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Simple Summary: Breast cancer is a diverse disease with varying prognoses, even within the
same subtype. Approximately 30% of breast cancer patients experience distant organ recurrence,
known as metastasis, after treatment. The evaluation of breast tumors and surrounding lymph
nodes occurs before and after neoadjuvant therapy, which aims to shrink the tumor before surgery.
Following resection, residual tumor cells may remain in the breast tissue, lymph nodes, or other
areas, necessitating adjuvant therapy. Typically, a follow-up visit is scheduled a year or more after
adjuvant therapy, during which metastasis may be detected. By utilizing machine learning techniques,
metastasis can be predicted earlier in a clinical setting, allowing for tailored surveillance and treatment
strategies. This has the potential to significantly enhance the quality of life for breast cancer patients.

Abstract: Breast cancer is the most common type of cancer worldwide. Alarmingly, approximately
30% of breast cancer cases result in disease recurrence at distant organs after treatment. Distant
recurrence is more common in some subtypes such as invasive breast carcinoma (IBC). While clinicians
have utilized several clinicopathological measurements to predict distant recurrences in IBC, no
studies have predicted distant recurrences by combining clinicopathological evaluations of IBC
tumors pre- and post-therapy with machine learning (ML) models. The goal of our study was
to determine whether classification-based ML techniques could predict distant recurrences in IBC
patients using key clinicopathological measurements, including pathological staging of the tumor and
surrounding lymph nodes assessed both pre- and post-neoadjuvant therapy, response to therapy via
standard-of-care imaging, and binary status of adjuvant therapy administered to patients. We trained
and tested four clinicopathological ML models using a dataset (144 and 17 patients for training
and testing, respectively) from Duke University and validated the best-performing model using an
external dataset (8 patients) from Dartmouth Hitchcock Medical Center. The random forest model
performed better than the C-support vector classifier, multilayer perceptron, and logistic regression
models, yielding AUC values of 1.0 in the testing set and 0.75 in the validation set (p < 0.002) across
both institutions, thereby demonstrating the cross-institutional portability and validity of ML models
in the field of clinical research in cancer. The top-ranking clinicopathological measurement impacting
the prediction of distant recurrences in IBC were identified to be tumor response to neoadjuvant
therapy as evaluated via SOC imaging and pathology, which included tumor as well as node staging.
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1. Introduction

Breast cancer—which has surpassed lung cancer as the most common type of cancer
worldwide—accounts for nearly one-third of cancers in women [1,2]. Despite considerable
advances in detection and treatment, nearly 30% of breast cancer patients will develop
distant recurrences (i.e., metastasis), often years after diagnosis and treatment of the primary
tumor [3]. Although clinicopathological features and molecular biomarkers have been used
previously to guide therapeutic decisions in breast cancer clinical workflows [4], forecast
outcomes [5–7], and prediction of distant metastases [8–10], long-term survival rates and
prognoses vary widely, even within the same histologic and molecular subtype [11,12].
Thus, the high degree of heterogeneity both within and between tumors, combined with
myriad other factors that affect the evolution of breast cancer within each individual,
presents substantial challenges in treatment and clinical management [13].

Neoadjuvant therapy (i.e., any therapy that precedes surgery) has been used widely
in breast cancer to improve outcomes by downstaging inoperable primary tumors to
facilitate tumor resection [14,15]. Tumor response to neoadjuvant therapy is evaluated
using standard-of-care (SOC) radiological imaging techniques such as MRI, PET-CT, or
ultrasound [16,17] and/or biopsies of tumor tissue or surrounding lymph nodes [18], and
can be a valuable predictor of survival after therapy [15]. Notably, a complete pathologic
response with no residual tumor is indicative of an excellent prognosis in patients with
HER2-positive and triple-negative tumors [19,20]. After surgical removal of the primary
tumor, adjuvant therapy can be administered to eliminate any residual tumor in breast
tissues or possibly in any other part of the body [21,22].

Distant recurrences post adjuvant therapy are common in patients with certain sub-
types of breast cancer, such as invasive breast carcinoma (IBC) [23]. Breast cancer most
frequently metastasizes to the bone, lung, liver, brain, and distant lymph nodes, of which
bone is the most prominent metastatic site [23,24]. As metastatic disease—the primary
reason for breast cancer-related deaths—is known to have poor outcomes and is generally
considered to be incurable, predicting distant recurrences is a crucial aspect of personalized
monitoring and treatment strategies [3]. While breast cancer subtype can be predictive of
the preferred site of distant metastasis [9], accurately predicting the risk of metastasis is
more complex. Although OncotypeDX (ODX)—a 21-gene molecular screening assay—is
widely used in clinical practice to predict the distant recurrence and benefits from adjuvant
chemotherapy for patients with breast cancer, its utility is limited as the ODX recurrence
score is not consistent across all ages and relevant only in women with estrogen recep-
tor (ER)-positive breast cancer, which limits its scope [25–27]. The benefits of adjuvant
chemotherapy vary depending on the range of the ODX recurrence score when combined
with patient age, for which the ideal conditions are women ≤ 50 years with an ODX recur-
rence score range of 16–25 [28], therefore limiting the patient group for ODX-based tumor
recurrence evaluation to younger to mid-aged women only.

