
Citation: Jalalifar, S.A.; Soliman, H.;

Sahgal, A.; Sadeghi-Naini, A. Impact

of Tumour Segmentation Accuracy

on Efficacy of Quantitative MRI

Biomarkers of Radiotherapy

Outcome in Brain Metastasis. Cancers

2022, 14, 5133. https://doi.org/

10.3390/cancers14205133

Academic Editors:

Andreas Stadlbauer,

Anke Meyer-Baese and

Max Zimmermann

Received: 20 September 2022

Accepted: 17 October 2022

Published: 20 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

cancers

Article

Impact of Tumour Segmentation Accuracy on Efficacy of
Quantitative MRI Biomarkers of Radiotherapy Outcome in
Brain Metastasis
Seyed Ali Jalalifar 1 , Hany Soliman 2,3,4, Arjun Sahgal 2,3,4 and Ali Sadeghi-Naini 1,2,4,*

1 Department of Electrical Engineering and Computer Science, Lassonde School of Engineering,
York University, Toronto, ON M3J 1P3, Canada

2 Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre,
Toronto, ON M4N 3M5, Canada

3 Department of Radiation Oncology, University of Toronto, Toronto, ON M5T 1P5, Canada
4 Physical Sciences Platform, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre,

Toronto, ON M4N 3M5, Canada
* Correspondence: asn@yorku.ca

Simple Summary: Radiotherapy is a major treatment option for patients with brain metastasis.
However, response to radiotherapy is highly varied among the patients, and it may take months
before the response of brain metastasis to radiotherapy is apparent on standard follow-up imaging.
This is not desirable, especially given the fact that patients diagnosed with brain metastasis suffer
from a short median survival. Recent studies have shown the high potential of machine learning
methods for analyzing quantitative imaging features (biomarkers) to predict the response of brain
metastasis before or early after radiotherapy. However, these methods require manual delineation
of individual tumours on imaging that is tedious and time-consuming, hindering further develop-
ment and widespread application of these techniques. Here, we investigated the impact of using
less accurate but automatically generated tumour outlines on the efficacy of the derived imaging
biomarkers for radiotherapy response prediction. Our findings demonstrate that while the effect
of tumour delineation accuracy is considerable for automatic contours with low accuracy, imaging
biomarkers and prediction models are rather robust to imperfections in the produced tumour masks.
The results of this study open the avenue to utilizing automatically generated tumour contours for
discovering imaging biomarkers without sacrificing their accuracy.

Abstract: Significantly affecting patients’ clinical course and quality of life, a growing number of
cancer cases are diagnosed with brain metastasis (BM) annually. Stereotactic radiotherapy is now a
major treatment option for patients with BM. However, it may take months before the local response
of BM to stereotactic radiation treatment is apparent on standard follow-up imaging. While machine
learning in conjunction with radiomics has shown great promise in predicting the local response
of BM before or early after radiotherapy, further development and widespread application of such
techniques has been hindered by their dependency on manual tumour delineation. In this study,
we explored the impact of using less-accurate automatically generated segmentation masks on the
efficacy of radiomic features for radiotherapy outcome prediction in BM. The findings of this study
demonstrate that while the effect of tumour delineation accuracy is substantial for segmentation
models with lower dice scores (dice score ≤ 0.85), radiomic features and prediction models are rather
resilient to imperfections in the produced tumour masks. Specifically, the selected radiomic features
(six shared features out of seven) and performance of the prediction model (accuracy of 80% versus
80%, AUC of 0.81 versus 0.78) were fairly similar for the ground-truth and automatically generated
segmentation masks, with dice scores close to 0.90. The positive outcome of this work paves the way
for adopting high-throughput automatically generated tumour masks for discovering diagnostic and
prognostic imaging biomarkers in BM without sacrificing accuracy.
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1. Introduction

While the exact incidence of brain metastasis (BM) is difficult to determine, about
70,000 to 400,000 new cases of BM are annually diagnosed in the United States alone [1]. The
incidence of BM appears to be ten times higher than the incidence of primary malignant
brain tumours [2]. Because of the accompanying neurologic symptoms, psychological
effects, and changes in oncologic treatment plans, the development of BM may significantly
affect a patient’s clinical course [3].

