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Simple Summary: Training computer-assisted algorithms on medical images, particularly
18F-fluorodeoxyglucose (18F-FDG) positron emission tomography (PET) due to its excellent diagnos-
tic accuracy, is difficult, considering small/fragmented samples or privacy concerns. In computer-
vision, deep learning-based models, unlike the conventional data augmentation methods, are highly
sought after for creating massive medical samples. For this reason, we developed a multi-scale
computational framework to generate synthetic 18F-FDG PET images similar to the real ones in
different stages of solid tumor growth and angiogenesis. The framework is developed based on
the bio-physiological phenomena of FDG radiotracer uptake in solid tumors using a biomathe-
matical model and a generative adversarial network (GAN)-based architecture. The non-invasive
augmented 18F-FDG PET images can be used in clinical practice without the need to manage the
patient data. In addition, our spatiotemporal mathematical model can calculate the distribution of
various radiopharmaceuticals in different tumor-associated vasculatures.

Abstract: No previous works have attempted to combine generative adversarial network (GAN)
architectures and the biomathematical modeling of positron emission tomography (PET) radiotracer
uptake in tumors to generate extra training samples. Here, we developed a novel computational
model to produce synthetic 18F-fluorodeoxyglucose (18F-FDG) PET images of solid tumors in
different stages of progression and angiogenesis. First, a comprehensive biomathematical model
is employed for creating tumor-induced angiogenesis, intravascular and extravascular fluid flow,
as well as modeling of the transport phenomena and reaction processes of 18F-FDG in a tumor
microenvironment. Then, a deep convolutional GAN (DCGAN) model is employed for producing
synthetic PET images using 170 input images of 18F-FDG uptake in each of 10 different tumor
microvascular networks. The interstitial fluid parameters and spatiotemporal distribution of 18F-FDG
uptake in tumor and healthy tissues have been compared against previously published numerical and
experimental studies, indicating the accuracy of the model. The structural similarity index measure
(SSIM) and peak signal-to-noise ratio (PSNR) of the generated PET sample and the experimental
one are 0.72 and 28.53, respectively. Our results demonstrate that a combination of biomathematical
modeling and GAN-based augmentation models provides a robust framework for the non-invasive
and accurate generation of synthetic PET images of solid tumors in different stages.
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1. Introduction

The use of artificial intelligence (AI) for the processing and analysis of medical images
based on machine learning and deep learning techniques has extensively played a critical
role in healthcare over recent years [1–3]. It is widely known that larger image datasets
lead to better training of deep learning algorithms [4]. However, developing AI-assisted
automated models for computer-vision-related tasks such as medical image classification,
object detection, and image segmentation is often challenged by a limited training dataset. A
lack of a sufficient amount of data generally results in overfitting in which the deep leering
models fail to generalize well to additional testing data or predict future observations
reliably [4]. In addition, the process of medical image annotation can be costly in terms
of time, resources, and effort. It also becomes more difficult for precise labeling in order
to identify different stages of tumor growth and angiogenesis. If medical samples are
expected to be made public in medical research, obtaining appropriate patient consent
for the patients’ protection and interest is necessary [5,6]. Therefore, the medical images
available online to the public are limited, and their size and quality are low in most
cases [5,6]. Collecting medical images for training an accurate deep learning algorithm is
a complex, time-consuming, and costly process that usually requires sufficient funding,
obtaining appropriate privacy consent, and the collaboration of technical researchers,
radiologists, and clinicians.

Data augmentation is a very powerful solution to the problem of limited data [5,6].
Routine augmentation techniques produce highly correlated image training data by map-
ping the points of an image to a different position or manipulating the intensity values
of the image [6]. Basic data augmentation techniques include several operations, such as
geometric transformations, cropping, occlusion, noise injection, and filtering intensity oper-
ations data [5,6]. However, the effectiveness of these techniques on medical image analysis
with complex imaging textures is not as useful as the conventional image datasets because
the medical image patterns might be changed by applying basic geometric and deformable
augmentation techniques such as translation and rotation. Synthetic data generation is
another type of data augmentation approach that is able to programmatically learn the rep-
resentations of images, produce realistic images to build the model’s generalizability, and
decrease overfitting during the training process [7,8]. Such synthetic generated datasets
are extremely useful for medical image analysis. In addition, since they are produced
artificially using deep learning models, there are no patient data management concerns.

Among different deep learning architectures used for data augmentation, genera-
tive adversarial networks (GANs) [9] are now at the center of public attention because of
their great image generation performance. The GAN has two deep architecture functions,
generator and discriminator, and it is trained in an adversarial fashion in which the gen-
erator produces the fake samples, and the discriminator iteratively trains to distinguish
between fake and real samples. Several GAN-based models have been developed for the
different application tasks of image segmentation, detection, classification, registration,
super-resolution, and denoising [7,8]. Nie et al. [10] proposed an adversarial strategy to
train a fully convolutional network, aiming to generate synthetic pelvic computed tomog-
raphy (CT) images given input magnetic resonance (MR) images. Emami et al. [11] used
a method to generate synthetic brain CT datasets using T1-weighted post-Gadolinium
MR imaging datasets as the input through a GAN model. Kazuhiro et al. [12] generated
synthetic human brain MR images by applying a GAN model, and then quantified the
quality of generated images by a visual assessment conducted by five radiologists. Ben-
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Cohen et al. [13] developed a model to produce synthetic positron emission tomography
(PET) images from given input CT images by using a fully convolutional network with a
conditional GAN (cGAN). Peng et al. [14] trained a cGAN and a cycle-consistency GAN
(cycleGAN) to generate synthetic CT images from MR images of nasopharyngeal carcinoma.
Yoo et al. [15] examined the quality of three different deep learning networks named GAN,
CycGAN, and reference-guided GAN (RgGAN) for generating synthetic CT images of
prostate cancer from T2-weighted MR images.