Machine learning (ML) has become an increasingly popular tool for making objective
clinical predictions and has been used to predict a wide variety of clinical outcomes using
biological or clinical input data [29–35]. Metastasis-risk calculators (i.e., “nomograms”),
which are based on logistic regression models, have been known to predict synchronous
metastases in breast cancer based on the clinicopathological profile (i.e., tumor size, nodal
status, and estrogen and progesterone receptor status); however, this methodology does
not involve the usage of adjuvant (i.e., second-line) therapy usually given to patients that
may not have a complete response to neoadjuvant therapy (Boutros et al. 2015) [36]. A
mechanistic model developed by Nicolò et al. [37] predicts time to metastases in patients
with early-stage breast cancer using several clinicopathological diagnoses, but it neither
considers patients that received adjuvant therapy nor conducts validation of the model
using an external cohort. Another study used various clinicopathological features, includ-
ing serum HER2 levels, to predict metastases; however, low AUC values in the testing set
(i.e., AUC < 0.80) in conjunction with lack of validation of the model using an independent
(or external) validation set highlights the low clinical utility of the model [38].
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Another factor that affects the clinical utility of predictive ML models in breast cancer
is the availability and accessibility of code. For example, the aforementioned studies do not
share the complete code (i.e., a package of programming scripts) used to train and test the
respective ML models, thereby placing the burden on other researchers to unpack the black
box of ML programming and/or attempt to translate the methodology into code that can be
applied to their own research. Moreover, these studies do not provide the final (i.e., tested)
model pickle files (i.e., model.pkl) that a researcher could potentially use to validate their
model using their own (i.e., external) dataset. ML models do not contain sensitive personal
health information; rather, they contain mathematical equations that are produced from
the training conducted on deidentified patient data. These equations consist of correlation
weights or the feature importance scores of features used to train the model, both of which
are an indication of each feature’s individual contribution towards a collective prediction
of a particular outcome [39]. These weights or importance scores must be tested using the
test dataset, independently of the training set, to arrive at a model worthy of validation.

Further, sharing ML models across institutions could enable meta-learning, potentially
yielding superiorly performing models [40]. Our recently released version (v3.2) of the ML
software program ImaGene [41] exposes its codebase and automates ML operations for
an expanded list of classification-based models such as random forest (RF), C-support
vector classifier (SVC), multilayer perceptron (MLP), and logistic regression (LogitR)
(i.e., in addition to the previously existing regression-based models). ImaGene also offers
various customizable parameters to conduct multiple simultaneous ML experiments and
provides result metrics such as R-square, RMSE:Stdev ratio, and AUC, the majority of
which are plotted as graphs and included in resulting reports. These reports, along with
the subordinate tabular output files, aid users in tracking feature-level performances for
the respective models.

Early predictions of the risk of metastases in breast cancer patients post adjuvant-
therapy and pre-follow-up (for follow-ups of greater than a year) in clinics using an ML
model could allow early clinical intervention and guide surveillance and treatment, which
could ultimately improve the quality of life for the respective patients. Furthermore, increas-
ing the availability and accessibility of such an ML model across various hospital sites could
facilitate the model’s validation and make it clinically viable sitewide. Thus, the objective
of our study was twofold: (i) to create a novel, high-fidelity ML model to predict the risk of
metastasis in IBC patients using clinicopathologic measurements pre- and post-neoadjuvant
therapy, such as clinical tumor [T] and node [N] staging pre-neoadjuvant therapy, response
evaluation (via SOC imaging, and T and N staging) post-neoadjuvant therapy, and ad-
ministration status (‘Yes’ or ‘No’) and type of adjuvant therapy (i.e., chemotherapy or
Anti-Neu HER2) obtained from one hospital site (i.e., Duke University Hospital [DUH]),
and (ii) to validate that model externally (i.e., Darthmouth-Hitchcock Medical Center
[DHMC]). To accomplish this, we used ImaGene to train and test four classification-based
ML/AI models (i.e., RF, SVC, MLP, and LogitR) using the DUH cohort and validate the
best-performing model using the DHMC cohort. To the best of our knowledge, this is
the first study to test and validate ML models for the prediction of distant recurrences
using clinicopathological profiles across various therapies in IBC patient cohorts from two
different medical institutions.

2. Materials and Methods

The present study used clinicopathological data from a retrospective study of
900 IBC patients at DUH, available via the TCIA portal [42,43]. Of these, 312 patients
received neoadjuvant therapies such as chemotherapy, radiation, endocrine hormone-
based, or anti-neu/HER2 therapy. Responses to therapy were evaluated using imaging and
pathological (i.e., T and N) staging. Additionally, 304 of these patients received adjuvant
therapies (i.e., chemo-, radiation-, hormone-, or anti-Neu/HER2-based therapies) depend-
ing on their responses to neoadjuvant therapy. As our focus was on patients who received
neoadjuvant chemotherapy and had either a partial or a complete response, patient entries
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pertaining to ungraded tumor responses to therapies or those labeled as ‘Not applicable
(NA)’ for any of the clinicopathological features were excluded from further analyses,
yielding 161 patient entries.