Radiation therapy, chemotherapy, immunotherapy, and surgery are the main treatment
options for the management of metastatic brain tumours. Because systemic therapy often
fails to penetrate the blood–brain barrier, local brain-directed therapies such as radiation or
neurosurgical resection are commonly used [4], although there has been some progress in
the use of systemic targeted therapy for the management of patients with BM [5]. Whole-
brain radiation therapy (WBRT), hypofractionated stereotactic radiotherapy (SRT), and
single-fraction stereotactic radiosurgery (SRS) are available options for radiotherapy. Apart
from these options, recent studies have shown that a combination of immunotherapy with
radiotherapy is associated with improved overall survival compared to radiotherapy alone
in patients with brain metastasis who received surgery for their primary cancer [6]. Spe-
cially, immunotherapy has shown significant control of intracranial metastasis in patients
with melanoma [6]. Moreover, a combination of immunotherapy, e.g., immune checkpoint
inhibitors, with radiation therapy has shown promise for the treatment of brain metastasis
in non-small-cell lung cancer [7,8]. Magnetic resonance imaging (MRI) is the primary imag-
ing modality used for diagnosis, treatment planning, and treatment outcome assessment
in BM. The conventional treatment planning and outcome evaluation process includes
obtaining MRI scans before (baseline) and after radiation therapy, during several follow-up
sessions. This procedure involves precise delineation of the tumour, which is often carried
out by experienced radiation oncologists and neuroradiologists. The response assessment
in neuro-oncology brain metastasis (RANO-BM) group [9] has developed standard criteria
for evaluating radiotherapy outcome in BM using serial MRI. The local response of BM to
stereotactic radiation therapy is determined by changes in tumour size on follow-up serial
imaging [9] and may be classified into two categories: local control (LC; shrinking or stable
tumour) and local failure (LF; enlarging tumour excluding adverse radiation effect). In case
of immunotherapy, the immunotherapy response assessment in neuro-oncology (iRANO),
a modification of RANO criteria, is used for response assessment [10].

Since the conventional response assessment is based on the changes in tumour size
following treatment, it may take months before a local response is apparent on standard
follow-up images. This is not desirable, especially given the fact that patients diagnosed
with BM suffer from a short median survival. To make things more complicated, lesion
enlargement after treatment on MRI is not necessarily a sign of tumour progression, but
also of a condition known as pseudoprogression due to adverse radiation effect [11].

To mitigate these complications, and since the local response is highly varied even
among the patients going through the same treatment regimen (because of the patient
and/or tumour-related factors), there have been efforts to develop a tailored treatment
strategy based on the patient’s subgroup and predicted survival [12]. Early efforts involved
stratifying patients based on factors such as age, performance status, control of primary tu-
mour, and extent of extracranial disease using recursive partitioning analysis (RPA) [13–15],
followed by more complicated stratification methods such as diagnosis-specific graded
prognostic assessment (DS-GPA) [12,16]. Significant prognostic factors such as the primary
site of cancer, age, and Karnofsky performance status (a score of 0–100 to quantify a pa-
tient’s ability to perform daily activities) are used to define the DS-GPA prognostic index.
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A GPA of 4.0 correlates with the best prognosis, whereas a GPA of 0.0 corresponds to the
worst prognosis.

The successful application of artificial intelligence (AI) for diagnostic purposes has led
to the development of AI-based cancer imaging analysis, which is now being employed
to meet more sophisticated therapeutic requirements, such as patient stratification and
therapy outcome prediction. Neuroimaging data can be used to extract quantitative and
semiquantitative image features that are often beyond human vision. Given the abundance
of MRI and CT data acquired as part of the standard of care for patients with BM, there
is a huge amount of data available for mining useful prognostic features to help with
response prediction before or early after therapy. Radiomics has been introduced as a
formal approach for extracting and discovering quantitative diagnostic and prognostic
features from medical images [17]. The quantitative features extracted from the medical
imaging data for biomarker discovery in radiomic analysis are usually categorized as [18]
morphological features that quantify the geometry and shape of the region of interest
such as sphericity, first-order statistical features that describe the voxel intensities without
considering the spatial relationship between them such as intensity mean or standard
deviation, second-order texture features that are obtained by calculating the statistical
interrelationships between the intensity of neighbouring voxels, such as those based on
grey-level co-occurrence matrix (GLCM), and higher-order statistical features that are
obtained after applying a transformation on the image, e.g., features extracted from textural
parametric images.

