 987. [CrossRef]
[PubMed]

6. van Vliet-Pérez, S.M.; van de Berg, N.J.; Manni, F.; Lai, M.; Rijstenberg, L.; Hendriks, B.H.W.; Dankelman, J.; Ewing-Graham,
P.C.; Nieuwenhuyzen-de Boer, G.M.; van Beekhuizen, H.J. Hyperspectral Imaging for Tissue Classification after Advanced Stage
Ovarian Cancer Surgery—A Pilot Study. Cancers 2022, 14, 1422. [CrossRef] [PubMed]

7. Kanavati, F.; Hirose, N.; Ishii, T.; Fukuda, A.; Ichihara, S.; Tsuneki, M. A Deep Learning Model for Cervical Cancer Screening on
Liquid-Based Cytology Specimens in Whole Slide Images. Cancers 2022, 14, 1159. [CrossRef]

8. Tsuneki, M.; Abe, M.; Kanavati, F. Transfer Learning for Adenocarcinoma Classifications in the Transurethral Resection of Prostate
Whole-Slide Images. Cancers 2022, 14, 4744. [CrossRef]

9. Zhao, Y.; Xu, J.; Chen, B.; Cao, L.; Chen, C. Efficient Prediction of Ki-67 Proliferation Index in Meningiomas on MRI: From
Traditional Radiological Findings to a Machine Learning Approach. Cancers 2022, 14, 3637. [CrossRef]

10. Stadlbauer, A.; Marhold, F.; Oberndorfer, S.; Heinz, G.; Buchfelder, M.; Kinfe, T.M.; Meyer-Bäse, A. Radiophysiomics: Brain
Tumors Classification by Machine Learning and Physiological MRI Data. Cancers 2022, 14, 2363. [CrossRef]

11. Minami, S.; Saso, K.; Miyoshi, N.; Fujino, S.; Kato, S.; Sekido, Y.; Hata, T.; Ogino, T.; Takahashi, H.; Uemura, M.; et al. Diagnosis of
Depth of Submucosal Invasion in Colorectal Cancer with AI Using Deep Learning. Cancers 2022, 14, 5361. [CrossRef]

12. Umutlu, L.; Kirchner, J.; Bruckmann, N.-M.; Morawitz, J.; Antoch, G.; Ting, S.; Bittner, A.-K.; Hoffmann, O.; Häberle, L.;
Ruckhäberle, E.; et al. Multiparametric 18F-FDG PET/MRI-Based Radiomics for Prediction of Pathological Complete Response to
Neoadjuvant Chemotherapy in Breast Cancer. Cancers 2022, 14, 1727. [CrossRef]

13. Giannini, V.; Pusceddu, L.; Defeudis, A.; Nicoletti, G.; Cappello, G.; Mazzetti, S.; Sartore-Bianchi, A.; Siena, S.; Vanzulli, A.;
Rizzetto, F.; et al. Delta-Radiomics Predicts Response to First-Line Oxaliplatin-Based Chemotherapy in Colorectal Cancer Patients
with Liver Metastases. Cancers 2022, 14, 241. [CrossRef]

14. Jalalifar, S.A.; Soliman, H.; Sahgal, A.; Sadeghi-Naini, A. Impact of Tumour Segmentation Accuracy on Efficacy of Quantitative
MRI Biomarkers of Radiotherapy Outcome in Brain Metastasis. Cancers 2022, 14, 5133. [CrossRef]

15. Hou, K.-Y.; Chen, J.-R.; Wang, Y.-C.; Chiu, M.-H.; Lin, S.-P.; Mo, Y.-H.; Peng, S.-C.; Lu, C.-F. Radiomics-Based Deep Learning
Prediction of Overall Survival in Non-Small-Cell Lung Cancer Using Contrast-Enhanced Computed Tomography. Cancers 2022,
14, 3798. [CrossRef]

http://doi.org/10.3390/cancers14051199
http://www.ncbi.nlm.nih.gov/pubmed/35267505
http://doi.org/10.3390/cancers14153780
http://doi.org/10.3390/cancers14030623
http://doi.org/10.3390/cancers14133063
http://doi.org/10.3390/cancers14040987
http://www.ncbi.nlm.nih.gov/pubmed/35205735
http://doi.org/10.3390/cancers14061422
http://www.ncbi.nlm.nih.gov/pubmed/35326577
http://doi.org/10.3390/cancers14051159
http://doi.org/10.3390/cancers14194744
http://doi.org/10.3390/cancers14153637
http://doi.org/10.3390/cancers14102363
http://doi.org/10.3390/cancers14215361
http://doi.org/10.3390/cancers14071727
http://doi.org/10.3390/cancers14010241
http://doi.org/10.3390/cancers14205133
http://doi.org/10.3390/cancers14153798


Cancers 2023, 15, 1065 7 of 7

16. Gomez Marti, J.L.; Brufsky, A.; Wells, A.; Jiang, X. Machine Learning to Discern Interactive Clusters of Risk Factors for Late
Recurrence of Metastatic Breast Cancer. Cancers 2022, 14, 253. [CrossRef]

17. Cheng, J.; Ren, C.; Liu, G.; Shui, R.; Zhang, Y.; Li, J.; Shao, Z. Development of High-Resolution Dedicated PET-Based Radiomics
Machine Learning Model to Predict Axillary Lymph Node Status in Early-Stage Breast Cancer. Cancers 2022, 14, 950. [CrossRef]

18. Brahim, M.; Westerkamp, K.; Hempel, L.; Lehmann, R.; Hempel, D.; Philipp, P. Automated Assessment of Breast Positioning
Quality in Screening Mammography. Cancers 2022, 14, 4704. [CrossRef]

19. Son, J.W.; Hong, J.Y.; Kim, Y.; Kim, W.J.; Shin, D.-Y.; Choi, H.-S.; Bak, S.H.; Moon, K.M. How Many Private Data Are Needed for
Deep Learning in Lung Nodule Detection on CT Scans? A Retrospective Multicenter Study. Cancers 2022, 14, 3174. [CrossRef]

20. Abazari, M.A.; Soltani, M.; Moradi Kashkooli, F.; Raahemifar, K. Synthetic 18F-FDG PET Image Generation Using a Combination
of Biomathematical Modeling and Machine Learning. Cancers 2022, 14, 2786. [CrossRef]

21. Torrente, M.; Sousa, P.A.; Hernández, R.; Blanco, M.; Calvo, V.; Collazo, A.; Guerreiro, G.R.; Núñez, B.; Pimentao, J.;
Sánchez, J.C.; et al. An Artificial Intelligence-Based Tool for Data Analysis and Prognosis in Cancer Patients: Results from
the Clarify Study. Cancers 2022, 14, 4041. [CrossRef] [PubMed]

22. Böcking, A.; Friedrich, D.; Schramm, M.; Palcic, B.; Erbeznik, G. DNA Karyometry for Automated Detection of Cancer Cells.
Cancers 2022, 14, 4210. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.3390/cancers14010253
http://doi.org/10.3390/cancers14040950
http://doi.org/10.3390/cancers14194704
http://doi.org/10.3390/cancers14133174
http://doi.org/10.3390/cancers14112786
http://doi.org/10.3390/cancers14164041
http://www.ncbi.nlm.nih.gov/pubmed/36011034
http://doi.org/10.3390/cancers14174210
http://www.ncbi.nlm.nih.gov/pubmed/36077750

	References

