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Simple Summary: Testicular germ cell tumours (TGCTs) are the most common type of solid cancer
in men under the age of 40. Of metastases from TGCTs, 95% involve the ipsilateral retroperitoneal
lymph nodes. For early-stage TGCTs, the optimal treatment remains controversial, with options
including surveillance, chemotherapy or lymph node surgery after orchiectomy. However, the
accurate prediction of retroperitoneal lymph node metastasis is crucial to avoid unnecessary treatment
and health complications in this group of young patients, highlighting the importance of precise
follow-up care. In this study, we developed and validated predictive machine learning models
integrating radiomics and clinical features for individual preoperative prediction of lymph node
metastases in early TGCTs.

Abstract: Accurate prediction of lymph node metastasis (LNM) in patients with testicular cancer
is highly relevant for treatment decision-making and prognostic evaluation. Our study aimed to
develop and validate clinical radiomics models for individual preoperative prediction of LNM in
patients with testicular cancer. We enrolled 91 patients with clinicopathologically confirmed early-
stage testicular cancer, with disease confined to the testes. We included five significant clinical risk
factors (age, preoperative serum tumour markers AFP and B-HCG, histotype and BMI) to build the
clinical model. After segmenting 273 retroperitoneal lymph nodes, we then combined the clinical risk
factors and lymph node radiomics features to establish combined predictive models using Random
Forest (RF), Light Gradient Boosting Machine (LGBM), Support Vector Machine Classifier (SVC),
and K-Nearest Neighbours (KNN). Model performance was assessed by the area under the receiver
operating characteristic (ROC) curve (AUC). Finally, the decision curve analysis (DCA) was used to
evaluate the clinical usefulness. The Random Forest combined clinical lymph node radiomics model
with the highest AUC of 0.95 (±0.03 SD; 95% CI) was considered the candidate model with decision
curve analysis, demonstrating its usefulness for preoperative prediction in the clinical setting. Our
study has identified reliable and predictive machine learning techniques for predicting lymph node
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metastasis in early-stage testicular cancer. Identifying the most effective machine learning approaches
for predictive analysis based on radiomics integrating clinical risk factors can expand the applicability
of radiomics in precision oncology and cancer treatment.

Keywords: radiomics; prediction; lymph node metastasis; testicular cancer; artificial intelligence

1. Introduction

Testicular germ cell tumours (TGCTs) are the most common form of cancer in males
between 15 and 40 years, and its incidence is increasing all over the world [1–5]. With a
cure rate of >95% in all patients and approximately 90% in patients with metastatic disease,
TGCTs are now considered a curable cancer [6,7].

In the past, the majoritiy of TGCT patients with metastatic disease had a poor progno-
sis. However, the introduction of cisplatin-based chemotherapy regimens and more refined
surgical techniques has led to a radical change in the prognosis of TGCTs [8]. Nowadays,
only about 5% of patients die of metastatic disease due to cisplatin resistance [6].

There has been a steady increase in the incidence of TGCTs in some regions over the
past 30 years, with the highest rates being in the Scandinavian countries, western and
central Europe, the USA, Canada, Australia and Japan [9,10]. European countries will
experience an increasing incidence burden from 2010 to 2035, with Baltic and Eastern
European countries expected to see the largest increase [11]. The reasons are currently
unknown. A study in Denmark has reported that the first generation of immigrants has a
lower incidence of testicular cancer than the second generation, which may indicate the
influence of environmental factors [12].

The prognostication of TGCT, of which the main histological types are seminoma
and nonseminoma, the latter including pure nonseminoma and mixed germ cell tumours,
has progressed considerably over the previous thirty years. Since the introduction of the
International Germ-Cell Cancer Collaborative Group (IGCCCG) in 1997, there has been a
widely accepted risk stratification model for metastatic disease. The determinants of poor
prognosis were identified as non-pulmonary visceral metastases, amplification of the serum
tumour markers HCG and AFP, and primary mediastinal nonseminoma and patients have
been stratified into good, intermediate and poor risk categories [13]. After effective inter-
national collaboration, the IGCCCG guidelines were updated in 2021, including merged
databases with data on 12,179 patients with metastatic germ cell tumours [6,7]. This has
led to improved outcomes in TGCTs compared to the original IGCCCG classifications, with
an increase in the five-year overall survival for nonseminoma from 92% to 96% in the good
risk group, from 80% to 89% in the intermediate risk group, and from 48% to 67% in the
poor risk group. For seminoma, the improvement in the five-year overall survival was
from 86% to 95% in the good risk group and from 72% to 88% in the intermediate risk
group [6,7].

If the physical examination and/or scrotal ultrasonography reveals a testicular tu-
mour, the initial treatment is inguinal orchiectomy. Furthermore, clinical practice guidelines
recommend the measurement of human chorionic gonadotropin (hCG and/or hCG-beta)
for the management of TGCT, with differences depending on the histological type. Mea-
surement of the serum concentrations of hCG and lactate dehydrogenase before and after
orchiectomy is recommended for patients with pure seminoma and non-seminomatous
TGCTs, with the addition of alpha-fetoprotein (AFP) in the latter case. In addition, in
non-seminomatous TGCTs, hCG testing should be requested for staging and prognostic
purposes prior to chemotherapy and/or additional surgery and to monitor response and
early recurrence after therapy [14–18].

Due to the predictable pattern of the spread of TGCTs, metastatic lesions can be
reliably identified in the diagnostic workup, with conventional computed tomography
remaining the standard imaging modality despite numerous attempts to improve imaging
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with innovative techniques [14,16,19]. As we are focusing on early-stage TGCT patients
(stage I) in our study, it is important to note that FDG PET/CT has similar sensitivity
and specificity to conventional computed tomography in the identification of stage I non-
seminomas; however, the sensitivity is insufficient to identify patients at a high risk of
recurrence [20,21].

Although the serum tumour markers total beta-HCG and AFP are widely used, they
lack specificity, and their diagnostic ability may depend on several factors, including the
type of assay used and the upper reference level of the determination [22–24].

In addition, conditions such as liver disease or genetic factors can cause these markers
to be falsely elevated [25].

To date, imaging, tumour markers and clinical nomograms are unreliable in predicting
lymph node metastasis in TGCTs [26,27]. A recent study showed the high potential of
images and radiomics in assessing the metastasis level [28]. However, focusing on feasibility,
powerful modern classification algorithms were not investigated.

