Dynamics of Quality Traits During Cold Storage in ‘Annurca’ Apples: Impact of 1-MCP and the Traditional Melaio Reddening Process
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Experimental Treatments
2.3. Measurements on the Fruits
2.3.1. Flesh Firmness, Soluble Solids Content, and Titratable Acidity
2.3.2. Fruit Skin and Pulp Color
2.3.3. Starch Pattern Index
2.4. Statistical Analysis
3. Results
3.1. Evolution of the Fruit Ripening Parameters
3.2. Post-Harvest Evolution of the Fruit Skin Color
3.3. Post-Harvest Evolution of Skin Color Uniformity
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Daillant-Spinnler, B.; MacFie, H.J.H.; Beyts, P.K.; Hedderley, D. Relationships between perceived sensory properties and major preference directions of 12 varieties of apples from the Southern Hemisphere. Food Qual. Prefer. 1996, 7, 113–126. [Google Scholar] [CrossRef]
- Dar, J.A.; Wani, A.A.; Ahmed, M.; Nazir, R.; Zargar, S.M.; Javaid, K. Peel colour in apple (Malus × domestica Borkh.): An economic quality parameter in fruit market. Sci. Hortic. 2019, 244, 50–60. [Google Scholar] [CrossRef]
- Harker, F.R.; Kupferman, E.M.; Marin, A.B.; Gunson, F.A.; Triggs, C.M. Eating quality standards for apples based on consumer preferences. Postharvest Biol. Technol. 2008, 50, 70–78. [Google Scholar] [CrossRef]
- Saure, M.C. External control of anthocyanin formation in apple. Sci. Hortic. 1990, 42, 181–218. [Google Scholar] [CrossRef]
- Teh, S.L.; Kostick, S.A.; Evans, K.M. Genetics and breeding of apple scions. In The Apple Genome; Springer: Berlin/Heidelberg, Germany, 2021; pp. 73–103. [Google Scholar]
- Watkins, C.B. Advances in postharvest handling and storage of apples. In Achieving Sustainable Cultivation of Apples; Burleigh Dodds Science Publishing: Cambridge, UK, 2017; pp. 361–392. [Google Scholar]
- Cirillo, A.; Spadafora, N.D.; James-Knight, L.; Ludlow, R.A.; Müller, C.T.; De Luca, L.; Romano, R.; Rogers, H.J.; Di Vaio, C. Comparison of Volatile Organic Compounds, Quality, and Nutritional Parameters from Local Italian and International Apple Cultivars. Horticulturae 2024, 10, 863. [Google Scholar] [CrossRef]
- Lintas, C.; Paoletti, F.; Ponziani, G.; Gambelli, L.; Monastra, F.; Cappelloni, M. Agronomic, nutritional and tecture evaluation of “Annurca” apple clones. Adv. Hortic. Sci. 1993, 7, 1000–1004. [Google Scholar]
- Lisanti, M.T.; Mataffo, A.; Scognamiglio, P.; Teobaldelli, M.; Iovane, M.; Piombino, P.; Rouphael, Y.; Kyriacou, M.C.; Corrado, G.; Basile, B. 1-Methylcyclopropene Improves Postharvest Performances and Sensorial Attributes of Annurca-Type Apples Exposed to the Traditional Reddening in Open-Field Melaio. Agronomy 2021, 11, 1056. [Google Scholar] [CrossRef]