Specifically, the following eight clinicopathological features (Figure 1A) were consid-
ered: (a) tumor stage or size (T0–T4, i.e., in the numerical format: [0,4]) pre-neoadjuvant
therapy, (b) staging of lymph nodes (N0–N3, i.e., [0,3]) pre-neoadjuvant therapy, (c) clinical re-
sponse to neoadjuvant therapy as evaluated using radiological images (i.e., complete response
(i.e., ‘1’), incomplete response (i.e., ‘2’), or assessment unavailable (i.e., ‘3’), (d) pathologic
response to neoadjuvant therapy (i.e., complete: ‘1′, incomplete: ’2′, or DCIS-only remain-
ing: ‘3’), (e) pathologic response to neoadjuvant therapy as evaluated using pathology stage
“T” tumor size (T0–T4, i.e., [0–4]), (f) pathologic response to neoadjuvant therapy evaluated
using node status “N” (N0–N3, i.e., [0,3]), (g) status of adjuvant chemotherapy administered
(i.e., yes: ‘1’ or no: ‘0’), and (h) status of adjuvant anti-HER2/Neu therapy administered
(i.e., yes: ‘1’ or no: ‘0’). Patients with no response to neoadjuvant chemotherapy were ex-
cluded from this study, as this patient population has a poor prognosis and a higher risk of
recurrence [44]. Model training was conducted using ImaGene software [41].

The 161 patient entries were split further into training and testing sets at a 90:10 ratio,
in which 90% of entries were used for training (i.e., ntrain = 144) and 10% for testing
(ntest = 17) four classification-based ML models (i.e., RF, SVC, MLP, and LogitR) for binary
predictions of distant recurrences (i.e., yes or no). For logistic regression, the train:test ratio
was modified to 85:15 to achieve optimal performance. Experiments for the four ML models
were performed using ImaGene [41], which yielded operational reports and supporting
text files to aid in the interpretation of the results, thereby facilitating the selection of the
best-performing model for validation (Figure 1B).

2.1. Model Development and Testing Using ImaGene

The multimodal feature file consisting of the aforementioned clinicopathological
features was set as “data”, while a binary column containing a feature file reporting disease
recurrence at a distant site (i.e., distant recurrence flag; 0 for “no” and 1 for “yes”) for
the respective patients (n = 161) was set as “label” for ImaGene. The model type was
first set to RF in “Train” mode. Test size was set to “0.1 (i.e., 10% of dataset allocated to
test)”, which partitioned the dataset into training (nTrain = 144) and testing (nTest = 17)
sets. The K-fold cross-validation splitter parameter (i.e., ‘cv’) was set to “2”. Grid search
was set to “True” to enable the execution of a grid search through the hyperparameters:
max_depth = [6, 9, 10, 12, 15, 20] and cv = 4. The “data” normalization method was set
to “StandScaler”, while the “label” normalization was set to “none” owing to its binary
nature. Furthermore, the absolute correlation threshold parameter pre-ML-training was
set to “−1.0” to silence the filtering of features based on Pearson’s correlation co-efficient
threshold, thereby considering all the clinicopathological features for further training of the
RF model. The run took approximately two minutes to yield a report on model performance
(Supplementary Materials Report 1, Figure 2A, and Table 1).

Secondly, the model type was set to SVC and run with default parameters: cv = 2,
test_size = 0.1, pre-ML correlation-threshold set to “−1.0”, data-normalization to “Stand
Scaler”, and label-normalization to “none”. Furthermore, the grid_search was set to ‘True’
to perform a grid search for the SVC model through polynomial degree hyperparameters
(i.e., kernel = [‘poyl’], degree = [3, 4, 5, 6, 7, 8, 9] and cv = 2; Supplementary Materials
Report 2, Figure 2B, and Table 1).

Thirdly, a supervised neural network, the MLP classifier, was employed with default
parameters. Subsequently, a grid search was executed setting test_size to 0.1 and using the
following hyperparameters: Solver = [‘sgd’,‘bfgs’,‘adam’], alpha = [0.0001, 0.001, 0.01, 0.02, 0.05],
hidden_layer_sizes = [(9,),(9,9,),(9,9,9,)] and cv = 6 (Supplementary Materials Report 3, Figure 2C,
and Table 1).

Lastly, the model type was set to LogitR and run with both default model parameters
and in grid search mode. To achieve optimal performance, the train:test ratio was modified
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to 85:15 followed by the grid search performed on the following hyperparameters: Solver:
[‘liblinear’, ‘newton-cg’, ‘lbfgs’, ‘sag’, ‘saga’] and cv = 4 (Supplementary Materials Report 4,
Figure 2D, and Table 1).
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Figure 1. Modeling clinicopathological data to predict distant recurrences in IBC, with clinicopatho-
logical workflow for invasive breast cancer (IBC) from initial diagnosis to follow-up represented in
(A) followed by training, testing, and validation of machine learning (ML) models for the predic-
tion of distant recurrences recorded post-follow-up in IBC using clinicopathological data recorded
pre- and post-therapy and pre-follow-up represented in (B). The area under the receiver operating
curve (AUROC/AUC) and R2 values are mentioned for each model, where a negative R2 value and
AUC = 0.5 indicate model failure. DUH: Duke University Hospital; DHMC: Dartmouth Hitchcock
Medical Center.
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Figure 2. Receiver operating curves (ROC) for the three machine learning models assayed to predict
distant metastases in the testing set of breast cancer patients from Duke University Hospital. (A) The
random forest model yielded an area under the receiver operating curve (AUROC/AUC) of 1.0 for the
testing dataset. (B) The ROC for the Support Vector Classifier yielded an AUC of 0.75 for the testing
dataset. (C) The ROC for the multilayer perceptron classifier yielded an AUC of 0.5 for the testing dataset.
No p-value was calculated as the model failed. (D) The ROC for the logistic regression model yielded an
AUC of 0.75 for the testing dataset. Note: The blue line indicates the ROC curve of a random classifier.

Table 1. Results for various classifiers for the test dataset at DUH.