Significant advances have been made in medical imaging by integrating high-resolution
imaging, advanced computing technologies and artificial intelligence (AI). This integration
has paved the way for the emerging field of radiomics [29,30].

Radiomics enables the identification and extraction of specific diagnostic image pat-
terns, which are then transformed into quantifiable and analysable ‘big data’ through data
characterisation algorithms [31,32]. In precision medicine, AI image analysis can help
identify important image details that human radiologists may miss, offering repeatable
and accessible ways to assess challenging lesions in the body to improve the detection,
classification and monitoring of both the primary tumour and its associated metastases in
various cancers, such as gastric, rectal and bladder cancers [33–36].

Our presented study combines machine learning-based radiomics with clinical pre-
dictors to improve the accuracy of predicting lymph node metastasis in early-stage TGCT
patients. This advancement has the potential to significantly improve the accuracy of
imaging in the clinical oncology setting, outrunning previous results.

2. Materials and Methods
2.1. Patients

This retrospective study includes retroperitoneal lymph nodes of early-stage testicular
cancer patients from January 2006 to December 2016.

A comprehensive review of electronic medical records and the radiology information
system was used to collect patient demographic, laboratory and clinical data. Incomplete
clinical or imaging records, as well as missing histological confirmation following surgery
were used as exclusion criteria.

The study’s primary objective was to investigate retroperitoneal LN metastases from
TGCT using clinical and imaging studies retrieved from electronic medical records. From
an initial screening of 167 patients, only 91 patients met the selection criteria and were part
of the final cohort. The recruitment pathway is shown in Figure 1.

2.2. Image Acquisition and Segmentation

All patients underwent contrast-enhanced CT according to standard clinical scanning
protocols (detailed scanning parameters are provided in Supplemental Table S1). The
images were acquired as part of the routine staging procedure prior to orchiectomy to
determine the status of the disease (±2 weeks, mean time 3 ± 11 days, range 2 to 24 days).

For image segmentation and analysis, all reconstructed images were retrieved from
the hospital’s picture archiving and communication system (PACS).
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Figure 1. Recruitment pathway.

2.3. Segmentation and Radiomics Feature Extraction

The evaluation of image features, such as histogram features or features from the co-
occurrence matrix, was first introduced by Haralick et al. in 1973 [37], and has shown con-
siderable potential in different types of cancer and for different types of questions [30,38].

Two experienced radiologists (>10 years’ experience in interpreting CT scans and
with a strong background in texture analysis) contoured three retroperitoneal infrarenal
lymph nodes per patient using Mint Lesion software (v3.8.4). The regions of interest (ROIs)
were drawn on the CT images along the lesion contour on each successive slice within the
boundaries of the retroperitoneal lymph node, excluding adjacent vessels, fat and normal
tissue. The flowchart illustrating the ROI segmentation and feature extraction used to
develop the model is shown in Figure 2.

Texture feature descriptors were used according to the guidelines of the Image
Biomarker Standardisation Initiative (IBSI) [32]. A total of 85 image features were ex-
tracted from each of the 273 ROIs, covering the size and shape of the lymph node in three
dimensions. In addition, the distribution of voxel intensities within the ROI was described
using first-order statistics. Texture-based features were calculated from the grey level
co-occurrence matrix (GLCM) to capture voxel intensity patterns. A list of all features and
parameters is provided in Supplemental Table S1.
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2.4. Development of the Predictive Machine Learning Models

Four classic machine learning algorithms were evaluated to identify the best radiomics
model for predicting lymph node metastases in testicular cancer: Random Forest (RF),
Light Gradient Boosting Machine (LGBM), Support Vector Machine Classifier (SVC) and
K-Nearest Neighbours (KNN) classifiers. For each classifier, three models were constructed:
radiomics-only, clinical-only and combined radiomics–clinical prediction model.

For radiomics-only, 85 image-derived features were used based on the good perfor-
mance of the features in previous experiments (See Supplemental Table S1). For clinical-
only, clinical factors known for predictive value in TGCT [39–42] were included, such
as age, pre-orchiectomy serum tumour markers AFP and B-HCG, histotype (seminoma
vs. nonseminoma) and body mass index (BMI). For combined models, all features from
radiomics-only and clinical-only were used.

All models were trained on the same training and test splits, with the training data
being upsampled using SMOTE to account for class imbalance. All hyperparameters were
optimized to maximize the area under the receiver operating characteristic curve (AUC–
ROC) using a grid search in nested cross-validation [43] (details in Supplemental Table S2).

The predictive performance of each classifier for LN metastases was evaluated using
receiver-operating characteristic (ROC) curve analysis. The clinical utility of the predictive
models was assessed using decision curve analysis (DCA), which evaluates the net benefit
of the predictive models at different cut-offs in the training population and compares the
performance of the models.

The models were constructed using custom-developed software implemented using
Python 3.8.5 and the Scikit-learn 0.23.3 package [44,45] (details in Supplemental Table S2).
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3. Results
3.1. Clinicopathological Characteristics

Age, AFP levels, HCG levels, histotype and body mass index (BMI) were not statisti-
cally significantly different between LNM-positive and LNM-negative patients.

The baseline clinicopathological patients’ characteristics are listed in Supplemental
Table S3.

3.2. Dataset Characteristics and Preprocessing

Three infrarenal retroperitoneal lymph nodes were segmented per patient, yielding
273 sample instances. We used a group shuffle split to divide the data into training (70%)
and test (30%) groups on a patient-by-patient basis. This patient-by-patient split ensured
that the lymph nodes of a given patient would remain together in either the training set or
the test set. A tenfold cross-validation checked the robustness of the procedure.

There were 33 instances in the category “relapse of disease in terms of lymph node
metastases” (minority class) and 240 instances in the category “without relapse of disease”
(majority class).

Due to class imbalance in the dataset, we used the SMOTE oversampling technique
to balance the data [46]. The balanced data were used as input variables for the machine
learning modelling.

3.3. Performance Evaluation of the Prediction Models

Eighty-five CT-derived radiomic features were fed into the machine learning models
using RF, LGBM, SVC and KNN. A list of all features and parameters is provided in
Supplemental Table S1.