- Melchiade, D.; Foroni, I.; Corrado, G.; Santangelo, I.; Rao, R. Authentication of the ‘Annurca’apple in agro-food chain by amplification of microsatellite loci. Food Biotechnol. 2007, 21, 33–43. [Google Scholar] [CrossRef]
- De Mori, G.; Cipriani, G. Marker-Assisted Selection in Breeding for Fruit Trait Improvement: A Review. Int. J. Mol. Sci. 2023, 24, 8984. [Google Scholar] [CrossRef]
- Singh, D.; Chauhan, N.; Chauhan, A. A note on promising early colouring apple bud sports identified from commercial exotic apple germplasm. Genet. Resour. Crop Evol. 2023, 70, 1931–1938. [Google Scholar] [CrossRef]
- Lugaresi, A.; Steffens, C.A.; Souza, M.P.d.; Amarante, C.V.T.d.; Brighenti, A.F.; Pasa, M.d.S.; Martin, M.S.d. Late summer pruning improves the quality and increases the content of functional compounds in Fuji apples. Bragantia 2022, 81, e3122. [Google Scholar] [CrossRef]
- Mupambi, G.; Valverdi, N.A.; Camargo-Alvarez, H.; Reid, M.; Kalcsits, L.; Schmidt, T.; Castillo, F.; Toye, J. Reflective groundcover improves fruit skin color in ‘Honeycrisp’apples grown under protective netting. HortTechnology 2021, 31, 607–614. [Google Scholar]
- Tipu, M.M.H.; Jahed, K.R.; Sherif, S.M. Integrated application of ACC and AVG mitigates pre-harvest fruit drop and enhances red coloration in apple. Plant Growth Regul. 2025, 105, 1289–1305. [Google Scholar] [CrossRef]
- Horbens, M.; Feldner, A.; Höfer, M.; Neinhuis, C. Ontogenetic tissue modification in Malus fruit peduncles: The role of sclereids. Ann. Bot. 2014, 113, 105–118. [Google Scholar]
- Corrado, G.; Mataffo, A.; Scognamiglio, P.; Teobaldelli, M.; Basile, B. Mealiness and Aroma Drive a Non-Linear Preference Curve for ‘Annurca’ PGI Apples in Long-Term Storage. Foods 2025, 14, 2990. [Google Scholar]
- Blankenship, S.M.; Dole, J.M. 1-Methylcyclopropene: A review. Postharvest Biol. Technol. 2003, 28, 1–25. [Google Scholar] [CrossRef]
- Murakami, P.F. An Instructional Guide for Leaf Color Analysis Using Digital Imaging Software; US Department of Agriculture, Forest Service, Northeastern Research Station: Newtown Square, PA, USA, 2005. [Google Scholar]
- Blanpied, G.; Silsby, K.J. Predicting Harvest Date Windows for Apples; Cornell Cooperative Extension: Ithaca, NY, USA, 1992. [Google Scholar]
- McGuire, R.G. Reporting of objective color measurements. Hortscience 1992, 27, 1254–1255. [Google Scholar]
- Schanda, J. Colorimetry: Understanding the CIE System; John Wiley & Sons: Hoboken, NJ, USA, 2007. [Google Scholar]