Models AUC R2 RMSE:Stdev

Random Forest 1.0 1.0 0.0

Support Vector Classifier 0.75 0.43 0.75

Multilayer Perceptron Classifier 0.5 −0.41 1.19

Logistic Regression 0.75 0.4 0.77

2.2. Validation Using ImaGene

The model that performed best on the testing dataset from DHC was chosen for
validation using the external IBC cohort at DHMC (Figure 1B). The validation study
included a total of 67 IBC patients that had the same eight clinicopathological features
collected from diagnosis to follow-up at DHMC. This validation dataset (i.e., nvalidate = 67)
was screened for the following two inclusion criteria: (a) Neoadjuvant therapy administered
and (b) onsite (i.e., DHMC-based) follow-up 24–45 months post adjuvant therapy. Of these
67 patients, only 15 matched the inclusion criteria. Out of these 15, only three patients
exhibited distant recurrences, leading us to select eight patients at random (i.e., two with
and six without distant recurrences) to balance the dataset and arrive at a more realistic
validation AUC. The validation report from ImaGene showcased the performance of the
validation dataset through the model (Supplementary Materials Report 5, Figure 3, and
Table 2).
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Figure 3. Feature importance scores of clinicopathological features from the random forest model
used to predict distant recurrences in invasive breast carcinoma.

Table 2. Validation of the random forest model at external site: DHMC.

Model AUC R2 RMSE:Stdev

Random Forest 0.75 0.33 0.82

3. Results
3.1. Model Performance

The training (nTrain = 144: DUH) and testing (nTest = 17: DUH) of the models
(i.e., RF, SVC, MLP, and LogitR) using ImaGene yielded a detailed performance report in
html format, along with the supporting tables in csv format to facilitate the evaluation of
these models (Supplementary Materials Reports 1–4, Figure 2, and Table 1). These reports
and the supporting tabular output files showcased several metrics and plots collectively,
which included cross-validation (CV) score, grid search CV score (when grid search is set
to “True”), actual-vs-predicted-values scatter plots, and area under the receiver operating
curve (AUROC or AUC), and the respective p-value for predicting a distant recurrence flag.
Additionally, the Mean Square Error (MSE) and R-square (R2) from the model performance
on the test dataset were also reported. The MSE, R2, and AUC metrics from all models
facilitated the comparison of their performance through the test dataset.

Training the RF model yielded a best grid search CV score of 0.8 (Supplementary
Materials Report 1), indicating the best score obtained from the 4-fold cross-validation
performed during the tuning of the model through the aforementioned hyperparame-
ters. Testing the RF model yielded MSE, R2, and AUC values of 0.0, 1.0, and 1.0 respec-
tively, indicating a perfect prediction by the RF model (Supplementary Materials Report 1,
Figure 2A, and Table 1). ImaGene ran permutations (i.e., shuffling) of labels (i.e., distant
recurrence binary values) across test samples (n = 17) to infer the statistical significance of
the prediction of the R2 and AUC reported by the model, indicating a strong prediction
(i.e., p < 0.002).

Training the SVC model yielded a best grid search CV score of 0.78 (Supplementary
Materials Report 2). Testing the SVC model yielded MSE, R2, and AUC values of 0.06,
0.43, and 0.75 respectively, indicating that the model performed considerably well (Supple-
mentary Materials Report 2, Figure 2B, and Table 1). The performance of the SVC model
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was also deemed to be significant (p < 0.002); however, this model did not perform as well
as the RF model, indicating the superiority of the ensemble of decision tree algorithms
(i.e., RF) compared to support vectors for the classification of distant recurrence flags using
the clinicopathological profiles of the IBC patients in the present study.

Training of the MLP model yielded a best grid search CV score of 0.83 (Supplementary
Materials Report 3). However, testing this model yielded a very high MSE (i.e., 0.29),
and AUC and R2 values of 0.5 and −0.41 respectively, indicating complete failure of the
model (Supplementary Materials Report 3, Figure 2C, and Table 1). Furthermore, this
demonstrates that supervised neural networks are not superior to RF and SVC methods
for the classification of distant recurrences using clinicopathological profiles of IBC in the
present study.

Lastly, training of the LogitR model yielded a best grid search CV core of 0.75
(Supplementary Materials Report 4). The testing of this model yielded MSE, R2, and
AUC values of 0.08, 0.41, and 0.75 respectively, indicating that the model performed consid-
erably well (Supplementary Materials Report 4, Figure 2D, and Table 1). The performance
of the LogitR model was also deemed to be significant (p < 0.002). LogitR showed similar
performance to SVC but lower compared to RF, reinstituting the superiority of ensemble
decision trees (i.e., RF) compared to the logit method (i.e., LogitR) for the prediction of
distant recurrence flags using clinicopathological profiles in IBC patients.

The RF model was the best-performing model in the present study (Figure 1B). The
feature importance scores of clinicopathological features for predicting distant recur-
rences using the RF model indicate that the top four features exhibited scores greater
than or equal to the mean of all scores (Figure 3). These features are (in order of impor-
tance) (1) pathologic response to neoadjuvant therapy evaluated using node status “N”
(i.e., N0–N3), (2) pathologic response to neoadjuvant therapy (i.e., complete, incomplete, or
DCIS-only remaining), (3) clinical response to neoadjuvant therapy as evaluated using SOC
radiological images (i.e., complete response, incomplete response, or assessment unavail-
able), and (4) pathologic response to neoadjuvant therapy as evaluated using pathology
stage “T” tumor size (T0–T4). The RF model was selected further for validation using the
external cohort from DHMC (Figure 1B).