New studies have shown connections between tumour radiomic signatures and their
phenotypes, genomic, and proteomic profiles [19–22]. Inspired by such connections, sev-
eral studies have explored the potential of radiomic features in conjunction with machine
learning (ML) to develop an efficient and noninvasive method of characterizing metastatic
brain tumours and predicting their treatment outcome. Karami et al. [23] have proposed
an MRI-based radiomic framework for early prediction of treatment outcome in patients
with BM treated with hypofractionated stereotactic radiation therapy (SRT). The proposed
quantitative MRI (qMRI) biomarkers were developed through a multistep feature extrac-
tion/reduction/selection framework and fed to a support vector machine (SVM) classifier
to predict the radiotherapy outcome in terms of LC/LF. A recent study by Mouraviev et al.
has investigated whether MRI radiomic features provide any additional value to clinical
variables for predicting local control in BM following SRS [24]. The results show that the
addition of radiomic features to the clinical variables increases the area under the ROC
curve considerably.

In quantitative cancer imaging and radiomics, the entire tumour volume should
be segmented to determine the region of interest (ROI) for analysis. The segmented
tumour boundaries also determine other relevant regions such as the peritumoural areas
for further analysis. Therefore, accurate tumour delineation is a fundamental step in
oncologic radiomics. Manual segmentation of tumour on volumetric images acquired at
several imaging sessions for each patient is a tedious and time-consuming job. Automatic
segmentation of tumours facilitates radiomic analyses and streamlines the standard process
of therapy outcome evaluation in clinic considerably, possibly at the cost of less accuracy.

In this paper, we evaluate the impact of tumour segmentation accuracy on efficacy of
the quantitative MRI biomarkers for radiotherapy outcome prediction in BM. A cascaded
attention-guided framework is proposed to accurately segment the tumour on the baseline
and first follow-up automatically. Using the segmentation masks generated with this frame-
work, we extracted radiomic biomarkers associated with the tumour and peritumoural
areas from T1-weighted (T1w) and T2-weighted fluid attenuation inversion recovery (T2-
FLAIR) MR images to develop predictive models of radiotherapy outcome. The study
results show that to extract meaningful and distinguishing biomarkers, tumour masks
should be reasonably accurate but not necessarily matching completely the ground-truth
identified manually by expert clinicians. In particular, the results of outcome prediction
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using the ground-truth and the automatically generated masks are comparable with the
top selected biomarkers shared between the two approaches.

2. Materials and Methods
2.1. Data Acquisition

This research was carried out in compliance with the institutional research ethics board
approval from Sunnybrook Health Sciences Centre, Toronto, ON, Canada. The imaging
data were obtained from 124 patients who had been diagnosed with BM and were treated
with hypofractionated SRT over five fractions. Gadolinium contrast-enhanced T1w and
T2-FLAIR images were acquired before the treatment (baseline) and at the first follow-up
after SRT. Both the T1w and the T2-FLAIR had an in-plane resolution of 0.5 mm. The
slice thickness for the T1w and T2-FLAIR images was 1.5 mm and 5 mm, respectively.
T2-FLAIR images were coregistered on the T1w images, and both images were resampled
to make the voxel size isotropic (0.5 × 0.5 × 0.5 mm3), rendering the size of both MRI
volumes at 512 × 512 × 348 voxels. The voxel intensities in each image were normalized
between 0 and 1. The treatment-planning tumour outlines delineated by expert oncologists
and neuroradiologists for each patient were included in the dataset. Among 124 patients
(156 lesions), 99 patients (116 lesions) were randomly assigned for training and optimization
of the predictive models (10 patients with 15 lesions as the validation set for optimizing the
model hyperparameters) and 25 patients (40 lesions) were kept unseen as an independent
test set.

After SRT, the patients underwent follow-up MRI scans every two to three months.
The lesions were monitored using serial MRI, and a radiation oncologist and a neurora-
diologist determined the local response for each lesion using the RANO-BM [9] criteria.
The local outcome was categorized as either LC (complete response, partial response, or
stable disease) or LF (progressive disease) based on the response determined in the last
follow-up session. Using serial imaging (including perfusion MRI) and/or histological
confirmation, the adverse radiation effect (ARE) was diagnosed and distinguished from
local progression [25], based on the report by Sneed et al. [11]. Following these criteria, a
total of 93 and 63 lesions were classified as LC and LF, respectively.

