Previous Issue
Volume 11, September
 
 

Horticulturae, Volume 11, Issue 10 (October 2025) – 2 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
1964 KB  
Article
Expression Regulatory Mechanisms of the Key Structural Genes in the Carotenoid Biosynthesis Pathway Under Salt Stress of Lycium barbarum
by Zhi-Hang Hu, Li-Xiang Wang, Nan Zhang, Chen Chen, Jing Zhuang, Yue Yin and Ai-Sheng Xiong
Horticulturae 2025, 11(10), 1149; https://doi.org/10.3390/horticulturae11101149 - 24 Sep 2025
Abstract
Salt stress is a major abiotic factor limiting wolfberry (Lycium barbarum) growth. As a high-value medicinal and edible crop, wolfberry relies on its carotenoid content, a critical determinant of fruit quality and nutritional value. To elucidate the expression regulatory mechanisms of [...] Read more.
Salt stress is a major abiotic factor limiting wolfberry (Lycium barbarum) growth. As a high-value medicinal and edible crop, wolfberry relies on its carotenoid content, a critical determinant of fruit quality and nutritional value. To elucidate the expression regulatory mechanisms of key genes in the carotenoid biosynthesis pathway under salt stress, this study systematically identified 17 structural genes within the L. barbarum carotenoid pathway using genomic and transcriptomic approaches. Comprehensive analyses were conducted on gene structure, chromosomal distribution, conserved domains, and cis-acting elements. The results revealed that these genes were clustered on chromosomes Chr08 and Chr10 and exhibit strong collinearity with tomato (18 syntenic pairs). Their promoters were enriched with light-responsive (G-box) and stress-responsive (ABRE, DRE) elements. Tissue-specific expression analysis demonstrated high expression in mid-to-late fruit developmental stages (LbaPSY1, LbaPDS) and in photoprotective genes (LbaZEP, LbaVDE) in leaves. Under 300 mM NaCl stress treatment, the genes exhibited a staged response: Early stage (1–3 h): upstream MEP pathway genes (LbaDXS, LbaGGPS) were rapidly induced to supply precursors. Mid-stage (6–12 h): midstream genes (LbaPSY, LbaPDS, LbaZDS) were continuously upregulated, promoting lycopene synthesis and preferentially activating the β-branch (LbaLCYB). Late stage (12–24 h): downstream xanthophyll cycle genes (LbaBCH, LbaZEP, LbaVDE) were significantly enhanced, facilitating the accumulation of antioxidant compounds like violaxanthin and neoxanthin. This coordinated regulation formed a synergistic “precursor supply–antioxidant product” network. This study revealed the phased and coordinated regulatory network of carotenoid biosynthesis genes under salt stress in L. barbarum. It also provided potential target genes for the new cultivar selection with enhanced salt tolerance and nutritional quality. Full article
(This article belongs to the Special Issue New Insights into Protected Horticulture Stress)
Show Figures

Figure 1

21 pages, 5551 KB  
Article
The SlJMJ15, a Putative Histone Demethylase Gene, Acts as a Negative Regulator of Drought Tolerance in Tomato
by Lang Wu, Hanling Zhao, Jiajia Xu, Fasen Lin, Qingxia Yan, Yan Liang, Danyang Xu, Yu Pan, Xingguo Zhang and Jinhua Li
Horticulturae 2025, 11(10), 1148; https://doi.org/10.3390/horticulturae11101148 - 23 Sep 2025
Abstract
JmjC domain proteins play crucial roles in plant growth and development, regulation of epigenetic processes, flowering control, and stress defence. However, these proteins have not been systematically identified or characterised in tomato. Here, we performed a genome-wide identification of JmjC domain-containing genes ( [...] Read more.
JmjC domain proteins play crucial roles in plant growth and development, regulation of epigenetic processes, flowering control, and stress defence. However, these proteins have not been systematically identified or characterised in tomato. Here, we performed a genome-wide identification of JmjC domain-containing genes (JMJ family) in tomato and identified 23 SlJMJ genes within the tomato genome. Expression analysis indicated that SlJMJ15 was responsive to drought stress, prompting us to investigate its functional role in tomato plants. We found that SlJMJ15-RNAi lines displayed a severe dwarf phenotype, whereas SlJMJ15-overexpression lines exhibited increased drought sensitivity compared to wild-type plants, indicating that SlJMJ15 negatively regulates drought tolerance in tomatoes. Further investigation suggests that SlJMJ15 may reduce drought tolerance in tomatoes by modulating the expression of key genes involved in abscisic acid signalling pathways through its demethylation activity. This study deepens our understanding of the roles of SlJMJ family genes in tomato growth and abiotic stress responses, laying the foundation for developing strategies to improve drought stress tolerance in tomatoes. Full article
(This article belongs to the Special Issue Breeding by Design: Advances in Vegetables)
Show Figures

Figure 1

Previous Issue
Back to TopTop