Some studies have used GAN-based data augmentation models to solve the problem
posed by the small sample size or develop multi-classification by generating more syn-
thetic medical images [16–23]. Liu et al. [16] presented a combined approach based on a
GAN model and a deep neural network to generate synthetic samples of hepatocellular
carcinoma. Han et al. [17] used a two-step GAN-based network to produce and improve
MR images of the brain without/with tumors exclusively. Yu et al. [18] used a novel image
generation architecture called multiple-channels-multiple-landmarks (MCML), which is
based on GANs, to generate color fundus samples from a combination of vessel tree, optic
disc, and optic cup. Sun et al. [19] proposed a novel brain MR image synthesis model,
i.e., abnormal-to-normal translation GAN (ANT-GAN), to produce a normal-looking med-
ical image according to its abnormal-looking counterpart through non-paired training
samples. Islam and Zhang [20] proposed an unsupervised deep learning model to generate
synthetic brain PET samples for three different stages of Alzheimer’s disease via a deep
convolutional GAN (DCGAN). Similar work has been done by Sajjad et al. [21], who devel-
oped a DCGAN model to produce artificial PET images for all three stages of Alzheimer’s
disease and then also offered a quantitative validation approach for the GAN to measure
the quality of the augmented datasets. Andreini et al. [22] trained a progressively growing
GAN (PGGAN) to generate the semantic label-maps and then used an image-to-image
translation model to synthesize realistic high-quality retinal images from the generated
blood vessel structure. In summary, most of the aforementioned studies have focused on
producing synthetic MR or CT images, and few studies have produced artificial PET images
of solid tumors. In addition, to the best of the authors’ knowledge, there is no single study
that used GAN-based augmentation techniques to generate synthetic PET images from
scratch and by only using mathematical modeling instead of using original PET images
that were previously taken by PET scan.

Besides these attempts to augment further artificial medical samples using machine
learning tools, a few studies have used biomathematical modeling for producing realistic
medical images. For instance, Soltani et al. [24] developed a comprehensive spatiotemporal
distribution model to simulate PET 18F-fluorodeoxyglucose (18F-FDG) uptake within the
two static and dynamic microvascular networks. Their model potentially investigated the
underlying bio-physiological parameters, such as the microvessel conductivity, permeabil-
ity of transvascular exchange, and interstitial fluid flow fields in both tumor and healthy
tissues. In the following, their model is developed by Fasaeiyan et al. [25] via applying
the spatiotemporal distribution model to a synthetic tumor microvasculature in order to
enhance the quantification and assessment of 18F-FDG uptake on a patient-specific level.
The pattern of radiotracer uptake and its accumulation in tissues were similar to experi-
mental observations. Furthermore, Moradi Kashkooli et al. [26] utilized a comprehensive
computational model to produce synthetic spatiotemporal snapshots of 18F-FDG uptake on
four tumor networks with different sizes but simplified architectures of microvessel growth.
They calculated the quantitative and semi-quantitative assessments of a PET radiotracer
within tumor networks. They also compared those snapshots with longitudinal PET images
of tumor-bearing mice, a pediatric brain tumor, and several other experimental studies,
indicating the accuracy of the findings.

In this study, for the first time, we developed a novel computational framework to
create synthetic PET images of solid tumors at different stages of growth and angiogenesis,
based upon a combination of a multi-scale spatiotemporal distribution model and a machine
learning model. This model, unlike many other models that use pre-taken, real PET images
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as input datasets to generate artificial PET images, produces PET images from scratch
using biomathematical modeling. Our model is developed based on the actual bio-physical
phenomena behind the 18F-FDG radiotracer accumulation in the tumor and healthy tissues,
taking place on different scales. On the cellular scale, tumor-induced angiogenesis is the
basis of the model, in which new vasculatures grow from pre-existing vessels to accomplish
the tumor’s need for more energy. These new blood vessels act as a source for releasing
radiotracer diagnostic agents, here 18F-FDG, into the tissue. At the tissue scale, the model
simulates the spatiotemporal distribution of 18F-FDG in both healthy and tumor tissues.
Then, a series of images produced by biomathematical modeling is proposed to generate
synthetic PET images by a machine learning architecture, here a DCGAN model. The
DCGAN model takes the produced 18F-FGD PET images by biomathematical modeling
as input and augments more real-like PET samples through the mini-max game theory.
The ultimate goal of the present hybrid model is to generate synthesized 18F-FDG PET
samples non-invasively to accomplish the need for massive training samples required in
the conventional deep learning models.

2. Materials and Methods

In this section, first, detailed mathematical models are provided, including the overall
theory of tumor-induced angiogenesis modeling and calculating intravascular blood flow,
equations governing the fluid flow as well as 18F-FDG radiotracer transport and uptake
in tissue and cellular scales. Then, the description of the GAN and DCGAN models, our
proposed deep learning model, and its training procedure are provided. Subsequently, the
computational domain, grid independence test, and boundary conditions are discussed.
Eventually, the solution strategy and model validation are presented.

2.1. Tumor-Induced Angiogenesis Modeling
2.1.1. Summary of Mathematical Procedures for Generating Capillary Networks

The present mathematical modeling of tumor-induced angiogenesis is based on a
discrete approach that relies on the interaction between endothelial cells (ECs) and their
microenvironment. Such discrete angiogenesis models were initially presented by An-
derson and Chaplain [27] and then developed by Soltani and Chen [28] by some more
realistic architectures of the capillary network. Therefore, in the present study based on our
previous works [28,29], we developed an advanced mathematical model of angiogenesis to
generate different capillary networks by considering the effect of matrix density and blood
flow through vessels, as well as more acceleration of vessels as getting nearer to the tumor.

