Impact of Rainfall and Air Temperature Before Harvest on Content and Response of Carotenoids, Tocopherols, and Vitamin C to Postharvest Thermal Processing of Tomato
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals Used in the Determinations
2.2. Cultivation of Tomato
2.3. Thermal Extraction of Tomato Juice
2.4. Analysis of Carotenoids, Tocopherols, and Vitamin C
2.4.1. Extraction of Carotenoids and Tocopherols
2.4.2. Extraction of Vitamin C
2.4.3. HPLC Determinations
2.5. Statistical Analysis
3. Results and Discussion
3.1. Content and Stability of Carotenoids
3.2. Response of Tocopherols
3.3. Response of Vitamin C
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
WS | water supply |
CBE | cold-break extraction |
HBE | hot-break extraction |
α-Toc | alpha-tocopherol |
α-TocHQ | alpha-tocopherol hydroquinone |
α-TocES | alpha-tocopherol ester |
DM | dry matter |
References
- Giovannucci, E.T. Tomatoes, Tomato-Based Products, Lycopene, and Cancer: Review of the Epidemiologic Literature. J. Natl. Canc. Inst. 1999, 91, 317–331. [Google Scholar] [CrossRef] [PubMed]
- Gammone, M.A.; Riccioni, G.; D’Orazio, N. Carotenoids: Potential allies of cardiovascular health? Food Nutr. Res. 2015, 59, 26762–26772. [Google Scholar] [CrossRef] [PubMed]
- Rao, A.V.; Rao, L.G. Carotenoids and human health. Pharmacol. Res. 2007, 55, 207–216. [Google Scholar] [CrossRef] [PubMed]
- George, S.A.; Brat, P.; Alter, P.; Amiot, M.J. Rapid Determination of Polyphenols and Vitamin C in Plant-Derived Products. J. Agric. Food Chem. 2005, 53, 1370–1373. [Google Scholar] [CrossRef]
- Moreno, S.; Scheyer, T.; Romano, C.S.; Vojnov, A.A. Antioxidant and antimicrobial activities of rosemary extracts linked to their polyphenol composition. Free Radic. Res. 2006, 40, 223–231. [Google Scholar] [CrossRef]
- Lenucci, M.S.; Cadinu, D.; Taurino, M.; Piro, G.; Dalessandro, G. Antioxidant composition in cherry and high-pigment tomato cultivars. J. Agric. Food Chem. 2006, 54, 2606–2613. [Google Scholar] [CrossRef]
- Ilahy, R.; Hdider, C.; Lenucci, M.S.; Tlili, I.; Dalessandro, G. Antioxidant activity and bioactive compound changes during fruit ripening of high-lycopene tomato cultivars. J. Food Compos. Anal. 2011, 24, 588–595. [Google Scholar] [CrossRef]
- Meulebroek, L.V.; Vanhaecke, L.; De Swaef, T.; Steppe, K.; De Brabander, H. U-HPLC-MS/MS to quantify liposoluble antioxidants in red-ripe tomatoes, grown under different stress levels. J. Agric. Food Chem. 2012, 60, 566–573. [Google Scholar] [CrossRef]
- Krebbers, B.; Master, A.M.; Hoogerwerf, S.W. Combined high-pressure and thermal treatments for processing tomato puree: Evaluation of microbial inactivation and quality parameters. Innov. Food Sci. Emerg. Technol. 2003, 4, 377–385. [Google Scholar] [CrossRef]