Based on the Random Forest algorithm, the combined clinical–radiomics model
showed the best predictive performance with an AUC of 0.95 (±0.03 SD; 95% CI), ac-
curacy of 87%, precision of 89%, recall of 86% and F1 score of 87%.

The second-best performer was the model based on the Light Gradient Boosting
Machine algorithm with an AUC of 0.93 (±0.05 SD; 95% CI), accuracy of 83%, precision
of 87%, recall 80% and F1 score of 82%. Details of the performance of the radiomics-
only, clinical-only and combined clinical–radiomics models of all classifiers are shown
in Supplementary Table S4. To see how close the predictions of the two approaches are,
see Figure 3 with the merged confusion matrix of the Random Forest-based models using
radiomics-only and clinical-only values for classification.
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between clinical and radiomic results. In particular, 38% are correctly classified as true positives
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(FP). In addition, the radiomics model misclassifies 8% of cases as FP, but the clinical model correctly
identifies these. In contrast, the clinical model misclassified 7% FN and 6% FP.
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Figure 4 shows the receiver operating characteristic (ROC) curves for the clinical, the ra-
diomics and the combined clinical–radiomics models based on Random Forest algorithms.
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Figure 4. The ROC curves of the Random Forest-based prediction models show that the combined
model outperforms the radiomics-only and the clinical-only model in predicting lymph node metas-
tasis (95% vs. 92% and 88%, respectively).

Figure 5 shows the receiver operating characteristic (ROC) curves for the clinical,
the radiomics and the combined clinical–radiomics models for the Random Forest (RF),
Light Gradient Boosting Machine (LGBM), Support Vector Machine Classifier (SVC) and
K-Nearest Neighbours (KNN).
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Neighbours; SVC = Support Vector Machine Classifier.

A decision curve analysis was performed to assess the clinical utility of the clinical–
radiomics model combination. Figure 6 shows the net utility versus threshold probability
trade-offs between true positives and false positives.
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Figure 6. The decision curve shows that when the threshold probability is between 0 and 0.89, the use
of the Random Forest-based combined prediction model provides an increased benefit over treating
all or none of the patients.

4. Discussion

Testicular germ cell tumours (TGCTs) are distinguished from other types of cancer
by their unique patient population and high treatment success rates, representing an
outstanding achievement in cancer treatment [8,47].

In addition to cure, minimising the immediate and long-term side effects of treatment
is the main goal. This is particularly important given the young age of patients and their
longevity after cure [48–53].

Medical imaging has greatly advanced cancer diagnosis and treatment planning with
the emergence of ‘radiomics’, a field that involves high-throughput data mining of medical
images. Radiomics has significant potential to improve clinical decision support in cancer
care by providing a non-invasive and cost-effective approach [30,31]. As radiomics deals
with large amounts of medical image data (“big data”), efficient methods are needed to
extract relevant information from these large radiomic datasets [29].

In this study, we analysed the performance of different machine learning methods,
namely Random Forest (RF), Light Gradient Boosting Machine (LGBM), Support Vector
Machine Classifier (SVC) and K-Nearest-Neighbours (KNN), in predicting lymph node
metastases in patients with early-stage testicular germ cell tumours (TGCTs).

We constructed radiomics-only, clinical-only and combined predictive models for
each classifier, integrating clinical and radiomic features to identify patients who require
adjuvant therapy and those who do not.

Our main findings can be summarised by the following:
The combined radiomics–clinical model based on the Random Forest algorithm

showed the best predictive performance with an AUC of 0.95 (±0.03 SD; 95% CI) and
an accuracy of 87%, indicating that the addition of clinical features improved the predictive
performance (accuracy of the radiomics-only model 85% vs. the clinical only model 79%).

The Light Gradient Boosting Machine classifier performed second best with an AUC of
0.93 (±0.05 SD; 95% CI) and an accuracy of 83%. In contrast to the Random Forest, adding
clinical features to the radiomics prediction model worsened the predictive performance
(accuracy of the radiomics-only model 85% vs. the clinical-only model 73%).

In our analysis, models based on the Support Vector Machine Classifier and K-Nearest
Neighbours performed significantly worse than Random Forest and Light Gradient Boost-
ing Machine. However, it is worth noting that the combined radiomics–clinical model
outperformed the radiomics-only prediction models in both cases.
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This is in line with the results of our previous study [28], in which we demonstrated
that logistic regression analysis is useful for the prediction of lymph node metastasis in
TGCT patients, with the best predictive performance being the combined clinical–radiomics
model with an AUC of 0.95 (±0.03 SD; 95% CI).

The serum biomarkers AFP, β-HCG and LDH play an important role in the diagnosis
and prognosis of TGCTs, and they are included in the prognostic index of the International
Germ Cell Cancer Consensus Group [54]. However, their sensitivity is limited, as around
40% of men have ‘normal’ levels at recurrence [55]. Studies have suggested additional
prognostic factors such as age and BMI, but their role is unclear and continues to be
debated [39–42].

So far, there is no evidence that imaging, preoperative serum tumour markers or clini-
cal nomograms can reliably predict nodal involvement [26,27]. Inadequate management
of TGCT patients places them at risk of adverse outcomes, as both overtreatment and
undertreatment carry equal risks.

There are few studies on discriminating between benign and malignant LNs in testicu-
lar cancer. Baessler et al. [56] found that a CT radiomics-based machine learning classifier
could predict lymph node histopathology after dissection following chemotherapy in
metastatic non-seminomatous TGCT patients. They used a Support Vector Machine learn-
ing classifier in their single-centre retrospective study of 80 patients and 204 lesions. The
model distinguished between benign and malignant histopathologies with an accuracy
of 81%.

Nevertheless, in contrast to our study, they did not include clinical factors in their
radiomics approach to improve diagnostic accuracy. They also split their moderate-sized
dataset into three subgroups: 63 patients were assigned to train and only 19 to test. The
splitting of data for validation purposes is common practice. However, doing so reduces sta-
tistical power because the sample sizes in both groups are smaller than in the initial sample.

To overcome this problem, we used a cross-validation technique that uses multi-
ple data splits to avoid overfitting while still providing accurate estimates of the model
coefficients [57].

We are confident that our combined prediction model will generalise better to novel
data due to our tenfold cross-validation approach, the a priori inhomogeneity of our dataset
and the integration of clinical risk factors. Therefore, future prospective studies should be
conducted to validate our trained model further.