In summary, once the vascular endothelial growth factor (VEGF) is secreted by hy-
poxic cells of the tumor, they transport toward the regions with lower VEGF gradients.
On the two vertical sides of the computational domain, the parent vessels are taking into
account the source of new microvessels. The new-born capillaries begin to move through
the domain and be close to the cancerous tissue. The details of rules for sprouting angio-
genesis, algorithms, and related governing equations have been discussed in our previous
works [26,28,29], but the overall procedure is as follows:

1. Consider the initial conditions of the model;
2. Estimate the probability condition for the motion of every EC by solving a set of

probability-based movement algorithms as a function of VEGF concentration in the
domain which is discretized through a finite difference scheme based on the previous
studies [26,29];

3. Keep each EC stationary or move them left, right, down, or up based on the values
calculated in step 2;

4. Check for tip cell fusion (anastomosis). In the discreet mathematical modeling of
angiogenesis, when two tip ECs or one tip EC and one stalk EC encounter each other,
the anastomosis takes place. In either case, a closed loop is shaped, which allows the
blood flows through the new vessels [26,28,29];
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5. If anastomosis occurs, only one of the two ECs can continue its migration through
the domain;

6. Check for EC branching on its way toward the tumor;
7. If branching occurs, a new EC is included in the list of ECs for the next step;
8. Back to the second step.

2.1.2. Summary of Mathematical Procedures for Intravascular Blood Flow Modeling

The summary of the procedure for calculating intravascular blood flow with adaptable
vessels and non-continuous blood behavior is as below:

1. Consider initial guesses for parameters of the model (i.e., intravascular blood pressure
(IBP), blood viscosity, hematocrit, and vessel diameter);

2. Calculate IBP in each vascular node iteratively through an algorithm called successive
over-relaxation (SOR);

3. Calculate hematocrit and total adaptive stimuli (i.e., wall shear stress stimulus, pres-
sure stimulus of capillaries, and metabolic stimulus);

4. Update capillary diameter based on a new value calculated in step 3;
5. Calculate laminar intravascular blood flow rate according to Poiseuille’s law due to

the low Reynolds number [29,30];
6. Calculate the velocity in each capillary;
7. Find hematocrit at the vessel bifurcations;
8. Update the apparent viscosity according to the capillary diameter and hematocrit;
9. Ensure accurate solving by calculating the maximum relative error of IBP and vessel

diameter using max (
(
xn − xn−1)/xn−1), in which x can be each of IBP or vessel diameter

and n and (n− 1) correspond to the current and previous time steps, respectively;
10. If the maximum relative error is greater than the defined threshold (10−4), the iterative

procedure should be back to step 2, and the new solutions of parameters should be
substituted for the previous quantities. Otherwise, the procedure is considered to be
finished, and the IBP values can be used in the next stage of the simulation.

All mathematical formulas governed the vascular blood flow and required parameters
for the dynamic adaptive tumor-induced angiogenesis have been discussed in our previous
studies [26,28,29].

2.2. Interstitial Fluid Flow Modeling

The solid tumor and adjacent healthy tissue can be considered as porous media,
based on the literature [31]. The momentum equation for incompressible Newtonian fluid
flow within a porous environment at a steady state is simplified to the Darcy equation as
follows [31,32]:

→
V i = −κ∇Pi (1)

where
→
V i refers to the interstitial fluid velocity (IFV), Pi indicates the interstitial fluid

pressure (IFP), and κ is the hydraulic conductivity.
Mass continuity equation for interstitium, taking into account the presence of source

and sink terms of mass in biological tissues, is corrected as [31,32]:

∇.
→
V i = φv − φl (2)

where φv and φl are the rate of fluid flow from microvessels to the interstitial space and from
interstitial space to lymph vessels, respectively. φv and φl can be calculated by Starling’s
law as [31,32]:

φv = LP
S
V
(PB − Pi − σs(πB − πi)) (3)

φl = LPL

(
S
V

)
L
(Pi − PL) (4)
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in which LP is the hydraulic conductivity of the microvessel wall, S
V indicates the microvas-

cular density, LPL

(
S
V

)
L

is the loss rate due to the lymphatic drainage, PB is the IBP, σs is the
coefficient of average osmotic reflection, πB is the oncotic pressure of microvessels, πi is the
oncotic pressure of the interstitial fluid, and PL is the pressure of lymphatic vessels in the
healthy tissue. The values of related parameters along with their definitions are presented
in Table S1.

2.3. Spatiotemporal Modeling of 18F-FDG Transport

In the present work, the transport of 18F-FDG radiotracer is described by a series
of partial differential equations (PDEs) instead of ordinary differential equations (ODEs),
which have widely been used in conventional compartmental modeling of radiotracer [33].
Using PDEs allowed us to successfully calculate the spatiotemporal distribution of 18F-
FDG radiotracer within both healthy and tumor tissues [24,26]. Such mathematical models
are also called convection-diffusion-reaction (CDR) equations, which are prevalent in the
mathematical modeling of drug delivery to solid tumors [34].

Present spatiotemporal modeling of 18F-FDG radiotracer transport measures sev-
eral biological and physiological phenomena, including radiotracer transport across the
microvessels by diffusion and convection mechanisms, radiotracer transport within the
interstitial space by diffusion and convection mechanisms, and cell binding and uptake. A
schematic of 18F-FDG radiotracer transport from intravascular injection to cellular uptake
by tumor cells along with the corresponding compartments is presented in Figure 1. Here,
the intravascularly injected 18F-FDG radiotracer is exchanged between the extracellular
space and intracellular one and vice versa by glucose transporters (GLUTs), demonstrated
by L3 and L4 constant rates, respectively [26,35,36]. Subsequently, the absorbed 18F-FDG
radiotracer may be phosphorylated by hexokinase enzymes to phosphorylated 18F-FDG
radiotracer by a constant rate of L5, releasing two high-energy gamma rays in opposite
directions, which can pass through the body’s lymph drainage system. Then, these high-
energy rays can be detected by a PET scan machine. Ultimately, clinicians can detect
the tumor tissue state by computer-processing the series of images taken from different
angles [26].