- Goodman, C.L.; Fawcett, S.; Barringer, S.A. Flavour, viscosity, and color analyses of hot and cold break tomato juices. J. Food Sci. 2002, 67, 404–408. [Google Scholar] [CrossRef]
- Capanoglu, E.; Beekwilder, J.; Boyacioglu, D.; Hall, R.; de Vos, R. Changes in antioxidant s and metabolite profile during the production of tomato paste. J. Agric. Food Chem. 2008, 56, 964–973. [Google Scholar] [CrossRef]
- Kelebek, H.; Selli, S.; Kadiroglu, P.; Kola, O.; Kesen, S.; Uçar, B.; Çetiner, B. Bioactive compounds and antioxidant potential in tomato pastes as affected by hot and cold break process. Food Chem. 2017, 220, 31–41. [Google Scholar] [CrossRef]
- Illés, G.; Fonyó, T.; Pásztor, L.; Bakacsi, Z.S.; Laborczi, A. Agroclimate 2 project of compilation of digital soil-type map of Hungary. Erdészettudomány Közlemények (For. Sci. Commun.) 2016, 6, 17–24. [Google Scholar]
- Nemeskéri, E.; Horváth, K.Z.; Andryei, B.; Ilahy, R.; Takács, S.; Neményi, A.; Pék, Z.; Helyes, L. Impact of plant growth-promoting rhizobacteria inoculation on the physiological response and productivity traits of field-grown tomatoes in Hungary. Horticulturae 2022, 8, 641. [Google Scholar] [CrossRef]
- Bulgan, A.; Horváth, K.Z.; Duah, S.A.; Takács, S.; ÉgeI, M.; Szuvandzsiev, P.; Neményi, A. Use of plant growth promoting rhizobacteria (PGPRs) in the mitigation of water deficiency of tomato plants (Solanum lycopersicum L.). J. Centr. Eur. Agric. 2021, 22, 167–177. [Google Scholar]
- Kruk, J.; Szymanska, R.; Krupinska, K. Tocopherol quinone content of green algae and higher plants revised by a new highly sensitive fluorescence detection method using HPLC–Effects of high light stress and senescence. J. Plant Physiol. 2008, 165, 1238–1247. [Google Scholar] [CrossRef]
- Daood, H.G.; Biacs, P.A.; Dakar, M.; Hajdú, F. Ion-pair chromatography and photo mode-array detection of vitamin C and organic acids. J. Chromatogr. Sci. 1994, 32, 481–487. [Google Scholar] [CrossRef]
- Daood, H.G.; Ráth, S.; Palotás, G.; Halász, G.; Hamow, K.; Helyes, L. Efficient HPLC separation on a core C30 column with MS2 characterization of isomers, derivatives, and unusual carotenoids from tomato products. J. Chromatogr. Sci. 2022, 60, 336–347. [Google Scholar] [CrossRef]
- Daood, H.G.; Biacs, P.A. Simultenous determination of Sudan dyes and carotenoids in red pepper and tomato products by HPLC. J. Choromatogr. Sci. 2005, 43, 461–465. [Google Scholar] [CrossRef]
- Hsu, K.C.; Tan, F.J.; Chi, H.J. Evaluation of microbial inactivation and physiochemical properties of pressurized tomato juice during refrigerated storage. LWT 2008, 41, 367–375. [Google Scholar] [CrossRef]
- Schwartz, K.; Bertelsen, G.; Nissen, L.R.; Gardner, P.T.; Heinonen, M.I.; Hopia, A.; Huynh-Ba, T.; Lambelet, P.; McPhail, D.; Skibsted, L.H.; et al. Investigation of plant extracts for the protection of processed foods against lipid oxidation. Comparison of an antioxidant assay based on radical scavenging, lipid oxidation, analysis of the principal antioxidant compounds. Eur. Food Res. Technol. 2001, 212, 319–328. [Google Scholar] [CrossRef]