- Ireland, H.S.; Gunaseelan, K.; Muddumage, R.; Tacken, E.J.; Putterill, J.; Johnston, J.W.; Schaffer, R.J. Ethylene regulates apple (Malus× domestica) fruit softening through a dose × time-dependent mechanism and through differential sensitivities and dependencies of cell wall-modifying genes. Plant Cell Physiol. 2014, 55, 1005–1016. [Google Scholar]
- Hu, B.; Sun, D.-W.; Pu, H.; Wei, Q. Recent advances in detecting and regulating ethylene concentrations for shelf-life extension and maturity control of fruit: A review. Trends Food Sci. Technol. 2019, 91, 66–82. [Google Scholar] [CrossRef]
- Satekge, T.K.; Magwaza, L.S. Postharvest Application of 1-Methylcyclopropene (1-MCP) on Climacteric Fruits: Factors Affecting Efficacy. Int. J. Fruit Sci. 2022, 22, 595–607. [Google Scholar] [CrossRef]
- Win, N.M.; Yoo, J.; Naing, A.H.; Kwon, J.-G.; Kang, I.-K. 1-Methylcyclopropene (1-MCP) treatment delays modification of cell wall pectin and fruit softening in “Hwangok” and “Picnic” apples during cold storage. Postharvest Biol. Technol. 2021, 180, 111599. [Google Scholar] [CrossRef]
- Zhang, Y.; Ling, J.; Zhou, H.; Tian, M.; Huang, W.; Luo, S.; Hu, H.; Li, P. 1-Methylcyclopropene counteracts ethylene inhibition of anthocyanin accumulation in peach skin after harvest. Postharvest Biol. Technol. 2022, 183, 111737. [Google Scholar] [CrossRef]
- Zanella, A.; Rossi, O. Post-harvest retention of apple fruit firmness by 1-methylcyclopropene (1-MCP) treatment or dynamic CA storage with chlorophyll fluorescence (DCA-CF). Eur. J. Hortic. Sci. 2015, 80, 11–17. [Google Scholar] [CrossRef]
- Vilaplana, R.; Soria, Y.; Valentines, M.C.; Larrigaudière, C. Specific response of apple skin and pulp tissues to cold stress and 1-MCP treatment. Postharvest Biol. Technol. 2007, 43, 215–220. [Google Scholar] [CrossRef]
- Ma, Y.; Ma, X.; Gao, X.; Wu, W.; Zhou, B. Light induced regulation pathway of anthocyanin biosynthesis in plants. Int. J. Mol. Sci. 2021, 22, 11116. [Google Scholar] [CrossRef] [PubMed]
- Cappellini, F.; Marinelli, A.; Toccaceli, M.; Tonelli, C.; Petroni, K. Anthocyanins: From mechanisms of regulation in plants to health benefits in foods. Front. Plant Sci. 2021, 12, 748049. [Google Scholar] [CrossRef]
- Ni, J.; Premathilake, A.T.; Gao, Y.; Yu, W.; Tao, R.; Teng, Y.; Bai, S. Ethylene-activated PpERF105 induces the expression of the repressor-type R2R3-MYB gene PpMYB140 to inhibit anthocyanin biosynthesis in red pear fruit. Plant J. 2021, 105, 167–181. [Google Scholar] [CrossRef]
- Petroni, K.; Tonelli, C. Recent advances on the regulation of anthocyanin synthesis in reproductive organs. Plant Sci. 2011, 181, 219–229. [Google Scholar] [CrossRef]