Several clinical models have been developed to predict the dignity of LN metastases.
Nevertheless, these models have shown inconsistent results and have not yet been adopted
for clinical decision-making [26,58,59].

In summary, the identification and implementation of novel biomarkers may be helpful
for early diagnosis and disease recurrence monitoring.

The present study, however, has some limitations that we acknowledge. First, the
study’s retrospective nature and the small cohort sizes might have led to unavoidable
selection bias.

Secondly, two different scanners were used to acquire the CT images. Thirdly, the
results of this study were obtained from a single centre. Due to the high cure rate of stage I
TGCTs, it is challenging to power studies in a way that allows for prognostic and predictive
factors to be adequately investigated. Therefore, prospective and multicentre validation is
warranted to provide higher-level evidence in the following studies.

Fourth, due to the small sample size and relapse events, we could not include the
classical prognostic pathohistological factors (primary tumour size and rete testis invasion
for seminoma and lymphovascular invasion and presence of embryonal carcinoma for non-
seminoma) in our analysis. Their inclusion in the combined radiomics–clinical model may
have further improved accuracy and is a promising addition for future validation studies.

Finally, in addition to protein-based tumour markers, non-coding RNAs, especially
stem cell-associated microRNAs such as miR-371a-3p and miR-302/367 clusters, show
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superior sensitivity compared to traditional markers in the detection of newly diagnosed
TGCT patients, demonstrating their potential as biomarkers [60,61].

5. Conclusions

In summary, our combined Random Forest-based radiomics–clinical model represents
an exciting tool for better prediction of lymph node involvement in early-stage TGCTs,
with the potential to reduce over- and undertreatment in this young patient population.
Further validation in larger prospective clinical trials should combine this approach with
novel clinical biomarkers.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cancers15235630/s1. References [62–67] are cited in the supple-
mentary materials. Table S1: Imaging and Preprocessing; Table S2: Machine learning predictive
models; Table S3: Clinicopathological Characteristics of the Patients; Table S4: Performance of the
Radiomics-only, Clinical-only and Combined Clinical-Radiomics Models of all Classifiers.

Author Contributions: Conceptualisation, C.S.L., F.Z. and C.G.L.; methodology, C.S.L., D.W. and
M.G.; software, S.M., D.W. and M.G.; formal analysis, C.S.L. and C.G.L.; investigation, C.S.L. and
C.G.L.; resources, C.S.L.; data curation, C.S.L. and C.G.L.; writing—original draft preparation, C.S.L.;
writing—review and editing, W.T., M.B., S.A.S., F.Z., C.B., F.Z. and M.G.; visualisation, C.S.L. and
C.G.L.; supervision, M.B.; project administration, C.S.L. All authors have read and agreed to the
published version of the manuscript.

Funding: This work is funded by “NUM 2.0” (FKZ: 01KX2121) as part of the Racoon Project.

Institutional Review Board Statement: The study was conducted in accordance with the Declaration
of Helsinki and approved by the ethics committee of the medical faculty of the University of Ulm
(protocol code 155/18, 25 April 2018).

Informed Consent Statement: Informed consent was obtained from all subjects involved in the
study.

Data Availability Statement: Data are contained within the article and supplementary materials.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

AFP Alpha-fetoprotein
AUC Area under the curve
CT Computed tomography
hCG Human chorionic gonadotropin
KNN K-Nearest Neighbours
LGBM Light Gradient Boosting Machine
LNs Lymph nodes
LNM Lymph node metastases
LR Logistic regression
ML Machine learning
RF Random Forest
ROC Receiver operating curve
ROI Region of interest
SVC Support Vector Machine Classifier
TGCT Testicular germ cell tumour

References
1. Ruf, C.G.; Isbarn, H.; Wagner, W.; Fisch, M.; Matthies, C.; Dieckmann, K.-P. Changes in Epidemiologic Features of Testicular Germ

Cell Cancer: Age at Diagnosis and Relative Frequency of Seminoma Are Constantly and Significantly Increasing. Urol. Oncol.
Semin. Orig. Investig. 2014, 32, 33.e1–33.e6. [CrossRef]

2. Bray, F.; Richiardi, L.; Ekbom, A.; Pukkala, E.; Cuninkova, M.; Møller, H. Trends in Testicular Cancer Incidence and Mortality in 22
European Countries: Continuing Increases in Incidence and Declines in Mortality. Int. J. Cancer 2006, 118, 3099–3111. [CrossRef]

3. Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer Statistics, 2018. CA A Cancer J. Clin. 2018, 68, 7–30. [CrossRef]

https://www.mdpi.com/article/10.3390/cancers15235630/s1
https://www.mdpi.com/article/10.3390/cancers15235630/s1
https://doi.org/10.1016/j.urolonc.2012.12.002
https://doi.org/10.1002/ijc.21747
https://doi.org/10.3322/caac.21442


Cancers 2023, 15, 5630 11 of 13

4. Ghazarian, A.A.; Kelly, S.P.; Altekruse, S.F.; Rosenberg, P.S.; McGlynn, K.A. Future of Testicular Germ Cell Tumor Incidence in the
United States: Forecast through 2026. Cancer 2017, 123, 2320–2328. [CrossRef]

5. Znaor, A.; Skakkebaek, N.E.; Rajpert-De Meyts, E.; Kuliš, T.; Laversanne, M.; Gurney, J.; Sarfati, D.; McGlynn, K.A.; Bray, F. Global
Patterns in Testicular Cancer Incidence and Mortality in 2020. Int. J. Cancer 2022, 151, 692–698. [CrossRef]

6. Beyer, J.; Collette, L.; Sauvé, N.; Daugaard, G.; Feldman, D.R.; Tandstad, T.; Tryakin, A.; Stahl, O.; Gonzalez-Billalabeitia, E.; De
Giorgi, U. Survival and New Prognosticators in Metastatic Seminoma: Results from the IGCCCG-Update Consortium. J. Clin.
Oncol. 2021, 39, 1553. [CrossRef]

7. Gillessen, S.; Sauvé, N.; Collette, L.; Daugaard, G.; de Wit, R.; Albany, C.; Tryakin, A.; Fizazi, K.; Stahl, O.; Gietema, J.A. Predicting
Outcomes in Men with Metastatic Nonseminomatous Germ Cell Tumors (NSGCT): Results from the IGCCCG Update Consortium.
J. Clin. Oncol. 2021, 39, 1563–1574. [CrossRef]

8. Einhorn, L.H. Treatment of Testicular Cancer: A New and Improved Model. J. Clin. Oncol. 1990, 8, 1777–1781. [CrossRef]
9. Gurney, J.K.; Florio, A.A.; Znaor, A.; Ferlay, J.; Laversanne, M.; Sarfati, D.; Bray, F.; McGlynn, K.A. International Trends in the

Incidence of Testicular Cancer: Lessons from 35 Years and 41 Countries. Eur. Urol. 2019, 76, 615–623. [CrossRef]
10. Huang, J.; Chan, S.C.; Tin, M.S.; Liu, X.; Lok, V.T.-T.; Ngai, C.H.; Zhang, L.; Lucero-Prisno, D.E.; Xu, W.; Zheng, Z.-J.; et al.