- Bramely, P.M. Regulation of carotenoid formation during tomato fruit ripening and development. J. Exp. Bot. 2002, 53, 2107–2113. [Google Scholar] [CrossRef] [PubMed]
- Deli, J.; Osz, E. Carotenoid 5,6-, 5,8- and 3,6-epoxides. Arkivoc 2004, 7, 150–168. [Google Scholar] [CrossRef]
- Gama, J.J.T.; Tadiotti, A.C.; de Sylos, C.M. Comparison of carotenoid content in tomato, tomato pulp, and ketchup by liquid chromatography. Alim. Nutr. Araraquara 2006, 17, 353–358. [Google Scholar]
- Fanasca, S.; Colla, G.; Maiani, G.; Venneria, E.; Rouphael, Y.; Azzini, E.; Saccardo, F. Changes in Antioxidant Content of Tomato Fruits in Response to Cultivar and Nutrient Solution Composition. J. Agric. Food Chem. 2006, 54, 4319–4325. [Google Scholar] [CrossRef]
- Sharma, S.K.; Maguer, M. L Kinetics of lycopene degradation in tomato pulp solids under different processing and storage conditions. Food Res. Int. 1996, 29, 309–315. [Google Scholar] [CrossRef]
- Martinéz-Hernández, G.B.; Boluda-Aguilar, M.; Taboada-Rodréguez, A.; Soto-Jover, S.; Marín-Iniesta, F.; López Gómez, A. Processing, packaging and storage of tomato products: Influence on the lycopene content. Food Eng. Rev. 2016, 8, 52–75. [Google Scholar] [CrossRef]
- Temitope, A.O.; Eloho, A.P.; Olubunmi, I.D. Lycopene content in tomatoes (Lycopersicon esculentum Mill): Effect of thermal heat and its health benefits. Fresh Prod. 2009, 3, 40–43. [Google Scholar]
- Mayeaux, M.; Xu, Z.; King, I.M.; Prinyawiwatkul, W. Effect of cooking conditions on the lycopene content in tomatoes. J. Food Sci. 2006, 71, 461–464. [Google Scholar] [CrossRef]
- Toor, R.K.; Savage, G.P. Antioxidant activity in different fractions of tomatoes. Food Res. Int. 2005, 38, 487–494. [Google Scholar] [CrossRef]
- Chandra, H.M.; Ramalingam, S. Antioxidant potentials of skin, pulp and seed fractions of commercially important tomato cultivars. Food Sci. Technol. 2011, 20, 15–21. [Google Scholar] [CrossRef]
- Vinha, A.F.; Alves, R.C.; Barreira, S.V.P.; Castro, A.; Costa, A.S.G.; Olivieira, M.B.P.P. Effect of peel and seed removal on the nutritional value and antioxidant activity of tomato (Lycopersicon esculentum L.) fruits. LWT 2014, 55, 197–202. [Google Scholar] [CrossRef]
- Angaman, D.M.; Renato, M.; Azcón-Bieto, J.; Boronat, A. Oxygene consumption and lipoxygenase in isolated tomato fruit chromoplasts. J. Plant Sci. 2014, 2, 5–8. [Google Scholar]
- Urbonaviciene, D.; Viskelis, P.; Viskelis, J.; Jankauskiene, J.; Bobinas, C. Lycopene and β-carotene in non-blanched and blanched tomatoes. J. Food Agric. Environ. 2012, 10, 142–146. [Google Scholar]