2.3.1. Mathematical Formulation of 18F-FDG Radiotracer Transport Modeling

The system of CDR equations for 18F-FDG radiotracer transport modeling is repre-
sented as follows [24,26]:

∂Ci
∂t

= −
→
V i∇Ci + De f f∇2Ci − L3Ci + L4Ce + (ΦV −ΦL) (5)

∂Ce

∂t
= L3Ci − L4Ce − L5Ce (6)

∂Cm

∂t
= L5Ce (7)

L1 = φv

(
1− σf

)
− PmS

V
Pe

exp(Pe)− 1
(8)

L2 =
PmS
V

Pe
exp(Pe)− 1

+ φl (9)

Pe =
φv

(
1− σf

)
Pm

S
V

(10)

where Ci is the extracellular 18F-FDG radiotracer concentration normalized to extracellular
volume, Ce is the intracellular concentration of 18F-FDG radiotracer, and Cm is the phospho-
rylated intracellular concentration of 18F-FDG radiotracer. L3, L4, and L5 are transport rate
constants between the extracellular matrix (ECM) and tumor cell, the transport rate from
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tumor cell to the ECM, and the 18F-FDG radiotracer phosphorylation rate, respectively.
Furthermore, L1 and L2 are the exchange rate parameters between plasma and ECM, Pm is
the vascular permeability coefficient, σf is the filtration reflection coefficient and Pe is the
Peclet number.
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Figure 1. A schematic of the present multi-scale computational model of dynamic transport modeling
of the 18F-FDG radiotracer. (a) Multi-compartment model of spatiotemporal distribution modeling of
18F-FDG radiotracer. (b) Schematic of exchanges of radiotracer between interstitium and microvessels
via L1 and L2 coefficients, transport of extracellular radiotracer in the interstitial space through
convection and diffusion mechanisms as well as entering the radiotracer into and out of the cell via
L3 and L4 coefficients, and phosphorylation of intracellularly absorbed radiotracer by hexokinase
enzymes via L5 constant rate.

In Equation (5), ΦV and ΦL are the rate of radiotracer transport per unit volume from
microvessels into the interstitial space and from the interstitial space into the lymphatic
drainage system, respectively. These two parameters are expressed based on Patlak’s model
as [37,38]:

ΦV = φv

(
1− σf

)
Cp + Pm

S
V
(
Cp − Ci

) Pe
exp(Pe)− 1

(11)

ΦL = φlCi (12)

in which Cp is the 18F-FDG radiotracer plasma arterial concentration [39]. The values of
18F-FDG radiotracer transport parameters along with their definitions are provided in
Table S2.
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2.3.2. Semi-Quantitative Assessment of 18F-FDG Radiotracer Transport Modeling

For quantitative analysis of radiotracer uptake in different stages of tumor progression,
the standardized uptake value (SUV) index is measured in clinical oncological practice.
SUV is determined as the ratio of the total tissue radioactivity concentration investigated
in a region of interest to the radioactivity injected into the body, normalized by the body
weight as [26]:

SUV =
Tissue radioactivity concentration (Ctotal)

Injected radioactivity
× Body weight (13)

Ctotal = Ci + Ce + Cm (14)

A patient with 75 kg weight is considered for further analysis [39]. Additionally,
the total 18F-FDG radiotracer concentration (Ctotal) is determined as a sum of three other
concentrations (Ci, Ce, and Cm).

2.4. Generative Adversarial Network

GAN is a novel deep learning architecture that was invented by Goodfellow et al. [9].
The original GAN model consists of two phases: generative G and discriminator D neural
networks. The generative model aims to produce synthetic examples from a random distri-
bution. The discriminative model reviews the generated data to evaluate the probability
that the sample is drawn from the actual training dataset or the generative model. The
generative and discriminative models at the same time compete with one against the other
to become trained by using the minimax game theory. The training procedure goal for G is
to maximize the probability of D making mistakes [9].

Generator G
(
z, θg

)
is a differentiable function demonstrated by a multilayer perceptron

that shows a mapping to the data space with parameters θg. A prior distribution ρz is
determined on random noise variables z to learn the generator’s distribution ρg over
the data input space x. The discriminator D(x, θd), also a multilayer perceptron, takes
the synthetic dataset generated by G as well as the real training dataset and results in a
single scalar value. During the training process, the discriminator D tries to maximize
log(D(x)) + log(1− D(G(z))) in which D(x) is the probability of the examples being real
and D(G(z)) is the probability of them having been produced from G(z). Simultaneously,
G is trained to minimize the cross-entropy loss function represented by log(1− D(G(z)))
and thus successively learn to generate data samples so that D cannot distinguish them
from the actual dataset. This is thus a two-player minimax optimization game between
generator and discriminator with the following value function V(D, G) [9]:

min
G

max
D

V(D, G) = Ex∼ρdata(x) [log(D(x))] +Ez∼ρdata(z) [log(1− D(G(z)))] (15)

where E indicates a statistical expectation, z is the input noise vector, and x is the real
image dataset. ρdata(x) and ρdata(z) stand for the distribution of the real data and the ran-
dom noise, respectively. The training process of a GAN model is composed of sampling
mini-batches of the real training data and data generated by the generator’s distribu-
tion ρg and updating the discriminator’s parameter θd by stochastic gradient ascent of
log(D(x)) + log(1− D(G(z))), followed by sampling mini-batches of data points from the
distribution ρz and updating the generator’s parameters θg through stochastic gradient
descent of log(1− D(G(z))) until an optimum is reached [9].