Worldwide Distribution, Risk Factors, and Temporal Trends of Testicular Cancer Incidence and Mortality: A Global Analysis. Eur.
Urol. Oncol. 2022, 5, 566–576. [CrossRef]

11. Chovanec, M.; Cheng, L. Advances in Diagnosis and Treatment of Testicular Cancer. BMJ 2022, 379, e070499. [CrossRef]
12. Schmiedel, S.; Schüz, J.; Skakkebæk, N.E.; Johansen, C. Testicular Germ Cell Cancer Incidence in an Immigration Perspective,

Denmark, 1978 to 2003. J. Urol. 2010, 183, 1378–1382. [CrossRef]
13. Wilkinson, P.M.; Read, G. International Germ Cell Consensus Classification: A Prognostic Factor-Based Staging System for

Metastatic Germ Cell Cancers. International Germ Cell Cancer Collaborative Group. J. Clin. Oncol. 1997, 15, 594–603.
14. Gilligan, T.; Lin, D.W.; Aggarwal, R.; Chism, D.; Cost, N.; Derweesh, I.H.; Emamekhoo, H.; Feldman, D.R.; Geynisman, D.M.;

Hancock, S.L. Testicular Cancer, Version 2.2020, NCCN Clinical Practice Guidelines in Oncology. J. Natl. Compr. Cancer Netw.
2019, 17, 1529–1554. [CrossRef]

15. Oldenburg, J.; Berney, D.; Bokemeyer, C.; Climent, M.; Daugaard, G.; Gietema, J.; De Giorgi, U.; Haugnes, H.; Huddart, R.;
Leão, R. Testicular Seminoma and Non-Seminoma: ESMO-EURACAN Clinical Practice Guideline for Diagnosis, Treatment and
Follow-Up. Ann. Oncol. 2022, 33, 362–375. [CrossRef]

16. Kliesch, S.; Schmidt, S.; Wilborn, D.; Aigner, C.; Albrecht, W.; Bedke, J.; Beintker, M.; Beyersdorff, D.; Bokemeyer, C.; Busch, J.
Management of Germ Cell Tumours of the Testis in Adult Patients. German Clinical Practice Guideline Part I: Epidemiology,
Classification, Diagnosis, Prognosis, Fertility Preservation, and Treatment Recommendations for Localized Stages. Urol. Int. 2021,
105, 169–180. [CrossRef]

17. Winter, C.; Zengerling, F.; Busch, J.; Heinzelbecker, J.; Pfister, D.; Ruf, C.; Lackner, J.; Albers, P.; Kliesch, S.; Schmidt, S. How to
Classify, Diagnose, Treat and Follow-up Extragonadal Germ Cell Tumors? A Systematic Review of Available Evidence. World J.
Urol. 2022, 40, 2863–2878. [CrossRef]

18. Ferraro, S.; Trevisiol, C.; Gion, M.; Panteghini, M. Human Chorionic Gonadotropin Assays for Testicular Tumors: Closing the Gap
between Clinical and Laboratory Practice. Clin. Chem. 2018, 64, 270–278. [CrossRef] [PubMed]

19. Dieckmann, K.-P.; Simonsen-Richter, H.; Kulejewski, M.; Anheuser, P.; Zecha, H.; Isbarn, H.; Pichlmeier, U. Serum Tumour
Markers in Testicular Germ Cell Tumours: Frequencies of Elevated Levels and Extents of Marker Elevation Are Significantly
Associated with Clinical Parameters and with Response to Treatment. BioMed Res. Int. 2019, 2019, 5030349. [CrossRef] [PubMed]

20. de Wit, M.; Brenner, W.; Hartmann, M.; Kotzerke, J.; Hellwig, D.; Lehmann, J.; Franzius, C.; Kliesch, S.; Schlemmer, M.; Tatsch, K.
[18F]-FDG–PET in Clinical Stage I/II Non-Seminomatous Germ Cell Tumours: Results of the German Multicentre Trial. Ann.
Oncol. 2008, 19, 1619–1623. [CrossRef]

21. Huddart, R.A.; O’Doherty, M.J.; Padhani, A.; Rustin, G.J.; Mead, G.M.; Joffe, J.K.; Vasey, P.; Harland, S.J.; Logue, J.; Daugaard, G.
18fluorodeoxyglucose Positron Emission Tomography in the Prediction of Relapse in Patients with High-Risk, Clinical Stage I
Nonseminomatous Germ Cell Tumors: Preliminary Report of MRC Trial TE22—The NCRI Testis Tumour Clinical Study Group. J.
Clin. Oncol. 2007, 25, 3090–3095. [CrossRef] [PubMed]

22. Gilligan, T.D.; Hayes, D.F.; Seidenfeld, J.; Temin, S. ASCO Clinical Practice Guideline on Uses of Serum Tumor Markers in Adult
Males with Germ Cell Tumors. J. Oncol. Pract. 2010, 6, 199. [CrossRef] [PubMed]

23. Murray, M.J.; Huddart, R.A.; Coleman, N. The Present and Future of Serum Diagnostic Tests for Testicular Germ Cell Tumours.
Nat. Rev. Urol. 2016, 13, 715–725. [CrossRef] [PubMed]

24. Ferraro, S.; Panteghini, M. A Step Forward in Identifying the Right Human Chorionic Gonadotropin Assay for Testicular Cancer.
Clin. Chem. Lab. Med. (CCLM) 2020, 58, 357–360. [CrossRef] [PubMed]