- Tonucci, L.H.; Holden, J.M.; Beecher, G.R.; Khachik, F.; Davis, C.S.; Mulokozi, G. Carotenoid content of thermally processed tomato-based food products. J. Agric. Food Chem. 1995, 43, 579–586. [Google Scholar] [CrossRef]
- Nascimento, A.A.G.; Vasconcelos, A.G.; Souza, G.; Oliveira, A.; de Souza de Almeida Leite, G.J.R.; Pintado, M. Bioavailability, anticancer potential, and chemical data of lycopene: An overview and technological prospecting. Antioxidants 2022, 11, 360. [Google Scholar] [CrossRef]
- D’Evoli, L.; Lombardi-Boccia, G.; Lucarini, M. Influence of heat treatments on carotenoid content of cherry tomatoes. Foods 2013, 2, 352–363. [Google Scholar] [CrossRef]
- Seybold, C.; Fröhlich, K.; Bitch, R.; Otto, K.; Böhm, V. Change in content of carotenoids and vitamin E during tomato processing. J. Agric. Food Chem. 2004, 52, 7005–7010. [Google Scholar] [CrossRef]
- Gharbi, S.; Renda, G.; La Barbera, L.; Amri, M.; Messina, C.M.; Santulli, A. Tunisian tomato by-products, as a potential source of natural bioactive compounds. Nat. Prod. Res. 2017, 31, 626–631. [Google Scholar] [CrossRef]
- Quadrana, L.; Almeida, J.; Otalza, S.N.; Duffy, T.; Corredo da Silva, J.V.; de Godoy, F.; Asis, F.; Bermúdez, L.; Fernie, A.R.; Carrari, F.; et al. Transcriptional regulation of tocopherol biosynthesis in tomato. Plant Mol. Biol. 2013, 81, 309–325. [Google Scholar] [CrossRef]
- Abushita, A.A.; Daood, H.G.; Biacs, P. Change in carotenoids and antioxidant vitamin in tomato as a function of varietal and technological factors. J. Agric. Food Chem. 2000, 48, 2075–2081. [Google Scholar] [CrossRef]
- Chanforan, C.; Loonis, M.; Mora, N.; Caris-Veyrat, C.; Dufour, C. The impact of industrial processing on health-beneficial tomato microconstituents. Food Chem. 2012, 134, 1786–1795. [Google Scholar] [CrossRef]
- Hdider, C.; Ilahy, R.; Tlili, I.; Lenucci, S.C.; Dalessandro, G. Effect of maturity on the antioxidant content and antioxidant activity of high-pigment tomato cultivars grown in Italy. Food 2013, 7, 1–7. [Google Scholar]
- Yahia, E.M.; Contreras-Padilia, M.; Gonzalez-Aguilar, G. The ascorbic acid content in relation to ascorbic acid oxidase activity and polyamine content in tomato and bell pepper fruits during development, maturation, and senescence. LWT 2001, 34, 452–457. [Google Scholar] [CrossRef]
- Abdelgawad, K.F.; El-Mogy, M.M.; Mohamed, M.I.A.; Garchery, C.; Stevens, R. Increasing ascorbic acid and salinity tolerance of cherry tomato plants by suppressed expression of the ascorbate oxidase gene. Agronomy 2019, 9, 51–64. [Google Scholar] [CrossRef]
- Munyaka, A.W.; Makule, E.E.; Oey, I.; Loey, A.V.; Hendrickx, M. Thermal stability of L-ascorbic acid and ascorbic acid oxidase in Broccoli. J. Food Sci. 2010, 75, C336–C340. [Google Scholar] [CrossRef] [PubMed]