2.4.1. Deep Convolutional Generative Adversarial Network

DCGANs [40] are convolutional networks that have fewer constraints than the ar-
chitectural topology of the first GAN [9] and convolutional GANs. DCGANs have more
stability during the training and are able to generate higher resolution output images. To
produce synthetic images via the DCGAN model, there will be two stages: a learning
stage and a generation stage. During the learning stage, the generator model produces
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samples from an input N-dimensional uniform distribution vector and operates on this
vector via successive upsampling operations, ultimately producing fake samples from it.
The discriminator tries to differentiate between fake images generated by the generator
model and real images from the training dataset [40].

The DCGAN replaces all max-pooling layers with stride convolutions (discriminator)
and proposes fractional-strided convolutions for upsampling (generator). It also uses batch
norm in generator and discriminator for adjustment of extracted feature scale and also
excludes fully connected hidden layers. In addition, the leaky rectified linear unit (Leaky
ReLU) activation function is used in all layers of the discriminator. The ReLU functions are
used for all of generator’s layers except for the output layer, which uses the Tanh activation
function [40].

2.4.2. Proposed GAN Model

In every model, synthetic images should be generated with the desired settings to
adopt DCGAN for medical purposes. The architecture for the proposed synthetic PET
image GAN model is shown in Figure 2. The generator input is a vector of random
100-dimensional uniform distribution, and the output is an 18F-FGD PET image of size
64 × 64 × 3. The present network utilizes fully connected layers, and the generator is
comprised of four fractionally-strided convolutions (i.e., deconvolutions) with 2D batch
normalization layers. A ReLU activation function was applied to all layers except for the
last layer, which uses the Tanh function. The discriminator model takes an image of size
64 × 64 × 3 (18F-FGD PET images generated using biomathematical modeling) as input
and decides whether it belongs to the real training data or not (1 for a real image and 0
for a fake image). The discriminator network includes 4 convolution layers with a kernel
size of 4 × 4. Each convolutional layer uses strided convolutions to decrease the spatial
dimensionality instead of using pooling layers. Batch normalization and Leaky ReLU
activation function are used for each convolutional layer of the discriminator except the
output layer. A Sigmoid function is applied in the output layer to compute the likelihood
probability (0, 1) score.
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Figure 2. Generator and discriminator architectures are used to generate synthetic or fake 18F-FDG
PET images. A series of four fractionally-strided convolutions (i.e., deconvolutions) as a generator
to convert a vector of random 100-dimensional uniform distribution into a 64 × 64 × 3 pixel image,
and then the discriminator takes these generated images and 1700 input images of size 64 × 64 × 3,
which are generated previously using biomathematical modeling, and calculates the likelihood
probability (0, 1) score values using four convolution layers to distinguish the synthetic and real
18F-FDG PET images.
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2.4.3. Training Procedure

The generator and discriminator models are trained through an iterative training
flow with mini-batches of 50 image samples. A random 100-dimensional vector from a
uniform distribution value range between [–1, 11] is given as an input for the generator
model. All weights are initialized from a zero-centered normal distribution with a standard
deviation of 0.02. In all models, the slope of the Leaky ReLU is set to 0.2, and stochastic
gradient descent is applied during the training procedure with the Adam optimizer. The
first momentum term of the optimizer is set to β1 = 0.5 to stabilize training, and the
second one is set to β2 = 0.999. Ultimately, a learning rate of 0.0001 is applied during the
training process. Figure 3 shows a sample of the input images and the output images after
different steps.
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Figure 3. Thirty-two samples of input images are given to the DCGAN model and synthetically
generated output images. (a) Sample of input images as training data set consisting of 1700 images of
the spatiotemporal distribution of SUV at various times post 18F-FDG injection in 10 different tumor
sizes, ranging from 1 to 3 cm diameter. (b) Visualization of the DCGAN output images after different
epochs of training.

2.4.4. Quantitative Evaluation of Synthesized Generated 18F-FGD PET Images

To analyze the performance of generated PET images quantitatively, two widely used
metrics are calculated including peak signal-to-noise ratio (PSNR) and structural similarity
index measure (SSIM). The PSNR measures the ratio between the highest possible intensity
value and the mean squared error of the augmented and real images. A higher PSNR
quantity indicates a higher image quality. The output images of the biomathematical model
without implementing the DCGAN and generated PET images using the DCGAN model
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are separately compared with each other and previously published experimental results of
18F-FDG PET images. The proposed quality index is defined as [41]:

PSNR = 10 log
(max(y))2

1
n ∑n

i (yi − ŷi)
2 (16)

where n is the overall pixels of the image, yi and ŷi are the ith pixel in the original and
the generated images, respectively. SSIM measures the inter similarities between pixels of
two images, i.e., yields the index of similarity in the pixel values of two given images [42].
In our study, an SSIM index of 0 indicates no similarity, and 1 indicates total positive
similarity [42]:

SSIM(x, y) =

(
2µxµy + C1

)
+

(
2σxy + C2

)(
µx

2 + µy
2 + C1

)(
σx2 + σy2 + C2

) (17)

in which x and y represent two generated and ground truth PET images, respectively. The
averages of x is µx and the averages of y is µy. σx is the variance of x, σy is the variance

of y, and σxy denotes the covariance of y and x. To stabilize division, C1 = (K1L)2 and
C2 = (K2L)2 are proposed in which L is the dynamic range of the pixel values, K1 = 0.01
and K2 = 0.03.

2.5. Computational Domain and Boundary Conditions

In this work, a two-dimensional circular solid tumor is considered with 10 various
diameters, ranging from 1 cm to 3 cm. Such ranges of tumor and corresponding capillary
networks reveal the different stages of tumor progression and angiogenesis. All the con-
sidered boundary conditions are presented in Table S3 and Figure S2. The grid size for
solving Darcy’s law, conservations of mass and momentum, as well as CDR equations had
roughly 29,000 triangular elements, of which approximately 550 were edge elements, with
minimum element quality of 0.64 and average element quality of 0.90. To ensure that the
results are relatively insensitive to the grid size, four other courser grids are tested, but
no significant change, less than 3%, in 18F-FDG radiotracer concentration and IFP profiles
is observed.