25. Albers, P.; Albrecht, W.; Algaba, F.; Bokemeyer, C.; Cohn-Cedermark, G.; Fizazi, K.; Horwich, A.; Laguna, M.P.; Nicolai, N.;
Oldenburg, J. Guidelines on Testicular Cancer: 2015 Update. Eur. Urol. 2015, 68, 1054–1068. [CrossRef] [PubMed]

26. Steyerberg, E.; Gerl, A.; Fossa, S.; Sleijfer, D.; de Wit, R.; Kirkels, W.; Schmeller, N.; Clemm, C.; Habbema, J.; Keizer, H. Validity of
Predictions of Residual Retroperitoneal Mass Histology in Nonseminomatous Testicular Cancer. J. Clin. Oncol. 1998, 16, 269–274.
[CrossRef]

27. Vergouwe, Y.; Steyerberg, E.W.; Foster, R.S.; Habbema, J.D.F.; Donohue, J.P. Validation of a Prediction Model and Its Predictors for
the Histology of Residual Masses in Nonseminomatous Testicular Cancer. J. Urol. 2001, 165, 84–88. [CrossRef]

https://doi.org/10.1002/cncr.30597
https://doi.org/10.1002/ijc.33999
https://doi.org/10.1200/JCO.20.03292
https://doi.org/10.1200/JCO.20.03296
https://doi.org/10.1200/JCO.1990.8.11.1777
https://doi.org/10.1016/j.eururo.2019.07.002
https://doi.org/10.1016/j.euo.2022.06.009
https://doi.org/10.1136/bmj-2022-070499
https://doi.org/10.1016/j.juro.2009.12.058
https://doi.org/10.6004/jnccn.2019.0058
https://doi.org/10.1016/j.annonc.2022.01.002
https://doi.org/10.1159/000510407
https://doi.org/10.1007/s00345-022-04009-z
https://doi.org/10.1373/clinchem.2017.275263
https://www.ncbi.nlm.nih.gov/pubmed/29021329
https://doi.org/10.1155/2019/5030349
https://www.ncbi.nlm.nih.gov/pubmed/31275973
https://doi.org/10.1093/annonc/mdn170
https://doi.org/10.1200/JCO.2006.09.3831
https://www.ncbi.nlm.nih.gov/pubmed/17634488
https://doi.org/10.1200/JOP.777010
https://www.ncbi.nlm.nih.gov/pubmed/21037873
https://doi.org/10.1038/nrurol.2016.170
https://www.ncbi.nlm.nih.gov/pubmed/27754472
https://doi.org/10.1515/cclm-2019-0319
https://www.ncbi.nlm.nih.gov/pubmed/31199761
https://doi.org/10.1016/j.eururo.2015.07.044
https://www.ncbi.nlm.nih.gov/pubmed/26297604
https://doi.org/10.1200/JCO.1998.16.1.269
https://doi.org/10.1097/00005392-200101000-00021


Cancers 2023, 15, 5630 12 of 13

28. Lisson, C.S.; Manoj, S.; Wolf, D.; Schrader, J.; Schmidt, S.A.; Beer, M.; Goetz, M.; Zengerling, F.; Lisson, C.G.S. CT Radiomics and
Clinical Feature Model to Predict Lymph Node Metastases in Early-Stage Testicular Cancer. Onco 2023, 3, 65–80. [CrossRef]

29. Obermeyer, Z.; Emanuel, E.J. Predicting the Future—Big Data, Machine Learning, and Clinical Medicine. N. Engl. J. Med. 2016,
375, 1216. [CrossRef]

30. Lambin, P.; Leijenaar, R.T.; Deist, T.M.; Peerlings, J.; De Jong, E.E.; Van Timmeren, J.; Sanduleanu, S.; Larue, R.T.; Even, A.J.;
Jochems, A. Radiomics: The Bridge between Medical Imaging and Personalized Medicine. Nat. Rev. Clin. Oncol. 2017, 14, 749–762.
[CrossRef]

31. Gillies, R.J.; Kinahan, P.E.; Hricak, H. Radiomics: Images Are More than Pictures, They Are Data. Radiology 2016, 278, 563.
[CrossRef] [PubMed]

32. Zwanenburg, A.; Vallières, M.; Abdalah, M.A.; Aerts, H.J.; Andrearczyk, V.; Apte, A.; Ashrafinia, S.; Bakas, S.; Beukinga, R.J.;
Boellaard, R. The Image Biomarker Standardization Initiative: Standardized Quantitative Radiomics for High-Throughput
Image-Based Phenotyping. Radiology 2020, 295, 328–338. [CrossRef] [PubMed]

33. Dong, D.; Tang, L.; Li, Z.-Y.; Fang, M.-J.; Gao, J.-B.; Shan, X.-H.; Ying, X.-J.; Sun, Y.-S.; Fu, J.; Wang, X.-X. Development and
Validation of an Individualized Nomogram to Identify Occult Peritoneal Metastasis in Patients with Advanced Gastric Cancer.
Ann. Oncol. 2019, 30, 431–438. [CrossRef] [PubMed]

34. Huang, Y.; Liang, C.; He, L.; Tian, J.; Liang, C.; Chen, X.; Ma, Z.; Liu, Z. Development and Validation of a Radiomics Nomogram
for Preoperative Prediction of Lymph Node Metastasis in Colorectal Cancer. J. Clin. Oncol. 2016, 34, 2157–2164. [CrossRef]
[PubMed]

35. Wu, S.; Zheng, J.; Li, Y.; Yu, H.; Shi, S.; Xie, W.; Liu, H.; Su, Y.; Huang, J.; Lin, T. A Radiomics Nomogram for the Preoperative
Prediction of Lymph Node Metastasis in Bladder CancerA Radiomics Nomogram for Bladder Cancer. Clin. Cancer Res. 2017, 23,
6904–6911. [CrossRef]

36. Gao, J.; Han, F.; Jin, Y.; Wang, X.; Zhang, J. A Radiomics Nomogram for the Preoperative Prediction of Lymph Node Metastasis in
Pancreatic Ductal Adenocarcinoma. Front. Oncol. 2020, 10, 1654. [CrossRef]

37. Haralick, R.M.; Shanmugam, K.; Dinstein, I.H. Textural Features for Image Classification. IEEE Trans. Syst. Man Cybern. 1973,
SMC-3, 610–621. [CrossRef]