- Anthon, G.E.; Sekine, Y.; Watanabe, N.; Barrett, D.M. Thermal inactivation of pectin methylesterase, polygalacturonase and peroxidise in tomato juice. J. Agric. Food Chem. 2002, 50, 6153–6159. [Google Scholar] [CrossRef] [PubMed]
- Davey, M.W.; Montagu, M.V.; Inzé, D.; Sanmartin, M.; Kanellis, A.; Smirnoff, N.; Benzie, I.J.J.; Strain, J.; Favell, D.; Fletcher, J. Plant L-ascorbic acid: Chemistry, function, metabolism, bioavailability, and effects of processing. J. Sci. Food Agric. 2000, 80, 825–860. [Google Scholar] [CrossRef]
- Stevens, R.; Page, D.; Gouble, B.; Garchery, C.; Zamir, D.; Causs, M. Tomato fruit ascorbic acid content is liked with monodehydroascorbate reductase activity and tolerance to chilling stress. Plant Cell Environ. 2008, 31, 1086–1096. [Google Scholar] [CrossRef]
- Melliduo, I.; Keulemans, J.; Kanellis, A.K.; Davey, M.W. Regulation of fruit ascorbic acid concentrations during ripening in high and low vitamin C tomato cultivars. BMC Plant Biol. 2012, 12, 239–252. [Google Scholar] [CrossRef]
- Andrews, J.; Adams, S.R.; Burton, K.S.; Evered, C.E. Subcellular localization of peroxidase in tomato fruit skin and the possible implications of the regulation of fruit growth. J. Exp. Bot. 2002, 53, 2185–2191. [Google Scholar] [CrossRef]
- Morohashi, Y. Peroxidise activity develops in the micropylar endosperm of tomato seeds prior to radical protrusion. J. Exp. Bot. 2002, 53, 1643–1650. [Google Scholar] [CrossRef]
- Massot, C.; Bancel, D.; Lauri, F.L.; Truffault, V.; Baldet, P.; Stevens, R.; Gautier, H. High-temperature inhibits recycling and light stimulation of the ascorbate pool in tomato despite increased expression of biosynthesis genes. PLoS ONE 2013, 8, e84474. [Google Scholar] [CrossRef]
- Jagadeesh, S.L.; Charles, M.T.; Gariepy, Y.; Goyette, B.; Raghavan, G.S.V.; Vigneault, C. Influence of postharvest UV-C hormesis on the bioactive components of tomato during post-treatment handling. Food Bioproc. Technol. 2011, 4, 1463–1472. [Google Scholar] [CrossRef]
Meteorological Parameters | Location-1 | Location-2 | ||
---|---|---|---|---|
2018 | 2019 | 2018 | 2019 | |
Average temperature (°C) during the growing seasons | 21.6 | 21.3 | 22.3 | 22.5 |
Average temperature (°C) 3 weeks before harvest | 23.8 | 23.6 | 25.5 | 24.6 |
Minimum temperature (°C) 3 weeks before harvest | 17.1 | 16.9 | 19.4 | 17.3 |
Days in excess at 30 °C during the growing season | 28 | 44 | 34 | 57 |
Days in excess at 30 °C 3 weeks before harvest | 18 | 13 | 21 | 15 |
Precipitation (mm) during the growing seasons | 304.6 | 278.3 | 126.9 | 256.5 |
Precipitation (mm) 3 weeks before harvest | 55.9 | 23.0 | 4.5 | 5.9 |
Carotenoids | Tomato Products | ||||
---|---|---|---|---|---|
RAW | CBE | HBE | CBP | HBP | |
Location-1 | |||||
Lycopene | 4018.3 ± 131 a | 2584± 65 a | 1887 ± 67 a | 829 ± 37 a | 913 ± 120 a |
9Z-lycopene | 13.5 ± 2.5 a | 17.3 ± 1.3 a | 16.4 ± 2.4 a | 16.5 ± 4.2 a | 3.5 ± 0.6 a |