2.6. Solution Strategy

As shown in Figure 4, the presented computational framework includes four main parts:

1. Generation of tumor-associated vasculatures and calculating vascular blood flow
through microvessels;

2. Calculating interstitial fluid flow parameters in both tumor and healthy tissues;
3. Calculating the spatiotemporal distribution of 18F-FDG radiotracer in generated

capillary networks;
4. Generating synthetic 18F-FDG PET images using DCGAN.

Firstly, the probability of movement of each EC is calculated, and then the anastomosis
and branching are checked using the approach introduced by Soltani [29] to generate
capillary networks. In the following, the intravascular blood flow with non-continuous
behavior of blood through capillaries with adaptable microvessels is solved iteratively.
Secondly, the calculated IBP in the previous stage is imported and used to calculate IFV
and IFP by solving Equations (1)–(4). Thirdly, 18F-FDG plasma arterial concentration,
as well as calculated interstitial pressure and velocity values, is used to solve coupled
CDR equations, represented in Equations (5)–(12). Different intracellular and extracellular
18F-FDG radiotracer concentrations are used to calculate SUV, according to Equation (13).
Subsequently, the SUV is normalized to make all the values in the dataset lie between 0
and 3, thus bringing them to a common scale. In each capillary network, an image of SUV
distribution is extracted every 20 s, while the total simulation time for solving the CDR
equation is considered 1 h, as defined by Boellaard et al. [43]. Since in the first ten images
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(images taken between [0 s, 180 s]), 18F-FDG has only accumulated nearby the capillary
network, these images are excluded, resulting in 170 images in each network. We repeat the
same process for all 10 capillary networks, and thus a series of 10 × 170 = 1700 images is
prepared to be implemented in the next stages of the presented framework. Eventually, in
the unsupervised machine learning stage, the DCGAN architecture, which consists of two
generator and discriminator models, is used to produce high-quality artificial PET images
during the training using the formerly prepared dataset.
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The governing equations related to tumor-induced angiogenesis and intravascular
blood flow are discretized using Euler finite difference method and are solved by C++
programming language, while the governing equations related to the interstitial fluid flow
and spatiotemporal modeling of 18F-FDG radiotracer concentration are solved by the
commercial computational fluid dynamics software COMSOL Multiphysics 5.5 (COMSOL,
Inc., Burlington, MA, USA), which works based on the finite element method. The direct
solver of multifrontal massively parallel sparse direct solver (MUMPS) is considered with
the backward differentiation formula (BDF) time-stepping method. Relative tolerance of
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0.001 and a time step of 10 s are considered. It should be noted that smaller time steps
did not considerably change the results but increased the computational cost. In addition,
the training process of the DCGAN is implemented by PyTorch 1.9 (High-Performance
Deep Learning Library, New York, NY, USA), Python 3.9 (Python Software Foundation,
Wilmington, DE, USA) and is performed for the training of 200 epochs. All of these
computational simulations are carried out on a personal laptop by CPU Intel (R) Core
i5-6200U processor CPU 2.4 GHz with memory 8 Gbytes.

2.7. Model Validation

In our previous works [26,29], we have confirmed the accuracy and validity of the
architecture of the generated capillary networks as well as their IBP values by comparing the
qualitative and quantitative results against both experimental data and numerical results.
The accuracy of solving the Darcy equation and conservation of mass in interstitium for
calculating the interstitial fluid flow parameters (IFV and IFP) and their distribution are
extensively compared against numerical predictions and experimental data of previously
published studies, showing excellent agreement. In addition, to verify the accurate solving
of the CDR equations regarding spatiotemporal modeling of the 18F-FDG radiotracer, the
total concentration of 18F-FDG in solid tumor has been compared with in vivo results of
Backes et al. [39], indicating very good compatibility. These different validations of the
presented biomathematical model are not presented here for brevity, but readers are referred
to the literature [26,29] for more information. However, we have compared and discussed
the results in a random tumor network with experimental and numerical predictions in the
following section.

3. Results and Discussion

In the present study, a robust, comprehensive, multi-scale framework is developed,
which consists of two phases: biomathematical modeling and an unsupervised machine
learning architecture model. The ultimate goal of the framework is to generate synthetic
18F-FDG radiotracer PET images in different stages of solid tumor progression and angio-
genesis. The biomathematical modeling phase simulates the real bio-physical phenomena
behind the tumor-induced angiogenesis, intravascular and interstitial fluid flow, as well
as 18F-FDG radiotracer distribution in both tumor and healthy tissues. These biological
phenomena occur on various scales, ranging from cellular to tissue scales. Ultimately, the
results of this stage are used to create a series of 1700 images including spatiotemporal
distribution of SUVs in 10 different and unique microvascular networks, which is used
in the next phase. The machine learning phase includes employing the DCGAN model,
which has two generator and discriminatory models. These two models simultaneously
compete with each other to generate high-quality artificial PET images. To the best of our
knowledge, this study is the first to augment synthetic PET images of solid tumors using
samples generated by biomathematical modeling of 18F-FDG radiotracer uptake. In the
fowling, the results of these two phases will be presented and discussed in detail.

Since our main focus in the present study is on the synthesize 18F-FDG PET image
generated by the GAN model, the results of biomathematical modeling are merely shown
for a random capillary network of a 2.4 cm tumor diameter as a representative of the rest
of the microvascular networks. However, we have comprehensively discussed different
details of angiogenesis as well as transport and uptake of 18F-FDG radiotracer in our
previous works [24,26]. Figure 5 shows the results of biomathematical modeling in different
stages, performed to create the input dataset of DCGAN.