2.2. System Overview

Figure 1 shows the overall framework adapted for predicting the local outcome in
patients diagnosed with BM. Since a tumour segmentation mask is necessary for extracting
radiomic features, in this study we replaced the manual tumour masks with the ones
generated automatically by our proposed segmentation framework. Using the MR images
of both modalities (T1w and T2-FLAIR) and the automatically generated segmentation
masks, the radiomic features are extracted from the tumour and peritumoural regions for
both the baseline and first follow-up sessions. The change in each feature is then calculated
at the first follow-up relative to the baseline. The number of features is reduced using
feature selection techniques. The selected features are then fed to train a classifier to predict
the therapy outcome. More details on different components of the framework are provided
in the following subsections.

2.3. Segmentation Module

Figure 2 shows the proposed framework for automatic tumour segmentation of brain
tumours on MRI. Two cascaded 2D UNets [26] are responsible to find the approximate
position of the tumour. The image is cropped around the tumour after determining its
approximate position to reduce the size of the input image for the next network. More specif-
ically, the input size of the first and second 2D UNets are 512 × 512 and 256 × 256 pixels,
respectively, while the input size of the subsequent 3D UNet [27] is 128 × 128 × 128 vox-
els. The cropping is done to limit the scope of input to the areas that potentially include
tumours and eliminate irrelevant parts to obviate the need for patching or resizing the
input of the 3D UNet and multiscale self-guided attention (MSGA) [28] networks due
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to their memory limitations. Patching the input volume results in the loss of contextual
information (for example, a tumour may split apart in several patches), whereas resizing it
causes the loss of precise local information. Using the approximate position of the tumour
determined with the cascaded 2D UNets to crop the input volume around the tumour
region, it would be feasible to preserve both the local and contextual information. For
finding the approximate tumour position using the associated 2D segmentation masks, a
logical OR operation is applied to all the masks to generate a single mask displaying an
upper bound of the tumour areas in different slices. The connected components in the
single mask are then identified, and the centre of each connected component is considered
to be the approximate centre of the corresponding tumour. The approximated centres are
used to crop the image around the tumour region. In case of multiple tumour presence in
an input image, the tumours are treated separately. The final output mask is generated by
thresholding the averaged probability maps of the output of 3D UNet and MSGA networks
with a threshold level of 0.5.

The suggested architecture combines the 2D UNet, 3D UNet, and MSGA networks
in order to integrate their advantages while minimizing their limitations. The 2D UNet
architecture’s good performance in various segmentation tasks is due to its ability to collect
context and enable localization by combining a contracting path and a symmetric expand-
ing path with skip connections in between. However, a 2D UNet does not consider the 3D
spatial dependencies between the voxels during segmentation. The 3D UNet takes into
account such spatial dependencies at the cost of higher memory consumption, while the
MSGA network mitigates the limitation of 3D UNet in capturing long-range dependencies.
Particularly, the MSGA network enables capturing richer contextual dependencies and
neglecting irrelevant information using an embedded mechanism of attention. Moreover,
the utilization of interdependent channel maps in MSGA, which enables the network
to integrate local features with their corresponding global dependencies, makes it effi-
cient in our application, where the network is fed with two channels of T1-weighted and
T2-FLAIR images.

The segmentation framework was only trained on the images of the training set
acquired at the baseline, while those training images acquired at the first follow-up and all
images of the test set were kept unseen to the framework.
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Figure 1. The overall system for SRT outcome prediction. The segmentation module segments
tumours on the baseline (BL) and the first follow-up (FU1) MR images. Using the MR images and
segmentation masks, different radiomic features are extracted. The features are then sorted based on
their relevance/redundancy and a subset of them identified through feature selection are used to
train a classifier for predicting the local outcome.
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Figure 2. (a) Segmentation framework overview. For a volumetric input image (contrast-enhanced
T1-weighted, 512 × 512 × 128 voxels), first, all slices are fed to a 2D UNet one by one. The generated
masks from the 2D UNet are used to find an approximate tumour position (x, y). The volumetric
input image is then cropped around (x, y) into a 256× 256× 128 voxel volume. A similar procedure is
performed to reduce the size of the volumetric image containing the tumour to 128 × 128 × 128 voxels.
This volume is then fed into a 3D UNet for segmentation with no patching. The slices of this
volume are also fed to MSGA, after concatenation with the coregistered T2-FLAIR image, and the
segmentation masks of MSGA are then fused with those of 3D UNet. (b) The MSGA network structure.
Features extracted at different scales (shown in blue, green, orange, and gray) from ResNet-101 are
concatenated and convolved (shown in back) and then self-concatenated and fed into the guided
attention module. The resulting self-guided features are fed into the guided loss.
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2.4. Radiomic Feature Extraction