Ɣ-carotene | 14.6 ± 0.8 a | 12.2 ± 1.9 a | 8.0 ± 0.8 a | 5.2 ± 0.6 a | 5.2 ± 0.6 a |
13Z-lycopene | 31.2 ± 3.4 a | 165.7 ± 5.0 a | 113.8 ± 6.3 a | 192.8 ± 10.8 a | 33.5 ± 5.7 a |
β-carotene | 52.1 ± 5.3 a | 41.6 ± 2.2 a | 32.9 ± 4.9 a | 60.2 ± 2.9 a | 53.2 ± 2.4 a |
Lycoxanthin | 56.2 ± 6.7 a | 74.6 ± 3.9 a | 53.9 ± 4.0 a | 19.0 ± 1.1 a | 20.3 ± 2.4 a |
Z-dimethoxy lycopene | 21.3 ± 2.0 a | 27.5 ± 3.1 a | 19.8 ± 2.1 a | 14.3 ± 0.4 a | 7.9 ± 0.6 a |
Z- Lycopene diepoxy | 7.8 ± 0.6 a | 9.8 ± 2.4 a | 6.8 ± 1.1 a | 4.4 ± 0.2 a | 2.9 ± 0.1 a |
Z-β-carotene epoxide | 40.6 ± 4.9 a | 65.5 ± 6.0 a | 44.3 ± 2.3 a | 24.9 ± 0.6 a | 16.7 ± 1.3 a |
Z-diepoxy β-carotene | 11.7 ± 1.3 a | 20.2 ± 2.2 a | 14.4 ± 0.9 a | 8.9 ± 0.1 a | 5.7 ± 0.5 a |
Z-diepoxy β-carotene | 12.7 ± 1.6 a | 18.1 ± 0.3 a | 12.6 ± 0.7 a | 8.3 ± 0.1 a | 5.1 ± 0.3 a |
Lutein | 16.2 ± 1.6 a | 15.1 ± 0.7 a | 13.6 ± 0.1 a | 14.3 ± 1.1 a | 14.3 ± 0.7 a |
Phytoene | 81.4 ± 11.4 a | 110.5 ± 17.7 a | 93.0 ± 3.3 a | 48.7 ± 2.3 a | 40.5 ± 2.1 a |
OH-phytoene | 16.0 ± 2.6 a | 16.9 ± 3.1 a | 11.6 ± 1.9 a | 6.7 ± 0.8 a | 4.7 ± 0.3 a |
Phytofluene | 46.6 ± 1.8 a | 47.8 ± 4.5 a | 43.8 ± 8.7 a | 27.3 ± 4.7 a | 22.5 ± 4.6 a |
OH-phytofluene | 4,1 ± 1.3 a | 2.2 ± 0.2 a | 2.4 ± 0.1 a | 1.7 ± 0.1 a | 1.1 ± 0.1 a |
Location-2 | |||||
Lycopene | 3786 ± 142 a | 1104 ± 49 b | 1543± 63 b | 792 ± 39 a | 1067 ± 62 a |
9Z-lycopene | 17.8 ± 1.1 a | 7.7 ± 1.2 b | 15.1 ± 1.9 a | 3.0 ± 0.6 b | 4.3 ± 0.5 a |
Ɣ-carotene | 16.7 ± 2.6 a | 4.6 ± 0.1 b | 8.8± 0.6 a | 4.3 ± 0.1 b | 5.7 ± 0.3 a |
13Z-lycopene | 73.5 ± 9.3 b | 99.8± 4.3 b | 112.7 ± 3.6 a | 61.7 ± 5.0 b | 62.5 ± 6.4 b |
β-carotene | 61.7 ± 9.9 a | 33.3 ± 0.7 b | 40.9 ± 1.9 a | 40.4 ± 1.9 b | 56.8 ± 1.6 a |
Lycoxanthin | 117.7 ± 5.3 b | 35.0 ± 0.2 b | 48.0 ± 3.4 a | 18.8 ± 0.6 a | 27.3 ± 1.6 b |
Z-dimethoxy lycopene | 35.2 ± 1.1 b | 18.8 ± 1.8 b | 19.7 ± 1.7 a | 9.4 ± 0.3 b | 12.2 ± 0.3 b |
Z- Lycopene diepoxy | 11.9 ± 0.8 b | 6.5 ± 1.7 a | 7.5 ± 0.2 a | 3.7 ± 0.4 a | 4.8 ± 0.2 b |
Z-β-carotene epoxide | 68.7 ± 1.9 b | 37.6 ± 1.3 b | 45.6 ± 2.5 a | 18.6 ± 1.0 b | 23.4 ± 1.1 b |
Z-diepoxy β-carotene | 71.7 ± 5.7 b | 44.3 ± 1.4 b | 15.8 ± 1.2 a | 22.5 ± 1.1 b | 22.5 ± 1.0 b |
Z-diepoxy β-carotene | 75.9 ± 4.7 b | 37.5 ± 0.9 b | 14.0 ± 0.9 a | 19.8± 0.8 b | 23.2 ± 1.0 b |
Lutein | 21.0 ± 0.8 b | 15.8 ± 0.3 a | 21.5 ± 0.7 b | 14.1 ± 0.3 a | 21.3 ± 0.6 b |
Phytoene | 108.7 ± 2.4 b | 88.5 ± 6.0 a | 92.0 ± 0.4 a | 46.7 ± 2.4 a | 57.4 ± 1.5 b |
OH-phytoene | 31.6 ± 6.1 b | 16.6 ± 0.7 a | 14.4 ± 0.8 a | 9.4 ± 1.5 b | 9.3 ± 0.2 b |
Phytofluene | 69.1 ± 3.2 b | 50.0 ± 0.5 a | 54.4 ± 4.8 a | 29.8 ± 1.5 a | 37.9 ± 1.0 b |
OH-phytofluene | 7.2 ± 1.4 b | 2.6 ± 0.4 a | 2.3 ± 2.2 a | 1.8 ± 0.1 a | 1.3 ± 0.1 a |
Carotenoids | Tomato Products | ||||
---|---|---|---|---|---|