The backbone of angiogenesis on a cellular scale is characterized by the interaction of
ECs and ECM. During angiogenesis, the blood microvessels move from the parent vessel
on the two side edges of the domain into a circular tumor at the center of the domain. From
a biological viewpoint, the main reason for this movement towards the tumor is the higher
VEGF gradient within the tumor tissue released by hypoxic cancer cells [27,44]. Six different
stages of angiogenesis are illustrated in Figure S1. In the first days of starting angiogenesis,
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new capillaries grow from the parent vessels and then they branch and make new, tree-
like, and more matured vessels. Subsequently, as the microvessels are approaching the
tumor, the density of microvessels and their tortuosity increase. This process continues
until the new-born microvessels reach the borders of tumor tissue and then the avascular
tumor develops to its fatal vascular phase of growth [45]. The two first panels in Figure 5
show the final, pruned capillaries carrying blood and their IBP distributions. The IBP
near the inlet has the highest magnitudes (see Figure S2a for intravascular boundary
conditions). However, the IBP in the network is 3030.41 ± 2098.66 Pa (mean ± standard
deviation), which is in good agreement with the reported physiological observations [38]
(i.e., 2660–3333 Pa) and the results of numerical studies [28,46].
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Figure 5. Results of biomathematical modeling in a tumor capillary network with 2.4 cm diame-
ter; tumor-induced angiogenesis architecture, intravascular and interstitial fluid flow parameters,
as well as local distribution of 18F-FDG radiotracer uptake in both tumor and healthy tissues
one-hour post-injection.

The two latter panels in the first row of Figure 5 illustrate the distribution of interstitial
fluid flow parameters. As expected, the tumor tissue has the greatest IFP through the do-
main with an average of 2378.40 Pa, indicating the hallmark of solid tumors [47]. IFP values
decrease sharply in the periphery of the tumor with an average value of 182.70 Pa. The
main reason for interstitial hypertension is the lack of an efficient lymphatic drainage sys-
tem in the tumor tissue as well as high leaky blood microvessels [37,48]. Consequently, the
direct result of such elevated IFP is reducing blood flow and therefore insufficient and poor
delivery of therapeutic and diagnostic agents into the central zones of the tumor [26,48,49].
In contrast, the IFV has a very low magnitude over the domain, with an average value
of 1.47 × 10−7 m/s, unless at the tumor periphery, where a high-pressure gradient has
existed. Thus, according to Darcy’s law (see Equation (1)), the highest IFV takes place at
the tumor border. These results have also been reported in other experimental [50–52] and
numerical [25,28,31,53,54] studies.

The panels in the second row of Figure 5 illustrate the extracellular, intracellular, and
phosphated18F-FDG radiotracer concentrations one-hour post-injection. The tumor tissue
in each contour can be easily distinguished from the surrounding healthy tissue by dras-
tically accumulated 18F-FDG radiotracer. The 6-phosphate18F-FDG concentration in the
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tumor and healthy tissues has an average value of 300.12 and 85.34 kBq/mL, respectively.
The reason for such elevated radiotracer concentration in the tumor is that tumors exhibit
a greater reliance on glycolysis for glucose metabolism and energy production than sur-
rounding healthy tissues, a phenomenon known as the Warburg effect [35]. Therefore, this
principal discriminator of tumors from healthy tissues by 18F-FDG PET imaging is utilized
for the detection of metastatic cancer and as a metric of response to therapy in clinical
trials [55]. As indicated in Equations (1) and (3), SUV distribution has a similar spatial trend
to the distribution of phosphorylated 18F-FDG concentration. In this capillary network, the
tumor and healthy tissues have average SUV values of 2.49 and 0.84, respectively. These
calculated SUVs are in excellent agreement with the quantitative experimental analysis of
Al-Nabhani et al. [56] and Sha et al. [57] in whole-body PET imaging and tumor-bearing
mice, respectively. Additionally, Video S1 illustrates the spatiotemporal changes in SUV
distribution in the capillary network. As shown in the video, owing to the high perme-
ability of tumor-associated vasculatures, the maximum radiotracer concentration occurs
in the tumor area at all time frames. However, since the microvessels in the capillary
network act as source terms for releasing radiotracer, at the initial times post-injection, the
18F-FDG radiotracer concentration is mainly accumulated nearby the capillary walls [26].
The 18F-FDG radiotracer is then transported and distributed in the other areas of the tissue
through the diffusion and convection mechanisms.

The mean PSNR value of images generated using biomathematical modeling only and
the DCGAN model is 30.82 (i.e., 30.63 for a 2.4-cm tumor and 31.02 for a 2-cm tumor), as
indicated in Figure 6a,b,e,f. The mean SSSIM value of images generated by biomathematical
modeling only and the DCGAN model is 0.82 (i.e., 0.78 for a 2.4-cm tumor and 0.86
for a 2-cm tumor). These results demonstrate the supreme quality of augmented PET
images using a GAN-based model from the given input PET images, which are created by
biomathematical modeling.

As shown in Figure 6c,d, the PSNR and SSIM values of the generated PET image
and a pediatric brain tumor [58] are 28.19 and 0.17, respectively. Furthermore, applying
these quantitative assessments on a longitudinal PET image of a U87 implanted in the
shoulder region of a mouse [57] results in 28.78 and 0.20 for PSNR and SSIM, respectively.
Given the complexity of the bio-physical properties of the tumor microenvironment, the
exceptional quantitative and qualitative agreement achieved is a testament to the level of
sophistication in the experimental PET images and the potential of our presented hybrid
framework. Nevertheless, small discrepancies between the computational and experimen-
tal quantitative metrics are attributed to the location and size of the tumor and surrounding
healthy tissues. We have also measured the qualitative evaluation of an augmented PET
image generated by the DCGAN model and another solid tumor with the same order of
size in breast lesion [59]. As indicated in Figure 6g,h, the results are only shown for solid
tumors, which have been cut circularly. The PSNR and SSIM values are 28.53 and 0.72,
respectively. These quantitative similarities are consistent with other GAN-based synthetic
medical image generation models [11,18–21,23], which used real clinical medical images as
the training dataset.