Using the radiomic features, a quantitative description of each tumour can be derived
from imaging data. A total of 3436 radiomic features were extracted from the tumour region
and its 5 mm margin [23] on T1w and T2-FLAIR MR volumes acquired at baseline and the
first follow-up using the automatically generated masks. The extracted radiomic features
included the first-order statistics (including energy, entropy, etc., a total of 19 features), 2D
and 3D morphological features (including maximum 2D diameter, flatness, sphericity, a
total of 26 features), and texture features derived based on the gray level co-occurrence
matrix (GLCM) (total of 24 features), gray level run length matrix (GLRLM) (total of
16 features), gray level size zone matrix (GLSZM) (total of 16 features), neighbouring gray
tone difference matrix (NGTDM) (total of 5 features), and gray level dependence matrix
(GLDM) (total of 14 features). All features were extracted using the pyradiomics package
in Python [29]. The morphological features were derived from the generated binary masks.
Other features were extracted from both the original MR images and the associated wavelet-
filtered images. For the latter, low- and high-pass wavelet filters were applied in the x,
y, and z directions of the 3D images resulting in eight filtered images of IHHH, IHHL, . . . ,
ILLL for each original image. The delta radiomic features were calculated using the relative
difference between the value of each feature at baseline and the first follow-up.

2.5. Feature Selection

In machine learning, feature selection approaches allow to save computation time,
improve prediction performance, and gain a deeper knowledge of the data [30]. The delta
radiomic features were processed through a feature selection procedure using the mini-
mum redundancy maximum relevance (mRMR) method [31] with a mutual information
quotient (MIQ) criterion. The mRMR method tends to select a feature subset with high
correlation to the target class (output) and low interfeature correlations. The F-statistics
were used to calculate the correlation with the target class (relevance), while the Pearson
correlation coefficient was applied to calculate the interfeature correlations (redundancy).
The MIQ score represents the quotient of relevance and redundancy. Ultimately, among
the 3436 features, seven features were selected using the mRMR technique. For the feature
selection process, only the training data was applied to prevent data leakage from the
training set to the test sets.

2.6. Classifier

A support vector machine (SVM) with a Gaussian kernel was adapted as the classifier
for outcome prediction because of its demonstrated performance, versatility coming from
different kernels, and effectiveness in high-dimensional space [32]. The selected delta
radiomic features in the training set were normalized between 0 and 1 and used to train
the SVM classifier with various hyperparameters. The best SVM model was selected based
on the performance of the model on the validation set using the area under the receiver
operating characteristics (ROC) curve (AUC) criterion. In this model, the penalty (C),
gamma, and the tolerance parameters were set to 1, 1

num_ f eatures , and 1e − 3, respectively.
A class weight inversely proportional to the class frequencies was also assigned to each
class. Finally, the model was tested on the independent test set, where the corresponding
features were normalized using the normalization coefficients obtained for the training set.

3. Results

Table 1 demonstrates the results obtained with the proposed framework on the training
and test sets for tumour segmentation at the baseline and first follow-up in terms of
dice similarity coefficient (DSC), Hausdorff distance (HD), and volume estimation error
(VEE). For comparison, the segmentation results are also reported for the cascaded 2D
UNets, 3D UNet, and the cascaded 2D and 3D UNets. The results of Table 1 demonstrate
the superiority of the proposed framework compared to the other models in accurately
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segmenting tumours on the baseline and first follow-up, which later demonstrates its
importance in predicting the local response to radiotherapy.

Table 1. Dice similarity coefficient (DSC), Hausdorff distance (HD), and volume estimation error
(VEE) for segmentation of brain metastasis using different network architectures. The best values in
each column are shown in bold.