3.2. Model Validation

The validation of the RF model was conducted on 8 out of 67 patients matching the
inclusion criteria of having received therapy and followed up at DHMC 24–45 months
after adjuvant therapy. The validation MSE of the model was found to be 0.125, with an
AUC of 0.75 and an R2 of 0.33 (Supplementary Materials Report 5, Figure 4, and Table 2).
This indicates that the RF model performed considerably well given the small size of the
clinical dataset after screening for inclusion criteria as previously mentioned, highlighting
a common issue in clinical datasets for lengthy studies that include clinicopathological
results collected from the same site. Moreover, low AUC could also be attributed to
interobserver variability in tumor and node evaluation pre- and post-therapy by clinicians
and pathologists across two different hospital sites (i.e., DUH and DHMC).
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4. Discussion

To the best of our knowledge, our study is the first ML/AI-based study to predict
distant recurrences or metastasis in IBC patients using clinicopathological data collected
from initial diagnosis through follow-up in the clinic and subsequently validated in an
external dataset (i.e., cross-institutional). The random forest (RF) technique outperformed
other models using the testing and validation sets across two hospital sites (i.e., DUH
and DHMC). The key clinicopathological features impacting the prediction of metastasis
are tumor responses to neoadjuvant therapy (NAT) evaluated using SOC imaging and
pathology (i.e., Tumor (T) and Node (N) staging after neoadjuvant therapy) (Figure 4). The
pathological evaluation of tumors and nodes post-neoadjuvant therapy is the gold standard
in evaluating tumor response to neoadjuvant therapy [45] and is a recommendation of the
8th edition of the American Joint Committee of Cancer [46]. The use of SOC imaging is vital
for the gross examination of tumors both before and after NAT (Viale and Fusco 2022) [46].
In our study, we found that the contribution of SOC imaging after NAT (i.e., for evaluating
the tumor response to NAT) was more impactful than imaging before NAT in the prediction
of metastasis (Figure 4). In contrast, we found that the binary status of adjuvant therapy
did not make a substantial contribution to the prediction of metastases (Figure 4). This
is in agreement with previous studies in an international breast cancer cohort, in which
the adjuvant therapy could result in increased metastasis to the liver and central nervous
system but decreased metastasis to bones [47–49], which supports the reduced contribution
of adjuvant therapy to predict metastasis in our study as well (Figure 4).

Several ML/AI studies have been conducted in oncology [29–35,50,51]. Some of these
have attempted to predict 5–10-year breast cancer recurrences using both structured and
unstructured clinicopathological data from Electronic Health Records (EHRs) [50,51]; how-
ever, these studies focused primarily on predicting local rather than distant recurrences. A
previous study [52] predicted distant recurrences in breast cancer from both unstructured
and structured clinical data in EHR using natural language processing and deep learning
algorithms but lacked structured clinicopathological predictors such as those used in our
study. Furthermore, the same study [52] also lacked advanced feature engineering. In
contrast, the present study used structured clinicopathological data from EHRs that were
further curated by trained pathologists and medical residents at the hospital prior to being
fed to the ML model. Moreover, the present study provides us with an advanced under-
standing of the contribution of each clinicopathological feature towards the prediction of
distant recurrence in the form of feature importance scores (which measures the weights of
the features used to predict the label, i.e., risk of distant recurrence), which could guide fea-
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ture engineering efforts in the future (Figure 3). Additionally, several previous ML studies
have predicted disease recurrences in a variety of other cancers, such as in non-metastatic
renal cell carcinoma [53] and in early-stage endometrial cancer [54] which only predicted
recurrences at an AUC of 0.53 owing to the small size of the dataset. In contrast, the
present study achieves AUC values of 1.0 and 0.75 in the intra- and inter-institutional tests
respectively, despite the small sample size (i.e., ntest = 17 and nvalidate = 8), highlighting
the importance of highly curated data in ML studies.

Although the use of ML in predictive models can increase our ability to predict
outcomes in individual cancer patients, validation is vital to the incorporation of ML into
clinical workflows (Kourou 2015) [55]. A previous study that predicted distant recurrences
in breast cancer used both classification-based and deep learning models but repurposed
approximately 10% of their training data for validation [52]. Another study that predicted
distant recurrence in breast cancer using clinicopathological and serum HER2 profiles
yielded an AUC of 0.8 for the testing set but lacked validation in an external cohort, calling
its clinical utility into question [38]. Thus, although the present study was based solely on
classification models, it did use a blinded clinical validation set from a completely different
hospital site than the sites from which training and test originated, thereby highlighting
the strength of the study and predictions.

However, the present study has several limitations. Notably, the number of samples in
the testing and validation sets was relatively low. In the near future, we plan to enhance the
testing and validation datasets by collating data from multiple institutions to encompass a
wider range of heterogenous IBC tumors and institutions. This could be performed using
an open-source platform such as ImaGene, which enables the democratization of multi-
omic analyses and gives open access to results [41]. Another limitation of the present study
is the lack of information regarding the site of distant recurrence, which was not provided
by the dataset shared by DUH via the TCIA platform. With this additional information,
the present study could be used as a blueprint for predicting the site of distant recurrence
as well.