38. Shen, C.; Liu, Z.; Guan, M.; Song, J.; Lian, Y.; Wang, S.; Tang, Z.; Dong, D.; Kong, L.; Wang, M. 2D and 3D CT Radiomics Features
Prognostic Performance Comparison in Non-Small Cell Lung Cancer. Transl. Oncol. 2017, 10, 886–894. [CrossRef]

39. Fosså, S.D.; Cvancarova, M.; Chen, L.; Allan, A.L.; Oldenburg, J.; Peterson, D.R.; Travis, L.B. Adverse Prognostic Factors for
Testicular Cancer–Specific Survival: A Population-Based Study of 27,948 Patients. J. Clin. Oncol. 2011, 29, 963–970. [CrossRef]

40. Parker, C.; Milosevic, M.; Panzarella, T.; Banerjee, D.; Jewett, M.; Catton, C.; Tew-George, B.; Gospodarowicz, M.; Warde, P. The
Prognostic Significance of the Tumour Infiltrating Lymphocyte Count in Stage I Testicular Seminoma Managed by Surveillance.
Eur. J. Cancer 2002, 38, 2014–2019. [CrossRef]

41. Lerro, C.; McGlynn, K.; Cook, M. A Systematic Review and Meta-Analysis of the Relationship between Body Size and Testicular
Cancer. Br. J. Cancer 2010, 103, 1467–1474. [CrossRef] [PubMed]

42. Dieckmann, K.-P.; Hartmann, J.T.; Classen, J.; Diederichs, M.; Pichlmeier, U. Is Increased Body Mass Index Associated with the
Incidence of Testicular Germ Cell Cancer? J. Cancer Res. Clin. Oncol. 2009, 135, 731–738. [CrossRef] [PubMed]

43. Agrawal, T. Hyperparameter Optimization Using Scikit-Learn. In Hyperparameter Optimization in Machine Learning: Make Your
Machine Learning and Deep Learning Models More Efficient; Apress: Berkeley, CA, USA, 2021; pp. 31–51, ISBN 978-1-4842-6579-6.

44. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.
Scikit-Learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830.

45. van Rossum, G.; Drake, F.L. Python/C API Manual—Python 2.6; CreateSpace: Scotts Valley, CA, USA, 2009.
46. Chawla, N.V.; Bowyer, K.W.; Hall, L.O.; Kegelmeyer, W.P. SMOTE: Synthetic Minority over-Sampling Technique. J. Artif. Intell.

Res. 2002, 16, 321–357. [CrossRef]
47. Kollmannsberger, C.; Tandstad, T.; Bedard, P.L.; Cohn-Cedermark, G.; Chung, P.W.; Jewett, M.A.; Powles, T.; Warde, P.R.;

Daneshmand, S.; Protheroe, A. Patterns of Relapse in Patients with Clinical Stage I Testicular Cancer Managed with Active
Surveillance. J. Clin. Oncol. 2015, 33, 51–57. [CrossRef]

48. Fung, C.; Sesso, H.D.; Williams, A.M.; Kerns, S.L.; Monahan, P.; Zaid, M.A.; Feldman, D.R.; Hamilton, R.J.; Vaughn, D.J.; Beard,
C.J. Multi-Institutional Assessment of Adverse Health Outcomes among North American Testicular Cancer Survivors after
Modern Cisplatin-Based Chemotherapy. J. Clin. Oncol. 2017, 35, 1211. [CrossRef]

49. Huddart, R.; Norman, A.; Shahidi, M.; Horwich, A.; Coward, D.; Nicholls, J.; Dearnaley, D. Cardiovascular Disease as a Long-Term
Complication of Treatment for Testicular Cancer. J. Clin. Oncol. 2003, 21, 1513–1523. [CrossRef]

50. Travis, L.B.; Ng, A.K.; Allan, J.M.; Pui, C.-H.; Kennedy, A.R.; Xu, X.G.; Purdy, J.A.; Applegate, K.; Yahalom, J.; Constine, L.S.
Second Malignant Neoplasms and Cardiovascular Disease Following Radiotherapy. J. Natl. Cancer Inst. 2012, 104, 357–370.
[CrossRef]

51. Kerns, S.L.; Fung, C.; Monahan, P.O.; Ardeshir-Rouhani-Fard, S.; Zaid, M.I.A.; Williams, A.M.; Stump, T.E.; Sesso, H.D.; Feldman,
D.R.; Hamilton, R.J. Cumulative Burden of Morbidity among Testicular Cancer Survivors after Standard Cisplatin-Based
Chemotherapy: A Multi-Institutional Study. J. Clin. Oncol. 2018, 36, 1505. [CrossRef]

https://doi.org/10.3390/onco3020006
https://doi.org/10.1056/NEJMp1606181
https://doi.org/10.1038/nrclinonc.2017.141
https://doi.org/10.1148/radiol.2015151169
https://www.ncbi.nlm.nih.gov/pubmed/26579733
https://doi.org/10.1148/radiol.2020191145
https://www.ncbi.nlm.nih.gov/pubmed/32154773
https://doi.org/10.1093/annonc/mdz001
https://www.ncbi.nlm.nih.gov/pubmed/30689702
https://doi.org/10.1200/JCO.2015.65.9128
https://www.ncbi.nlm.nih.gov/pubmed/27138577
https://doi.org/10.1158/1078-0432.CCR-17-1510
https://doi.org/10.3389/fonc.2020.01654
https://doi.org/10.1109/TSMC.1973.4309314
https://doi.org/10.1016/j.tranon.2017.08.007
https://doi.org/10.1200/JCO.2010.32.3204
https://doi.org/10.1016/S0959-8049(02)00235-6
https://doi.org/10.1038/sj.bjc.6605934
https://www.ncbi.nlm.nih.gov/pubmed/20978513
https://doi.org/10.1007/s00432-008-0504-1
https://www.ncbi.nlm.nih.gov/pubmed/19002497
https://doi.org/10.1613/jair.953
https://doi.org/10.1200/JCO.2014.56.2116
https://doi.org/10.1200/JCO.2016.70.3108
https://doi.org/10.1200/JCO.2003.04.173
https://doi.org/10.1093/jnci/djr533
https://doi.org/10.1200/JCO.2017.77.0735