Segmentation Model
Baseline First Follow-Up

Training Set Test Set Training Set Patients Test Set Patients

Cascaded 2D
UNets

DSC 0.85 ± 0.05 0.85 ± 0.06 0.82 ± 0.05 0.81 ± 0.07

HD 3 ± 0.6 mm 3.4 ± 0.7 mm 3.46 ± 0.6 mm 3.7 ± 0.5 mm

VEE 0.63 ± 0.44 cc
17.2% ± 6.1%

0.71 ± 0.47 cc
19.4% ± 8.3%

0.75 ± 0.5 cc
20.6% ± 8.5%

0.77 ± 0.51 cc
21.5% ± 9%

3D UNet

DSC 0.87 ± 0.06 0.85 ± 0.06 0.85 ± 0.05 0.82 ± 0.06

HD 2.9 ± 0.8 mm 3.1 ± 0.82 mm 3.2 ± 0.85 mm 3.5 ± 0.6 mm

VEE 0.6 ± 0.42 cc
15.8% ± 5.4%

0.7 ± 0.45 cc
17% ± 7%

0.72 ± 0.47 cc
18% ± 7.3%

0.75 ± 0.53 cc
18.9% ± 9.5%

Cascaded 2D and
3D UNets

DSC 0.89 ± 0.05 0.88 ± 0.05 0.86 ± 0.05 0.83 ± 0.05

HD 2.45 ± 0.6 mm 2.65 ± 0.63 mm 2.8 ± 0.6 mm 3.1 ± 0.5 mm

VEE 0.55 ± 0.35 cc
13.1% ± 4.2%

0.61 ± 0.4 cc
15.8% ± 6.5%

0.64 ± 0.43 cc
16.6% ± 6.8%

0.68 ± 0.5 cc
17.9% ± 7.7%

Cascaded 2D and
3D UNets + MSGA

DSC 0.91 ± 0.03 0.90 ± 0.04 0.89 ± 0.04 0.87 ± 0.05

HD 2.1 ± 0.45 mm 2.3 ± 0.55 mm 2.21 ± 0.5 mm 2.74 ± 0.49 mm

VEE 0.42 ± 0.3 cc
11.2% ± 3.9%

0.53 ± 0.36 cc
12.8% ± 5.1%

0.57 ± 0.38 cc
14.7% ± 4.7%

0.61 ± 0.48 cc
15.9% ± 5.1%

Table 2 shows the most important features selected using the mRMR feature selection
method for different segmentation models. A comparison between the selected features
extracted using the ground-truth masks and the cascaded 2D and 3D UNets + MSGA model
shows that six out of seven features are shared between the two models. This indicates
that the tumour masks generated using the proposed segmentation framework may be
sufficiently accurate for MRI radiomic analysis in this application. The number of shared
features with the ground-truth gradually reduces when the accuracy of segmentation
models decreases, with no shared feature for the cascaded 2D UNets.

Figure 3 demonstrates the parametric maps of the top four selected features based on
the ground-truth (Table 2) overlayed on the baseline and follow-up images of a representa-
tive tumour with an LF outcome. The parametric maps are shown for the ground-truth
mask and the automatically generated segmentation masks obtained from different models.
The figure demonstrates that the parametric maps and the relative changes of features from
the baseline are in good agreement with the ground-truth for the models with acceptable
segmentation accuracy.

Table 3 shows the results of outcome prediction on the independent test set in terms
of accuracy, sensitivity, specificity, AUC, and F1-score, using the selected radiomic features
associated with different tumour segmentation models. The prediction performance of
the radiomic model associated with the tumour masks generated automatically using the
cascaded 2D and 3D UNets + MSGA network is reasonably close to the ground-truth
model (AUC of 0.78 versus 0.81). On the other hand, the tumour masks generated using
the cascaded 2D UNets or 3D UNet have resulted in considerably lower performances of
the corresponding radiomic models (AUC of 0.62 and 0.67, respectively) compared to the
ground-truth. The sensitivity and specificity of the ground-truth model versus the model
developed with the cascaded 2D and 3D UNets + MSGA network are 83% and 78% versus
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77% and 83%. This also indicates reasonably close performance of the ground-truth masks
and those generated automatically by the proposed segmentation framework in radiomic
modeling for treatment outcome prediction. The sensitivity of the ground-truth model is
slightly better which shows it can detect local failure cases more accurately. On the other
hand, the model developed with the cascaded 2D and 3D UNets + MSGA network performs
better in detecting the local control cases. These observations imply that although accurate
segmentation of tumour region is important in developing radiomic-based predictive
models of therapy response, such models can be reasonably robust to imperfections in their
input tumour masks.

Table 2. List of the top seven selected features using the mRMR feature selection method for different
segmentation models. Bold features are the shared ones with those obtained using the ground-truth
segmentation masks.