Using the RF model to predict the possibility of distant recurrences in breast cancer
patients could provide clinicians with the ability to foresee distant recurrences and tailor
treatment and management plans accordingly to improve outcomes. Furthermore, our
study extends the capability of ImaGene to utilize several clinicopathological features of
each patient’s tumor throughout the diagnostic and therapeutic journey. Using ImaGene, a
patient’s unique pathologic, radiologic, and therapeutic information can be leveraged to
predict distant recurrences using various ML/AI models in IBC. ImaGene is an open-access
software that shares the code for the automated operation of ML/AI models, supporting
the repeatability of their training, testing, and validation with datasets at any institution
worldwide, unlike the code used by previous studies that sought to predict distant re-
currences using clinicopathological features of cancer [36–38]. Our study also proves the
cross-validity of the RF model across two distinct hospital sites. A similar model could
potentially be trained, tested, and validated for the prediction of disease progression in
other cancer types based on the clinicopathological profiles of the respective tumors in
the future. Our study advances the field of non-invasive predictions of cancer metastasis.
Future research in this field could aid researchers and clinicians in identifying the risk and
sites of disease recurrence, thereby optimizing cancer treatment and ultimately reducing
cancer mortality.

5. Conclusions

This study explores ML models for predicting metastasis risk in IBC patients using
clinicopathological features of their tumor and lymph nodes measured pre- and post-
neoadjuvant therapy, including adjuvant therapy status. Classification-based ML models
were trained and tested on one hospital’s (DUH) datasets. The best model (RF) was
further validated using another hospital’s (DHMC) dataset, demonstrating significant AUC
and R2 values for cross-validity in heterogenous IBC tumors sitewide. Tumor response
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to neoadjuvant therapy, evaluated through SOC imaging and pathology (including the
tumor and node staging), contributed most to metastasis prediction. ML models hold the
potential for stratifying patients into high- and low-risk categories for metastasis, enabling
the regulation of surveillance and treatments to improve their quality of life.
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https://github.com/skr1/Imagene. Reference [56] are cited in the supplementary materials.

Author Contributions: Conceptualization, S.S.S.; methodology, S.S.S. software, S.S.S.; validation, S.S.S.,
K.E.M. and A.A.W.; formal analysis, S.S.S.; investigation, S.S.S., K.E.M. and A.A.W.; resources, S.S.S. and
S.H.N.; data curation, S.S.S. and K.E.M.; writing—original draft preparation, S.S.S.; writing—review and
editing: S.S.S., K.E.M., A.A.W. and S.H.N.; visualization, S.S.S. and S.H.N.; supervision, S.H.N.; project
administration, S.S.S. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: The validation data used in study was from Dartmouth-
Hitchcock Medical Center (or Dartmouth Health) and was conducted in accordance with the Declara-
tion of Helsinki and approved by the Institutional Review Board (or Ethics Committee) of Dartmouth
Health (protocol code STUDY00031179 and 28 April 2023).

Informed Consent Statement: Patient consent was waived as it was not required per IRB.

Data Availability Statement: Data are available at: https://github.com/skr1/Imagene (accessed on
1 January 2023).

Acknowledgments: We thank The Cancer Imaging Archive (TCIA) portal and the Duke University
Hospital for making the clinicopathological data available at TCIA.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer statistics. CA A Cancer J. Clin. 2022, 72, 7–33. [CrossRef] [PubMed]
2. Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN

Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [CrossRef]
[PubMed]

3. Redig, A.J.; McAllister, S.S. Breast cancer as a systemic disease: A view of metastasis. J. Intern. Med. 2013, 274, 113–126. [CrossRef]
4. Van Poznak, C.; Somerfield, M.R.; Bast, R.C.; Cristofanilli, M.; Goetz, M.P.; Gonzalez-Angulo, A.M.; Hicks, D.G.; Hill, E.G.; Liu,

M.C.; Lucas, W.; et al. Use of Biomarkers to Guide Decisions on Systemic Therapy for Women With Metastatic Breast Cancer:
American Society of Clinical Oncology Clinical Practice Guideline. J. Clin. Oncol. 2015, 33, 2695–2704. [CrossRef]

5. Phung, M.T.; Tin, S.T.; Elwood, J.M. Prognostic models for breast cancer: A systematic review. BMC Cancer 2019, 19, 230.
[CrossRef]

6. Huang, E.; Cheng, S.H.; Dressman, H.; Pittman, J.; Tsou, M.H.; Horng, C.F.; Bild, A.; Iversen, E.S.; Liao, M.; Chen, C.M.; et al.
Gene expression predictors of breast cancer outcomes. Lancet 2003, 361, 1590–1596. [CrossRef]

7. Engelhardt, E.G.; Garvelink, M.M.; Haes, J.C.J.M.D.; Hoeven, J.J.M.V.D.; Smets, E.M.A.; Pieterse, A.H.; Stiggelbout, A.M.
Predicting and Communicating the Risk of Recurrence and Death in Women with Early-Stage Breast Cancer: A Systematic
Review of Risk Prediction Models. J. Clin. Oncol. 2014, 32, 238–250. [CrossRef]

8. Xiao, W.; Zheng, S.; Yang, A.; Zhang, X.; Zou, Y.; Tang, H.; Xie, X. Breast cancer subtypes and the risk of distant metastasis at
initial diagnosis: A population-based study. Cancer Manag. Res. 2018, 10, 5329–5338. [CrossRef] [PubMed]