- Syvash, O.; Zolotareva, O. Regulation of chlorophyll degradation in plant tissues. Biotechnol. Acta 2017, 10, 20–30. [Google Scholar] [CrossRef]
- Mokrzycki, W.; Tatol, M. Colour difference ∆E—A survey. Mach. Graph. Vis 2011, 20, 383–411. [Google Scholar]
- Cliff, M.; Sanford, K.; Wismer, W.; Hampson, C. Use of digital images for evaluation of factors responsible for visual preference of apples by consumers. HortScience 2002, 37, 1127–1131. [Google Scholar] [CrossRef]
- Bai, Y.; Li, X.; Feng, Y.; Liu, M.; Chen, C. Preserving traditional systems: Identification of agricultural heritage areas based on agro-biodiversity. Plants People Planet 2024, 6, 670–682. [Google Scholar] [CrossRef]
Source of Variation | Flesh Firmness (N) | SSC/TA Ratio | Starch Pattern Index |
---|---|---|---|
Treatment (TRT) | |||
MCP | 51.7 ± 0.6 c | 2.2 ± 0.0 a | 6.7 ± 0.1 a |
MCP+Melaio | 49.6 ± 0.6 b | 2.5 ± 0.0 b | 7.6 ± 0.1 b |
Melaio | 38.1 ± 0.6 a | 3.0 ± 0.0 c | 7.5 ± 0.1 b |
Significance | *** | *** | *** |
Storage Time (ST) | |||
Day 21 | 48 ± 0.8 b | 2.2 ± 0.1 a | 5.8 ± 0.1 a |
Day 48 | 47.7 ± 0.8 b | 2.3 ± 0.1 a | 7.2 ± 0.1 b |
Day 88 | 44.0 ± 0.8 a | 2.5 ± 0.1 b | 7.8 ± 0.1 cd |
Day 118 | 46.4 ± 0.8 ab | 2.7 ± 0.1 b | 7.6 ± 0.1 c |
Day 146 | 46.1 ± 0.8 ab | 3.0 ± 0.1 c | 8.0 ± 0.1 d |
Significance | ** | *** | *** |
TRT × ST | |||
MCP × Time 21 | 55.9 ± 1.3 e | 2.0 ± 0.1 abc | 3.5 ± 0.1 a |
MCP × Time 48 | 49.6 ± 1.3 de | 1.9 ± 0.1 ab | 7.1 ± 0.1 bc |
MCP × Time 88 | 47.9 ± 1.3 cd | 2.2 ± 0.1 abcd | 7.8 ± 0.1 def |
MCP × Time 118 | 50.5 ± 1.3 de | 2.4 ± 0.1 abcde | 7.2 ± 0.1 bcd |
MCP × Time 146 | 54.5 ± 1.3 e | 2.5 ± 0.1 bcde | 8.0 ± 0.1 f |
MCP+Melaio × Time 21 | 50.8 ± 1.3 de | 1.9 ± 0.1 a | 6.9 ± 0.1 b |
MCP+Melaio × Time 48 | 51.1 ± 1.3 de | 2.2 ± 0.1 abcd | 7.3 ± 0.1 bcde |
MCP+Melaio × Time 88 | 47.6 ± 1.3 cd | 2.5 ± 0.1 cdef | 7.9 ± 0.1 ef |
MCP+Melaio × Time 118 | 50.5 ± 1.3 de | 2.8 ± 0.1 def | 8.0 ± 0.1 f |
MCP+Melaio × Time 146 | 47.9 ± 1.3 cd | 3.0 ± 0.1 f | 8.0 ± 0.1 f |
Melaio × Time 21 | 37.5 ± 1.3 ab | 2.8 ± 0.1 ef | 7.1 ± 0.1 bc |
Melaio × Time 48 | 42.5 ± 1.3 bc | 2.6 ± 0.1 def | 7.2 ± 0.1 bcd |
Melaio × Time 88 | 36.4 ± 1.3 ab | 2.8 ± 0.1 ef | 7.8 ± 0.1 def |
Melaio × Time 118 | 38.2 ± 1.3 ab | 3.0 ± 0.1 f | 7.6 ± 0.1 cdef |
Melaio × Time 146 | 35.9 ± 1.3 a | 3.6 ± 0.1 g | 8.0 ± 0.1 f |
Significance | *** | * | *** |
Source of Variation | Blushed Side | Unblushed Side | ||||
---|---|---|---|---|---|---|
L* | a* | b* | L* | a* | b* | |
Treatment (TRT) | ||||||
Melaio | 24.1 ± 8.9 b | 25.3 ± 4.0 b | 15.7 ± 4.1 b | 22.2 ± 8.7 b | 22.7 ± 3.8 a | 13.4 ± 4.1 b |
MCP | 27.6 ± 8.6 a | 28.5 ± 4.5 a | 20.1 ± 6.7 a | 30.0 ± 11.9 a | 23.4 ± 5.9 a | 21.3 ± 7.8 a |