Segmentation Model Selected Features

Cascaded 2D UNets

wavelet-LLH_glcm_Correlation_T2_Margin

wavelet-LHH_glrlm_RunVariance_T2

original_gldm_DependenceVariance_T2_Margin

wavelet-HLH_glcm_Imc2_T2_Margin

wavelet-LHH_glcm_Idm_T2_Margin

wavelet-LHL_gldm_SmallDependenceHighGrayLevelEmphasis_T1

wavelet-HHH_glszm_ZonePercentage_T1_Margin

3D UNet

wavelet-HLH_gldm_LargeDependenceLowGrayLevelEmphasis_T2

original_gldm_DependenceEntropy_T2_Margin

wavelet-LHL_gldm_SmallDependenceHighGrayLevelEmphasis_T1

wavelet-HLH_gldm_SmallDependenceLowGrayLevelEmphasis_T2

wavelet-HHL_ngtdm_Contrast_T2

wavelet-HLH_glcm_Imc2_T2_Margin

original_gldm_DependenceVariance_T2_Margin

Cascaded 2D and 3D UNets

wavelet-HHL_firstorder_Minimum_T1_Margin

original_gldm_DependenceEntropy_T2_Margin

original_glcm_Idn_T2_Margin

wavelet-HLH_gldm_LargeDependenceLowGrayLevelEmphasis_T2

wavelet-LHL_glcm_Contrast_T1

wavelet-HHH_gldm_DependenceVariance_T1_Margin

wavelet-LHL_gldm_SmallDependenceHighGrayLevelEmphasis_T1

Cascaded 2D and 3D UNets + MSGA

wavelet-HHL_firstorder_Minimum_T1_Margin

original_gldm_DependenceEntropy_T2_Margin

original_glcm_Idn_T2_Margin

wavelet-HLH_gldm_LargeDependenceLowGrayLevelEmphasis_T2

wavelet-LLL_ngtdm_Strength_T1_Margin

wavelet-HLL_glcm_Idn_T1_Margin

wavelet-HHL_firstorder_Skewness_T1
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Table 2. Cont.

Segmentation Model Selected Features

Ground-Truth

wavelet-HHL_firstorder_Minimum_T1_Margin

original_gldm_DependenceEntropy_T2_Margin

original_glcm_Idn_T2_Margin

wavelet-HLH_gldm_LargeDependenceLowGrayLevelEmphasis_T2

wavelet-LLL_ngtdm_Strength_T1_Margin

wavelet-HLL_glcm_Idn_T1_Margin

wavelet-LHH_glszm_SizeZoneNonUniformityNormalized_T1_MarginCancers 2022, 14, x FOR PEER REVIEW 10 of 15 
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Figure 3. Representative parametric maps of the top four selected features based on the ground-truth
(Table 2) overlayed on the associated MR images acquired at the baseline and the first follow-up from
a representative tumour with an LF outcome. The parametric maps are shown for the ground-truth
mask and the segmentation masks generated automatically using different models. ∆mean for each
feature is the mean relative change from the baseline at the first follow-up that is calculated for
different masks.
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Table 3. Results of therapy outcome prediction using the radiomic models developed with different
segmentation modules.

Segmentation Model
Independent Test Set

Accuracy Sensitivity Specificity AUC F1-Score

Cascaded 2D UNets 72.5% 70.6% 74% 0.62 68.5%

3D UNet 72.5% 70.6% 74.% 0.67 68.5%

Cascaded 2D and 3D
UNets 77.5% 76.5% 78.2% 0.72 74.3%

Cascaded 2D and 3D
UNets + MSGA 80% 76.5% 82.6% 0.78 76.5%

Ground-Truth 80% 82.5% 78.2% 0.81 77.8%

Figure 4 demonstrates the results of survival analysis on the test set. The Kaplan–Meier
progression-free survival curves are presented for two patient cohorts classified based on
their predicted outcome by the radiomic models developed with different segmentation
modules. A log-rank test applied on the survival curves of the two cohorts demonstrates
no statistically significant difference for the models developed with cascaded 2D UNets or
3D UNet. However, a significant difference is observed between the survival curves of the
cohorts stratified by the models developed with cascaded 2D and 3D UNets, cascaded 2D
and 3D UNets + MSGA, and the ground-truth masks.
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Figure 4. Kaplan–Meier progression-free survival curves for two cohorts of patients stratified based
on the outcome prediction by the radiomic models developed with different segmentation modules:
(a) Cascaded 2D UNets, (b) 3D UNets, (c) Cascaded 2D and 3D UNets, (d) Cascaded 2D and 3D
UNets + MSGA, and (e) Ground-truth masks. Cohort 2 includes the patients in the independent test
set who had at least one lesion with a predicted outcome of local failure, and cohort 1 includes all
other patients in the independent test set.
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4. Discussion