9. Wu, Q.; Li, J.; Zhu, S.; Wu, J.; Chen, C.; Liu, Q.; Wei, W.; Zhang, Y.; Sun, S. Breast cancer subtypes predict the preferential site of
distant metastases: A SEER based study. Oncotarget 2017, 8, 27990–27996. [CrossRef]

10. Gupta, G.P.; Massagué, J. Cancer Metastasis: Building a Framework. Cell 2006, 127, 679–695. [CrossRef]
11. Howlader, N.; Cronin, K.A.; Kurian, A.W.; Andridge, R. Differences in Breast Cancer Survival by Molecular Subtypes in the

United States. Cancer Epidemiol. Biomark. Prev. 2018, 27, 619–626. [CrossRef] [PubMed]
12. Liao, H.-Y.; Zhang, W.-W.; Sun, J.-Y.; Li, F.-Y.; He, Z.-Y.; Wu, S.-G. The Clinicopathological Features and Survival Outcomes of

Different Histological Subtypes in Triple-negative Breast Cancer. J. Cancer 2018, 9, 296–303. [CrossRef] [PubMed]
13. Polyak, K. Heterogeneity in breast cancer. J. Clin. Investig. 2011, 121, 3786–3788. [CrossRef] [PubMed]
14. Selli, C.; Sims, A.H. Neoadjuvant Therapy for Breast Cancer as a Model for Translational Research. Breast Cancer 2019,

13, 1178223419829072. [CrossRef]
15. Wang, H.; Mao, X. Evaluation of the Efficacy of Neoadjuvant Chemotherapy for Breast Cancer. Drug Des. Dev. Ther. 2020,

14, 2423–2433. [CrossRef]

https://github.com/skr1/Imagene
https://github.com/skr1/Imagene
https://doi.org/10.3322/caac.21708
https://www.ncbi.nlm.nih.gov/pubmed/35020204
https://doi.org/10.3322/caac.21660
https://www.ncbi.nlm.nih.gov/pubmed/33538338
https://doi.org/10.1111/joim.12084
https://doi.org/10.1200/JCO.2015.61.1459
https://doi.org/10.1186/s12885-019-5442-6
https://doi.org/10.1016/S0140-6736(03)13308-9
https://doi.org/10.1200/JCO.2013.50.3417
https://doi.org/10.2147/CMAR.S176763
https://www.ncbi.nlm.nih.gov/pubmed/30464629
https://doi.org/10.18632/oncotarget.15856
https://doi.org/10.1016/j.cell.2006.11.001
https://doi.org/10.1158/1055-9965.EPI-17-0627
https://www.ncbi.nlm.nih.gov/pubmed/29593010
https://doi.org/10.7150/jca.22280
https://www.ncbi.nlm.nih.gov/pubmed/29344276
https://doi.org/10.1172/JCI60534
https://www.ncbi.nlm.nih.gov/pubmed/21965334
https://doi.org/10.1177/1178223419829072
https://doi.org/10.2147/DDDT.S253961


Cancers 2023, 15, 3960 12 of 13

16. Fowler, A.M.; Mankoff, D.A.; Joe, B.N. Imaging Neoadjuvant Therapy Response in Breast Cancer. Radiology 2017, 285, 358–375.
[CrossRef]

17. Sadeghi-Naini, A.; Sannachi, L.; Tadayyon, H.; Tran, W.T.; Slodkowska, E.; Trudeau, M.; Gandhi, S.; Pritchard, K.; Kolios, M.C.;
Czarnota, G.J. Chemotherapy-Response Monitoring of Breast Cancer Patients Using Quantitative Ultrasound-Based Intra-Tumour
Heterogeneities. Sci. Rep. 2017, 7, 10352. [CrossRef]

18. Bossuyt, V.; Spring, L. Pathologic evaluation of response to neoadjuvant therapy drives treatment changes and improves long-term
outcomes for breast cancer patients. Breast J. 2020, 26, 1189–1198. [CrossRef]

19. Provenzano, E.; Bossuyt, V.; Viale, G.; Cameron, D.; Badve, S.; Denkert, C.; MacGrogan, G.; Penault-Llorca, F.; Boughey, J.;
Curigliano, G.; et al. Standardization of pathologic evaluation and reporting of postneoadjuvant specimens in clinical trials of
breast cancer: Recommendations from an international working group. Mod. Pathol. 2015, 28, 1185–1201. [CrossRef]

20. von Minckwitz, G.; Untch, M.; Blohmer, J.U.; Costa, S.D.; Eidtmann, H.; Fasching, P.A.; Gerber, B.; Eiermann, W.; Hilfrich, J.;
Huober, J.; et al. Definition and impact of pathologic complete response on prognosis after neoadjuvant chemotherapy in various
intrinsic breast cancer subtypes. J. Clin. Oncol. 2012, 30, 1796–1804. [CrossRef]

21. Anampa, J.; Makower, D.; Sparano, J.A. Progress in adjuvant chemotherapy for breast cancer: An overview. BMC Med. 2015,
13, 195. [CrossRef]

22. Flatley, M.J.; Dodwell, D.J. Adjuvant treatment for breast cancer. Surgery 2019, 37, 176–180. [CrossRef]
23. Riggio, A.I.; Varley, K.E.; Welm, A.L. The lingering mysteries of metastatic recurrence in breast cancer. Br. J. Cancer 2021,

124, 13–26. [CrossRef] [PubMed]
24. Xin, J.; Ping, M. Targeting breast cancer metastasis. Breast Cancer Basic. Clin. Res. 2015, 9, 23–34.
25. Albain, K.S.; Barlow, W.E.; Shak, S.; Hortobagyi, G.N.; Livingston, R.B.; Yeh, I.T.; Ravdin, P.; Bugarini, R.; Baehner, F.L.; Davidson,