MCP+Melaio | 24.6 ± 9.3 b | 25.7 ± 3.8 b | 15.9 ± 4.7 b | 22.6 ± 9.9 b | 23.1 ± 3.6 a | 13.6 ± 4.4 b |
Significance | *** | *** | *** | *** | ns | *** |
Storage Time (ST) | ||||||
Day 21 | 41.4 ± 2.5 a | 21.68 ± 2.44 c | 11.9 ± 2.0 b | 41.7 ± 5.6 a | 18.8 ± 3.0 c | 12.1 ± 4.7 c |
Day 48 | 23.4 ± 3.4 b | 25.41 ± 2.99 b | 13.8 ± 3.0 b | 24.5 ± 7.1 b | 22.0 ± 4.0 b | 14.6 ± 7.3 bc |
Day 88 | 21.4 ± 4.8 c | 28.62 ± 3.92 a | 20.2 ± 5.4 a | 20.2 ± 7.1 c | 24.6 ± 4.3 a | 18.4 ± 7.0 a |
Day 118 | 22.2 ± 4.5 bc | 28.88 ± 3.90 a | 19.8 ± 5.2 a | 21.3 ± 7.0 bc | 25.1 ± 4.6 a | 17.9 ± 6.9 a |
Day 146 | 18.8 ± 3.9 d | 27.72 ± 3.43 a | 20.3 ± 4.9 a | 16.8 ± 4.5 d | 24.8 ± 3.4 a | 17.5 ± 5.6 ab |
Significance | *** | *** | *** | *** | *** | *** |
TRT × ST | ||||||
Melaio × Day 21 | 20.03 ± 1.89 i | 20.03 ± 1.89 i | 10.75 ± 1.86 h | 37.91 ± 1.79 b | 17.84 ± 2.52 f | 8.88 ± 1.92 g |
Melaio × Day 48 | 25.87 ± 2.11 defg | 25.87 ± 2.11 defg | 13.96 ± 2.31 fgh | 20.80 ± 2.51 ef | 23.34 ± 1.80 abcd | 11.72 ± 2.83 efg |
Melaio × Day 88 | 29.69 ± 3.30 abc | 29.69 ± 3.30 abc | 19.46 ± 3.09 cde | 19.27 ± 3.26 fg | 26.51 ± 2.26 ab | 16.53 ± 1.98 bcde |
Melaio × Day 118 | 25.49 ± 1.96 efg | 25.49 ± 1.96 efg | 17.02 ± 2.14 def | 17.88 ± 3.21 fg | 22.91 ± 3.14 bcde | 14.05 ± 3.11 cdefg |
Melaio × Day 146 | 25.29 ± 3.13 efg | 25.29 ± 3.13 efg | 17.36 ± 4.10 def | 14.91 ± 3.85 g | 23.04 ± 3.34 bcde | 15.68 ± 4.78 cde |
MCP × Day 21 | 23.03 ± 2.57 ghi | 23.03 ± 2.57 ghi | 12.52 ± 2.07 gh | 46.96 ± 6.00 a | 19.00 ± 3.89 ef | 16.25 ± 5.16 bcde |
MCP × Day 48 | 26.84 ± 3.29 cde | 26.84 ± 3.29 cde | 15.74 ± 2.56 efg | 31.62 ± 6.70 c | 21.34 ± 5.91 cdef | 21.62 ± 7.66 ab |
MCP × Day 88 | 29.69 ± 3.73 abc | 29.69 ± 3.73 abc | 24.90 ± 4.99 a | 25.70 ± 8.80 de | 23.56 ± 5.57 abcd | 24.71 ± 8.19 a |
MCP × Day 1 18 | 32.41 ± 3.08 a | 32.41 ± 3.08 a | 24.25 ± 6.13 ab | 27.58 ± 8.15 cd | 27.23 ± 6.26 a | 24.53 ± 7.60 a |
MCP × Day 146 | 30.33 ± 2.64 ab | 30.33 ± 2.64 ab | 23.00 ± 5.11 abc | 18.21 ± 5.71 fg | 25.66 ± 3.63 ab | 19.39 ± 7.04 abc |
MCP+Melaio × Day 21 | 21.98 ± 1.83 hi | 21.98 ± 1.83 hi | 12.56 ± 1.66 gh | 40.27 ± 3.36 b | 19.67 ± 1.96 def | 11.23 ± 2.79 efg |
MCP+Melaio × Day 48 | 23.42 ± 2.45 fgh | 23.42 ± 2.45 fgh | 11.47 ± 2.72 h | 20.91 ± 5.00 ef | 21.18 ± 2.89 def | 10.12 ± 3.89 fg |
MCP+Melaio × Day 88 | 26.46 ± 3.95 def | 26.46 ± 3.95 def | 16.27 ± 4.06 efg | 15.69 ± 4.04 fg | 23.57 ± 3.85 abcd | 13.87 ± 3.75 defg |
MCP+Melaio × Day 118 | 28.74 ± 2.94 bcd | 28.74 ± 2.94 bcd | 18.26 ± 3.35 de | 18.53 ± 3.74 fg | 25.29 ± 2.50 abc | 14.98 ± 3.29 cdef |
MCP+Melaio × Day 146 | 27.55 ± 2.52 bcde | 27.55 ± 2.52 bcde | 20.64 ± 3.87 bcd | 17.31 ± 3.08 fg | 25.57 ± 2.73 ab | 17.40 ± 4.22 bcd |