Accurate segmentation of brain tumours on the baseline and follow-up images is
an essential yet laborious task. It is required for therapy response assessment as well as
for extracting imaging biomarkers in various diagnostic and prognostic applications. An
automatic segmentation method streamlines the therapy outcome prediction and eval-
uation workflow (which requires ROI masks for analysis), potentially at the cost of less
accuracy. In this study, we investigated the effect of tumour segmentation accuracy on
efficacy of the MRI radiomic biomarkers extracted from the tumour and tumour margin
for radiotherapy outcome prediction in BM. The results of our study show that while the
impact of tumour delineation accuracy is considerable for less accurate segmentation mod-
els (dice score ≤ 0.85), the radiomic features and prediction models are relatively robust
to imperfections in the generated tumour masks. In particular, the list of selected features
associated with the ground-truth tumour masks and those generated using the cascaded
2D and 3D UNets + MSGA model (with an average dice score of about 0.90) shared six
out of the seven features selected based on the mRMR method. Furthermore, the features
extracted using the tumour masks generated by this segmentation model resulted in an
outcome prediction model with fairly close performance metrics to those obtained by the
ground-truth model, including the accuracy, sensitivity, specificity, AUC, and F1-score of
80% vs. 80%, 77% vs. 83%, 83% vs. 78%, 0.78 vs. 0.81, and 77% vs. 78%, respectively.
Progression-free survival analyses demonstrated that both the outcome prediction mod-
els could stratify the patients into two cohorts (low-risk vs. high-risk) with statistically
significantly different survival curves.

The effect of segmentation accuracy on the performance of radiomic features for
different cancer sites and imaging modalities is a subject yet to be explored in the literature.
Among research done so far, Jin et al. studied the effect of automatic segmentation using
multiple UNet-based architectures on the accuracy of radiomic features for transvaginal
ultrasound images of cervical cancer [33]. The results of that study show the feasibility
and reliability of automatic segmentation, especially with UNet-based models, for relevant
radiomic studies. This is in agreement with the observation of this study where fairly
accurate tumour segmentation was found to be sufficient for radiomic models of cancer
therapy response. Teng et al. studied the effect of automatic segmentation on preoperative
lymph node status prediction models with radiomic features extracted from ultrasound for
patients with early-stage cervical cancer. Their study shows that in some cases, automatic
segmentation improves the prediction accuracy as human-derived segmentation methods
introduce human bias into the radiomic process [34]. This is an interesting observation
that may be valid only for smaller ROIs, such as lymph nodes, and/or low-SNR imaging
modalities, such as ultrasound, but should be rigorously investigated in future works on
large sample sizes for different cancer sites and imaging modalities.

The findings of this study show that radiomics in conjunction with machine learning
can be used to predict radiotherapy outcome in brain metastasis early after treatment,
where automatic tumour segmentation could potentially be utilized instead of manual
segmentation to facilitate prediction model development and investigation. In clinic, these
implications could be significant, as an early prediction of treatment response may lead
to therapy adjustments which, in turn, enhance patients’ survival and quality of life. The
observation of this study that radiotherapy outcome prediction in brain metastasis is
not very sensitive to small inaccuracies in tumour segmentation permits high-throughput
implementation and exploration of new computational prediction models to develop robust
systems for clinical decision support.

5. Conclusions

The promising results of this study open the avenue to applying automatically gen-
erated segmentation masks for discovering diagnostic and prognostic biomarkers in BM
without sacrificing their accuracy. This is a significant contribution considering the heavy
burden that manual segmentation imposes on image-guided therapeutic systems in neuro-
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oncology, including the models for therapy outcome prediction and the platforms for
therapy outcome evaluation. While the findings of this paper are promising and pave the
way for future research, future investigations are required to further assess the conclusions
of this study on a larger scale when imaging data are available from larger patient cohorts
and possibly multicenter studies.
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