N.E.; et al. Prognostic and predictive value of the 21-gene recurrence score assay in postmenopausal women with node-positive,
oestrogen-receptor-positive breast cancer on chemotherapy: A retrospective analysis of a randomised trial. Lancet Oncol. 2010,
11, 55–65. [CrossRef]

26. Roberts, M.C.; Bryson, A.; Weinberger, M.; Dusetzina, S.B.; Dinan, M.A.; Reeder-Hayes, K.; Wheeler, S.B. Oncologists’ Barriers
and Facilitators for Oncotype dx Use: Qualitative Study. Int. J. Technol. Assess. Health Care 2016, 32, 355–361. [CrossRef]

27. Iles, K.; Roberson, M.L.; Spanheimer, P.; Gallagher, K.; Ollila, D.W.; Strassle, P.D.; Downs-Canner, S. The impact of age and nodal
status on variations in oncotype DX testing and adjuvant treatment. npj Breast Cancer 2022, 8, 27. [CrossRef]

28. Sparano, J.A.; Gray, R.J.; Makower, D.F.; Pritchard, K.I.; Albain, K.S.; Hayes, D.F.; Geyer, C.E.; Dees, E.C.; Goetz, M.P.; Olson,
J.A.; et al. Adjuvant Chemotherapy Guided by a 21-Gene Expression Assay in Breast Cancer. N. Engl. J. Med. 2018, 379, 111–121.
[CrossRef] [PubMed]

29. Osareh, A.; Shadgar, B. Machine learning techniques to diagnose breast cancer. In Proceedings of the 2010 5th International
Symposium on Health Informatics and Bioinformatics, Ankara, Turkey, 20–22 April 2010; pp. 114–120.

30. Amrane, M.; Oukid, S.; Gagaoua, I.; Ensari, T. Breast cancer classification using machine learning. In Proceedings of the 2018
Electric Electronics, Computer Science, Biomedical Engineerings’ Meeting (EBBT), Istanbul, Turkey, 18–19 April 2018; pp. 1–4.

31. Wang, D.; Khosla, A.; Gargeya, R.; Irshad, H.; Andrew, H.B. Deep Learning for Identifying Metastatic Breast Cancer. arXiv 2016,
arXiv:1606.05718.

32. Ganggayah, M.D.; Taib, N.A.; Har, Y.C.; Lio, P.; Dhillon, S.K. Predicting factors for survival of breast cancer patients using
machine learning techniques. BMC Med. Inform. Decis. Mak. 2019, 19, 48. [CrossRef]

33. Zhao, S.; Wang, L.; Ding, W.; Ye, B.; Cheng, C.; Shao, J.; Liu, J.; Zhou, H. Crosstalk of disulfidptosis-related subtypes, establishment
of a prognostic signature and immune infiltration characteristics in bladder cancer based on a machine learning survival
framework. Front. Endocrinol. 2023, 14, 1180404. [CrossRef] [PubMed]

34. Zou, Y.; Xie, J.; Zheng, S.; Liu, W.; Tang, Y.; Tian, W.; Deng, X.; Wu, L.; Zhang, Y.; Wong, C.W.; et al. Leveraging diverse cell-death
patterns to predict the prognosis and drug sensitivity of triple-negative breast cancer patients after surgery. Int. J. Surg. 2022,
107, 106936. [CrossRef]

35. Xie, J.; Luo, X.; Deng, X.; Tang, Y.; Tian, W.; Cheng, H.; Zhang, J.; Zou, Y.; Guo, Z.; Xie, X. Advances in artificial intelligence to
predict cancer immunotherapy efficacy. Front. Immunol. 2022, 13, 1076883. [CrossRef] [PubMed]

36. Boutros, C.; Mazouni, C.; Lerebours, F.; Stevens, D.; Lei, X.; Gonzalez-Angulo, A.M.; Delaloge, S. A preoperative nomogram
to predict the risk of synchronous distant metastases at diagnosis of primary breast cancer. Br. J. Cancer 2015, 112, 992–997.
[CrossRef] [PubMed]

37. Nicolò, C.; Périer, C.; Prague, M.; Bellera, C.; MacGrogan, G.; Saut, O.; Benzekry, S. Machine Learning and Mechanistic Modeling
for Prediction of Metastatic Relapse in Early-Stage Breast Cancer. JCO Clin. Cancer Inform 2020, 4, 259–274. [CrossRef]

38. Tseng, Y.-J.; Huang, C.-E.; Wen, C.-N.; Lai, P.-Y.; Wu, M.-H.; Sun, Y.-C.; Wang, H.-Y.; Lu, J.-J. Predicting breast cancer metastasis by
using serum biomarkers and clinicopathological data with machine learning technologies. Int. J. Med. Inform. 2019, 128, 79–86.
[CrossRef]

39. Tuladhar, A.; Gill, S.; Ismail, Z.; Forkert, N.D. Building machine learning models without sharing patient data: A simulation-based
analysis of distributed learning by ensembling. J. Biomed. Inform. 2020, 106, 103424. [CrossRef]

40. Dluhoš, P.; Schwarz, D.; Cahn, W.; van Haren, N.; Kahn, R.; Španiel, F.; Horáček, J.; Kašpárek, T.; Schnack, H. Multi-center
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