RAW | CBE | HBE | CBP | HBP | |
Location-1 | |||||
Lycopene | 4165 ± 266 a | 2634. ± 150 a | 2423 ± 139 a | 151.6 ± 23.2 a | 137 ± 4.1 a |
9Z-lycopene | 20.0 ± 2.8 a | 23.5 ± 4.4 a | 13.2 ± 0.8 a | 16.0 ± 0.3 a | 8.2 ± 1.1 a |
γ-carotene | 21.1 ± 0.7 a | 21.3 ± 1.4 a | 13.3 ± 0.6 a | 10.4 ± 0.1 a | 9.7 ± 1.4 a |
13Z-lycopene | 93.5 ± 11.5 a | 74.3 ± 8.4 a | 93.9 ± 14.4 a | 270.1 ± 11.1 a | 84.9 ± 7.9 a |
β-carotene | 108.0 ± 8.3 a | 41.2 ± 10.2 a | 55.4 ± 4.4 a | 36.8 ± 4.6 a | 54.0 ± 7.3 a |
lycoxanthin | 100.2 ± 4.6 a | 48.5 ± 0.8 a | 70.8 ± 3.6 a | 30.4 ± 0.7 a | 31.7 ± 2.6 a |
Z- dimethoxy lycopene | 77.3 ± 7.7 | 34.5 ± 2.1 a | 60.3 ± 3.6 a | 38.5 ± 1.2 a | 34.0 ± 3.5 a |
Z-lycopene-diepoxide | 19.4 ± 1.8 a | 18.3 ± 3.8 a | 15.9 ± 0.2 a | 8.9 ± 0.3 a | 7.1 ± 0.1 a |
Z-β-carotene epoxide | 149.4 ± 11.0 | 78.7 ± 11.7 a | 127.7 ± 6.4 a | 77.5 ± 2.0 a | 71.2 ± 6.9 a |
Z-β-carotene diepoxide | 46.7 ± 2.9 a | 26.6 ± 3.7 a | 39.0 ± 2.0 a | 23.7 ± 0.6 | 21.1 ± 1.3 a |
Z-β-carotene diepoxide | 37.5 ± 2.6 a | 23.7 ± 1.8 a | 31.6 ± 1.5 a | 19.5 ± 0.3 a | 17.0 ± 0.7 a |
lutein | 19.4 ± 0.6 a | 19.8 ± 3.7 a | 13.6 ± 0.5 a | 13.9 ± 0.4 a | 14.0 ± 1.3 a |
Phytoene | 151.4 ± 7.1 a | 122.0 ± 13.7 a | 98.8 ± 4.9 a | 67.8 ± 3.0 a | 62.4 ± 9.8 a |
OH-phytoene | 36.4 ± 0.9 a | 18.2 ± 2.3 a | 19.4 ± 1.1 a | 13.8 ± 1.2 a | 9.8 ± 1.7 a |
Phytofluene | 80.6 ± 4.6 a | 63.8 ± 11.7 a | 53.8 ± 4.6 a | 39.2 ± 1.5 a | 37.4 ± 6.1 a |
Location-2 | |||||
lycopene | 4055 ± 274 a | 1453 ± 110 b | 2105 ± 76 b | 121 ± 39 b | 152 ± 5 b |
9Z-lycopene | 25.7 ± 5.3 a | 10.1 ± 0.6 b | 14.8 ± 0.5 a | 30.4 ± 2.8 b | 17.1 ± 0.9 b |
γ-carotene | 20.9 ± 2.3 a | 7.3 ± 0.7 b | 10.7 ± 0.3 b | 7.7 ± 0.6 b | 6.6 ± 0.6 b |
13Z-lycopene | 76.2 ± 5.3 a | 107.0 ± 2.7 b | 134.1 ± 10.3 b | 311.8 ± 17.4 b | 236.3 ± 17.8 b |
β-carotene | 65.2 ± 7.3 b | 34.2 ± 2.1 b | 51.3 ± 2.2 a | 33.4 ± 07 a | 37.4 ± 5.4 b |
lycoxanthin | 94.8 ± 23.1 a | 45.8 ± 4.5 a | 69.7 ± 2.7 a | 46.0 ± 2.2 b | 32.4 ± 4.7 a |
Z- dimethoxy lycopene | 15.7 ± 4.3 b | 48.6 ± 3.1 b | 61.1 ± 1.5 a | 41.0 ± 2.6 a | 40.2 ± 1.0 b |
Z-lycopene-diepoxide | 8.8 ± 2.4 b | 12.7 ± 0.8 b | 15.1 ± 0.2 a | 9.9 ± 1.1 a | 10.9 ± 0.5 b |
Z-β-carotene epoxide | 30.0 ± 8.5 b | 102.1 ± 6.5 b | 128.3 ± 2.8 a | 81.7 ± 3.5 a | 87.8 ± 1.3 b |
Z-β-carotene diepoxide | 9.8 ± 2.6 b | 31.1 ± 2.3 a | 39.2 ± 1.0 a | 25.6 ± 0.7 a | 28.8 ± 1.3 b |
Z-β-carotene diepoxide | 8.0 ± 2.4 b | 25.9 ± 1.5 b | 31.4 ± 0.8 a | 19.8 ± 0.5 a | 23.8 ± 0.4 b |
lutein | 27.2 ± 2.4 b | 9.8 ± 1.5 b | 12.8 ± 0.9 a | 12.2 ± 1.1 a | 14.4 ± 1.2 a |
Phytoene | 122.6 ± 13.2 b | 92.0 ± 4.0 b | 119.9 ± 1.4 b | 113.7 ± 2.6 b | 95.3 ± 11.2 b |
OH-phytoene | 13.7 ± 5.3 b | 16.7 ± 1.6 a | 12.6 ± 0.4 b | 15.6 ± 0.8 b | 9.6 ± 1.2 a |
Phytofluene | 52.6 ± 15.7 b | 47.1 ± 2.5 a | 60.3 ± 1.9 a | 57.0 ± 0.8 b | 47.2 ± 5.3 b |