Significance | *** | *** | *** | *** | *** | *** |
Source of Variation | ||
---|---|---|
Treatment (TRT) | ||
Melaio | 2.55 ± 1.88 b | 5.18 ± 3.16 b |
MCP | 5.10 ± 4.84 a | 12.23 ± 7.74 a |
MCP+Melaio | 2.58 ± 1.99 b | 5.64 ± 3.25 b |
Significance | *** | *** |
Storage Time (ST) | ||
Day 21 | 2.84 ± 2.89 a | 5.87 ± 4.74 b |
Day 48 | 3.44 ± 3.04 a | 8.40 ± 6.01 ab |
Day 88 | 4.07 ± 4.10 a | 9.07 ± 6.80 a |
Day 118 | 3.74 ± 3.92 a | 7.96 ± 6.52 ab |
Day 146 | 2.97 ± 2.90 a | 7.15 ± 5.88 ab |
Significance | ns | ** |
TRT x ST | ||
Significance | ns | ns |
Storage Time | Variance (Melaio) | Variance (MCP) | Variance (MCP+Melaio) | p-Value | Significance |
---|---|---|---|---|---|
Day 21 | 2.973 | 15.440 | 5.353 | 0.116 | ns |
Day 48 | 2.768 | 14.708 | 4.239 | 0.001 | ** |
Day 88 | 3.765 | 37.973 | 3.624 | 0.001 | *** |
Day 118 | 4.854 | 35.276 | 3.848 | 0.301 | ns |
Day 146 | 3.337 | 16.018 | 2.066 | 0.001 | ** |
Storage Time | Variance (Melaio) | Variance (MCP) | Variance (MCP+Melaio) | p-Value | Significance |
---|---|---|---|---|---|
Day 21 | 7.051 | 39.995 | 8.469 | 0.063 | ns |
Day 48 | 11.783 | 41.641 | 14.483 | 0.011 | * |
Day 88 | 9.619 | 56.949 | 6.243 | 0.000 | *** |
Day 118 | 10.175 | 82.742 | 12.144 | 0.012 | * |
Day 146 | 11.638 | 61.996 | 11.181 | 0.008 | ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Corrado, G.; Mataffo, A.; Scognamiglio, P.; Molinaro, C.; Teobaldelli, M.; Basile, B. Dynamics of Quality Traits During Cold Storage in ‘Annurca’ Apples: Impact of 1-MCP and the Traditional Melaio Reddening Process. Horticulturae 2025, 11, 1247. https://doi.org/10.3390/horticulturae11101247
Corrado G, Mataffo A, Scognamiglio P, Molinaro C, Teobaldelli M, Basile B. Dynamics of Quality Traits During Cold Storage in ‘Annurca’ Apples: Impact of 1-MCP and the Traditional Melaio Reddening Process. Horticulturae. 2025; 11(10):1247. https://doi.org/10.3390/horticulturae11101247
Chicago/Turabian StyleCorrado, Giandomenico, Alessandro Mataffo, Pasquale Scognamiglio, Carlo Molinaro, Maurizio Teobaldelli, and Boris Basile. 2025. "Dynamics of Quality Traits During Cold Storage in ‘Annurca’ Apples: Impact of 1-MCP and the Traditional Melaio Reddening Process" Horticulturae 11, no. 10: 1247. https://doi.org/10.3390/horticulturae11101247
APA StyleCorrado, G., Mataffo, A., Scognamiglio, P., Molinaro, C., Teobaldelli, M., & Basile, B. (2025). Dynamics of Quality Traits During Cold Storage in ‘Annurca’ Apples: Impact of 1-MCP and the Traditional Melaio Reddening Process. Horticulturae, 11(10), 1247. https://doi.org/10.3390/horticulturae11101247