To the best of our knowledge, there is no single study that addresses what criteria for
each image quality metric (e.g., SSIM, PSNR, inception score, and frechet inception distance)
in the GAN-based augmentation models are sufficient enough to fool the clinicians into
whether the medical images are taken experimentally or generated synthetically. However,
some recent studies have benefited the human assessment as a gold standard to compare
the synthesized medical samples with original medical images [12,60–62]. Thus, a potential
perspective work would be conducted a visual assessment by some blinded radiologists to
identify real 18F-FDG PET images versus augmented ones and rate them to find out what
range for these quantitative metrics is sufficient enough as a diagnostic criterion.
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Figure 6. Quantitative and qualitative comparisons of the synthetic and clinical 18F-FDG PET
radiotracer images of solid tumors at different stages of progression and angiogenesis. (a) A synthetic
PET image generated by biomathematical modeling for a tumor with 2.4 cm diameter is compared
with (b) an augmented PET image generated using the DCGAN model, and (c,d) two clinical PET
images [57,58]. Comparison between (e) a synthetic PET image generated by biomathematical
modeling without implementing the DCGAN for a 2cm tumor and (f) another augmented PET
image generated using DCGAN. (g) The solid tumor in panel (f) is also compared with (h) another
image of solid tumor taken experimentally [59], showing excellent agreement in terms of quantitative
assessments with SSIM and PSNR values and qualitative comparison of radiotracer uptake in solid
tumor. SSIM and PSNR values are defined according to Equations (16) and (17), respectively. Images
in panels (c,d,h) are adopted and printed with permission from [57–59]. Copyright 2022.

A specific point that should be noted in Figure 6c,d is that some differences in the
microenvironment details nearby the boundary of tumor tissue between our generated
PET samples and real clinical PET images are due to the fact that such heterogeneities
cannot be detected during routine PET imaging. This is mainly because of the limited
scale size of PET scans, possible voluntary movements by patients, and several resolutions
degrading phenomena (e.g., inter-crystal blurring) that can eventually decrease the quality
of PET images [26,63]. Another point worth mentioning is that due to the complexity of
the TME, it cannot be extensively modeled using a set of PDEs with all biophysiological
details. For instance, in a real scenario of tumor-induced angiogenesis, the ECs may move
towards different sides from several parent vessels located on every side of tumor tissue,
while our model only considers the movement of ECs from two vertical parent vessels.
In any case, the heterogeneity models, such as the one developed herein, can help the
clinicians and cancer researchers to understand the biophysics of TME in a more depth way.
Furthermore, with ongoing research toward higher-resolution PET images, it is predicted
that more complex heterogeneities of radiopharmaceutical uptakes can be captured in the
next-generation PET imaging [26].
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4. Conclusions

The limited dataset is a common challenge in deep learning-based networks in medical
image analysis. In this context, GAN-based models can synthesize realistic further training
samples to fill the medical image lack in the real clinical image. In the present study, a novel,
comprehensive, and robust framework incorporating both biomathematical modeling and
machine learning tools are introduced to generate synthetic PET images. The biomathemati-
cal modeling includes a series of equations for generating tumor-induced capillary network,
calculating intravascular blood flow, interstitial fluid flow, and spatiotemporal distribution
of 18F-FDG radiotracer uptake. The DCGAN model, an unsupervised machine learning
method, consists of the generator and discriminator to produce new synthetic 18F-FDG
radiotracer images from 170 images in each of 10 generated tumor capillary networks.

The capillary network, IBP, IFV, IFP, as well as intracellular and extracellular 18F-
FDG radiotracer concentrations are calculated and extensively compared with previously-
published computational and experimental data, illustrating a very good agreement. Sub-
sequently, for the first time, instead of using clinical detests of PET images, a series of
1700 PET images created by biomathematical modeling is used as the input dataset for the
DCGAN model to generate augmented PET images. Very similar qualitative and quantita-
tive spatiotemporal distributions of 18F-FDG radiotracer uptake can be observed in both
generated images by biomathematical modeling and the GAN-based model with the real
clinical PET images. These similarities demonstrate the robustness of the present model
in simulating the complex biological phenomena behind 18F-FDG radiotracer transport,
distribution, and cellular uptake. A comparison between generated images using DCGAN
and biomathematical modeling shows a mean SSIM value of 0.82 and PSNR value of 30.82.
In addition, the quantitative similarity between the generated image by the DCGAN model
and the real clinical PET image is remarkable as indicated by the excellent agreement
between those pixel images, with the SSIM value of 0.72 and PSNR value of 28.53.

The combined model presented herein can be generalized in other tumor-associated
vasculatures using tumor capillary networks taken from clinical images in different scales,
such as skin fold window chamber, histology imaging, micro-CT, etc. [44]. Additionally, the
model can be developed to simulate other radiopharmaceuticals such as 68Ga-PSMA-11
and 18F-FMISO, which can ultimately help to supplement the training medical image
dataset. In order to achieve higher quality, stability, and variation of output samples of the
GAN-based model, the PGGAN [64] algorithm will be implemented in our future works.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cancers14112786/s1, Table S1: Parameters used for interstitial
transport modeling, Table S2: Parameters used for spatiotemporal distribution modeling of 18F-FDG
transport, Table S3: Boundary conditions of computational modelings, Figure S1: Results of dis-
crete mathematical modeling of tumor-induced angiogenesis for six different stages of capillary
networks, Figure S2: Schematic of the computational domain and implemented boundary conditions,
Video S1: SUV distribution in a solid tumor with 2.4 cm diameter at different times post-injection.
References [26,31] are cited in the Supplementary Materials.
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