Tocopherols | Tomato Products | ||||
---|---|---|---|---|---|
Raw | CBE | HBE | CBP | HBP | |
Location-1 (2018) | |||||
α-toc | 208.5 ± 9.4 b | 116.1 ± 9.1 a | 108.1 ± 13.4 a | 96.5 ± 4.5 a | 115.4 ± 5.1 a |
α-tocES | 217.9 ± 12.3 a | 121.0 ± 11.3 a | 107.7 ± 13.1 a | 67.2 ± 4.9 a | 103.3 ± 3.5 a |
α-tocHQ | 37.1 ± 5.6 a | 27.8 ± 1.3 a | 32.6 ± 4.8 a | 100.8 ± 5.4 a | 73.9 ± 7.6 a |
Ɣ-toc | 3.4 ± 0.2 a | 2.3 ± 0.3 a | 2.9 ± 0.4 a | 13.7 ± 3.8 a | 16.7 ± 1.2 a |
Location-2 (2018) | |||||
α-toc | 202.4 ± 19.6 a | 106.7 ± 1.5 a | 149.2 ± 2.7 b | 98.9 ± 7.9 a | 155.9 ± 5.0 b |
α-tocES | 243.3 ± 11.3 a | 103.4 ± 1.0 a | 158.4 ± 1.3 b | 93.3 ± 5.6 b | 156.0 ± 4.5 b |
α-tocHQ | 95.0 ± 5.1 b | 21.3 ± 0.2 b | 23.9 ± 2.1 a | 157.6 ± 5.1 b | 116.3 ± 3.8 b |
Ɣ-toc | 1.96 ± 0.2 b | 2.3 ± 0.2 a | 2.7 ± 0.6 a | 7.7 ± 0.8 b | 25.1 ± 1.7 b |
Location-1 (2019) | |||||
α-toc | 294.1 ± 11.1 a | 157.2 ± 4.0 a | 138.6 ± 6.8 a | 133.7 ± 5.4 a | 154.9 ± 10.9 a |
α-tocES | 351.1 ± 9.4 a | 172.6 ± 8.2 a | 152.2 ± 7.9 a | 172.3 ± 14.6 a | 163.8 ± 10.6 b |
α-tocHQ | 84.8 ± 3.3 a | 43.4 ± 1.7 a | 34.9 ± 1.5 a | 163.5 ± 14.6 a | 131.1 ± 14.4 a |
Ɣ-toc | 3.5 ± 0.3 a | 2.4 ± 0.2 a | 2.07 ± 0.2 a | 48.2 ± 0.3 a | 13.4 ± 0.9 a |
Location-2 (2019) | |||||
α-toc | 257.1 ± 13.7 b | 101.06 ± 5.6 b | 148.6 ± 6.6 a | 92.6 ± 3.0 b | 143.3 ± 7.8 a |
α-tocES | 279.8 ± 6.7 b | 119.4 ± 6.4 b | 161.6 ± 6.8 a | 68.8 ± 6.9 b | 114.7 ± 8.3 b |
α-tocHQ | 82.3 ± 2.0 b | 22.2 ± 1.2 b | 42.3 ± 2.0 b | 196.5 ± 7.6 b | 146.1 ± 14.1 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Daood, H.G.; Ráth, S.; Abushita, A.A.; Máté, M.; Helyes, L. Impact of Rainfall and Air Temperature Before Harvest on Content and Response of Carotenoids, Tocopherols, and Vitamin C to Postharvest Thermal Processing of Tomato. Horticulturae 2025, 11, 1245. https://doi.org/10.3390/horticulturae11101245
Daood HG, Ráth S, Abushita AA, Máté M, Helyes L. Impact of Rainfall and Air Temperature Before Harvest on Content and Response of Carotenoids, Tocopherols, and Vitamin C to Postharvest Thermal Processing of Tomato. Horticulturae. 2025; 11(10):1245. https://doi.org/10.3390/horticulturae11101245
Chicago/Turabian StyleDaood, Hussein G., Szilvia Ráth, Abdulnabi A. Abushita, Monika Máté, and Lajos Helyes. 2025. "Impact of Rainfall and Air Temperature Before Harvest on Content and Response of Carotenoids, Tocopherols, and Vitamin C to Postharvest Thermal Processing of Tomato" Horticulturae 11, no. 10: 1245. https://doi.org/10.3390/horticulturae11101245
APA StyleDaood, H. G., Ráth, S., Abushita, A. A., Máté, M., & Helyes, L. (2025). Impact of Rainfall and Air Temperature Before Harvest on Content and Response of Carotenoids, Tocopherols, and Vitamin C to Postharvest Thermal Processing of Tomato. Horticulturae, 11(10), 1245. https://doi.org/10.3390/horticulturae11101245