Cancers 2023, 15, 5630 13 of 13

52. Agrawal, V.; Dinh Jr, P.C.; Fung, C.; Monahan, P.O.; Althouse, S.K.; Norton, K.; Cary, C.; Einhorn, L.; Fossa, S.D.; Adra, N. Adverse
Health Outcomes among US Testicular Cancer Survivors after Cisplatin-Based Chemotherapy vs Surgical Management. JNCI
Cancer Spectr. 2020, 4, pkz079. [CrossRef]

53. Tandstad, T.; Kollmannsberger, C.K.; Roth, B.J.; Jeldres, C.; Gillessen, S.; Fizazi, K.; Daneshmand, S.; Lowrance, W.T.; Hanna, N.H.;
Albany, C. Practice Makes Perfect: The Rest of the Story in Testicular Cancer as a Model Curable Neoplasm. J. Clin. Oncol. 2017,
35, 3525. [CrossRef] [PubMed]

54. Eyben, F.E. von Laboratory Markers and Germ Cell Tumors. Crit. Rev. Clin. Lab. Sci. 2003, 40, 377–427. [CrossRef] [PubMed]
55. Trigo, J.M.; Tabernero, J.M.; Paz-Ares, L.; García-Llano, J.L.; Mora, J.; Lianes, P.; Esteban, E.; Salazar, R.; López-López, J.J.;

Cortés-Funes, H. Tumor Markers at the Time of Recurrence in Patients with Germ Cell Tumors. Cancer 2000, 88, 162–168.
[CrossRef]

56. Baessler, B.; Nestler, T.; Pinto dos Santos, D.; Paffenholz, P.; Zeuch, V.; Pfister, D.; Maintz, D.; Heidenreich, A. Radiomics
Allows for Detection of Benign and Malignant Histopathology in Patients with Metastatic Testicular Germ Cell Tumors Prior to
Post-Chemotherapy Retroperitoneal Lymph Node Dissection. Eur. Radiol. 2020, 30, 2334–2345. [CrossRef] [PubMed]

57. Harrell, F.E., Jr.; Lee, K.L.; Mark, D.B. Multivariable Prognostic Models: Issues in Developing Models, Evaluating Assumptions
and Adequacy, and Measuring and Reducing Errors. Stat. Med. 1996, 15, 361–387. [CrossRef]

58. Leão, R.; Nayan, M.; Punjani, N.; Jewett, M.A.S.; Fadaak, K.; Garisto, J.; Lewin, J.; Atenafu, E.G.; Sweet, J.; Anson-Cartwright, L.;
et al. A New Model to Predict Benign Histology in Residual Retroperitoneal Masses After Chemotherapy in Nonseminoma. Eur.
Urol. Focus 2018, 4, 995–1001. [CrossRef]

59. Vergouwe, Y.; Steyerberg, E.W.; Foster, R.S.; Sleijfer, D.T.; Fosså, S.D.; Gerl, A.; de Wit, R.; Roberts, J.T.; Habbema, J.D.F. Predicting
Retroperitoneal Histology in Postchemotherapy Testicular Germ Cell Cancer: A Model Update and Multicentre Validation with
More Than 1000 Patients. Eur. Urol. 2007, 51, 424–432. [CrossRef]

60. Dieckmann, K.-P.; Radtke, A.; Spiekermann, M.; Balks, T.; Matthies, C.; Becker, P.; Ruf, C.; Oing, C.; Oechsle, K.; Bokemeyer, C.;
et al. Serum Levels of MicroRNA miR-371a-3p: A Sensitive and Specific New Biomarker for Germ Cell Tumours. Eur. Urol. 2017,
71, 213–220. [CrossRef]

61. Bezan, A.; Gerger, A.; Pichler, M. MicroRNAs in Testicular Cancer: Implications for Pathogenesis, Diagnosis, Prognosis and
Therapy. Anticancer Res. 2014, 34, 2709–2713.

62. Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
63. Alzamzami, F.; Hoda, M.; El Saddik, A. Light gradient boosting machine for general sentiment classification on short texts: A

comparative evaluation. IEEE Access 2020, 8, 101840–101858. [CrossRef]
64. Ke, G.; Meng, Q.; Finley, T.; Wang, T.; Chen, W.; Ma, W.; Ye, Q.; Liu, T.-Y. Lightgbm: A highly efficient gradient boosting decision

tree. Adv. Neural Inf. Process. Syst. 2017, 30, 3149–3157.
65. Cervantes, J.; Garcia-Lamont, F.; Rodríguez-Mazahua, L.; Lopez, A. A comprehensive survey on support vector machine

classification: Applications, challenges and trends. Neurocomputing 2020, 408, 189–215. [CrossRef]
66. Pisner, D.A.; Schnyer, D.M. Support vector machine. In Machine Learning; Elsevier: Amsterdam, The Netherlands, 2020;

pp. 101–121.
67. Laaksonen, J.; Oja, E. Classification with learning k-nearest neighbors. In Proceedings of the International Conference on Neural

Networks (ICNN’96), Washington, DC, USA, 3–6 June 1996; pp. 1480–1483.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1093/jncics/pkz079
https://doi.org/10.1200/JCO.2017.73.4723
https://www.ncbi.nlm.nih.gov/pubmed/28854068
https://doi.org/10.1080/10408360390247814
https://www.ncbi.nlm.nih.gov/pubmed/14582602
https://doi.org/10.1002/(SICI)1097-0142(20000101)88:1%3C162::AID-CNCR22%3E3.0.CO;2-V
https://doi.org/10.1007/s00330-019-06495-z
https://www.ncbi.nlm.nih.gov/pubmed/31828413
https://doi.org/10.1002/(SICI)1097-0258(19960229)15:4%3C361::AID-SIM168%3E3.0.CO;2-4
https://doi.org/10.1016/j.euf.2018.01.015
https://doi.org/10.1016/j.eururo.2006.06.047
https://doi.org/10.1016/j.eururo.2016.07.029
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1109/ACCESS.2020.2997330
https://doi.org/10.1016/j.neucom.2019.10.118

	Introduction 
	Materials and Methods 
	Patients 
	Image Acquisition and Segmentation 
	Segmentation and Radiomics Feature Extraction 
	Development of the Predictive Machine Learning Models 

	Results 
	Clinicopathological Characteristics 
	Dataset Characteristics and Preprocessing 
	Performance Evaluation of the Prediction Models 

	Discussion 
	Conclusions 
	References

