Advances in Biostimulant Applications for Grapevine (Vitis vinifera L.): Physiological, Agronomic, and Quality Impacts
Abstract
1. Introduction
1.1. Role of Biostimulants in the Context of Climate Change
1.2. Objectives of the Review Article
2. Phenology of Vitis vinifera L. and the Effects of Climate Change
2.1. Key Phenological Stages and Hormonal Regulation
2.2. Effect of Environmental Variables on Grapevine Phenology
2.3. Phenological Alterations and Fruit Quality Under Abiotic Stress
3. Effect of Salinity and Related Abiotic Stress on Grapevine Physiology and Metabolism
Gene/Family | Stress Type | Type of Response | Signaling/Hormonal Mediator | Response in Grapevine | References |
---|---|---|---|---|---|
SOS1, SOS2, SOS3, NHX1, HKT1;5 | Salinity, drought | Ion transport, Na+/K+ homeostasis | ABA, Ca2+ | Na+ exclusion, maintenance of photosynthesis, salt tolerance | [45] |
VvKCS11 | Salinity | Suberin barrier, ion transport, osmotic adjustment | ABA | ↓ Na+ entry, ↑ proline, ↓ MDA, more tolerant roots | [46] |
VvWRKY28 | Cold, salinity | Antioxidant, osmolytes, ABA signaling | ABA, ROS | ↑ SOD, CAT, POD; ↑ proline; ↓ MDA; improved tolerance to cold and salinity | [48] |
VvAAAP23, VvAAAP46 | Salinity, drought | Amino acid transport, osmotic adjustment | ABA, MeJA, SA | Maintain proline and osmolyte flux, support roots and fruits | [47] |
VvSNARE2, VvSNARE15, VvSNARE37/44/46 | Salinity, cold | Vesicular trafficking, osmotic and antioxidant homeostasis | ABA, MeJA, SA | Cellular defense, stomatal closure, tolerance to NaCl and low temperatures | [60] |
HSF3, NAC31/35, bHLH14, AP2.47, MYB154/166, LOB29, Dof5 | Mild salinity | Metabolic adjustment (N, C, lignin, flavonoids) | ABA, JA | Maintain growth, balance N metabolism and antioxidants | [36] |
MYB36/148, AP2.118/76/140, GRAS24, LOB25 | Severe salinity | Metabolic adjustment, antioxidant, proteolysis | ABA | Growth arrest, prioritization of survival and defense | [36] |
VvLRX7 (LRR-Extensin) | Salinity | Cell wall, structural | ABA, auxin | Cell wall remodeling, ↑ germination and survival under NaCl | [52] |
VvLIM1–6 | Cold, salinity, drought | Cytoskeleton, lignification, phenolic metabolism | ABA, auxin, MeJA, GA, SA | Bud and inflorescence differentiation; lignification under stress | [53] |
VviGATA5a, 21, 24a/d | Cold, drought, salinity | Antioxidant, osmotic adjustment, photosynthesis | ABA, auxin, MeJA, SA, GA | Stomatal closure, senescence regulation, berry ripening | [55] |
VvFRS6, VvFRS7, VvFRS12 | Salinity, light, cold | Photomorphogenesis, antioxidant, circadian clock | ABA, MeJA, ethylene | Chlorophyll regulation, photoperiod, and light defense | [38] |
VvNRL4, VvNRL6 | Blue/red light | Auxin transport, phototropism | Auxin, ABA | Leaf orientation, light adaptation | [54] |
VvUFD1a/VvUFD1c | Salinity, radiation, ripening | ERAD (protein degradation), antioxidant | ABA, SA | Ripening regulation, removal of misfolded proteins, defense | [58] |
VvNIP2;1, VvArsb | Salinity (with Si) | Nutrient transport, antioxidant | ABA | ↑ Si uptake, ↓ Na+, ↑ antioxidant enzymes, root vigor | [59] |
Anthocyanin genes (CHS2, F3H, DFR, ANS, UFGT, AOMT) + TFs (VvbHLH137, VvMYB24, VvMYBA1, VvHY5) | Light stress, ripening | Metabolic adjustment (phenylpropanoids, flavonoids) | ABA, auxin, light (HY5) | ↑ Anthocyanin accumulation, berry coloration, fruit quality | [56] |
4. Effect of Abiotic Stress on Berry and Wine Quality
5. Agricultural Biostimulation in Grapevine
6. Application of Agricultural Biostimulants in Grapevine Under Different Abiotic Stress Conditions
6.1. Water Stress
6.2. Salt Stress
6.3. Thermal Stress
7. Application of Biostimulants and Their Effect on Grapevine Fruit Quality
7.1. Seaweed Extracts and Multicomponent Formulations
7.2. Osmoprotectants and Primary Regulators
7.3. Humic Substances, Boron, and Silicon Combinations
7.4. Salicylic Acid and Amino Acids
7.5. Biopolymers and Alginates
7.6. Organic-Mineral Amendments
7.7. Postharvest Biostimulation
7.8. Effects of Biostimulants on Yield and Vegetative Performance
7.9. Relationship Between Biochemical Modulation by Biostimulants and Wine Organoleptic Quality
8. Practical Considerations
9. Conclusions and Perspectives
- -
- Conducting multi-year and multi-site trials to ensure consistency across vintages, terroirs, and varieties.
- -
- Performing mechanistic studies in local and underrepresented cultivars, using transcriptomic, metabolomic, and phenomic approaches to deepen our understanding of the molecular basis of resilience.
- -
- Carrying out economic and enological assessments, including cost–benefit analyses and evaluating compatibility with winemaking practices, to encourage adoption by producers and wineries.
- -
- Developing innovative formulations such as nanostructured carriers, controlled-release systems, and synergistic or microbial biostimulant consortia specifically tailored for viticulture [121].
- -
- Integrating digital agriculture and precision tools, including remote sensing, smart spraying, and data-driven monitoring, to optimize biostimulant timing and dosage according to real-time plant and environmental conditions [122].
- -
- Incorporating these advances into climate-smart viticulture strategies by aligning biostimulant usage with irrigation management, canopy regulation, and other sustainable practices.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bernáth, S.; Paulen, O.; Šiška, B.; Kusá, Z.; Tóth, F. Influence of climate warming on grapevine (Vitis vinifera L.) phenology in conditions of central europe (Slovakia). Plants 2021, 10, 1020. [Google Scholar] [CrossRef]
- Dinu, D.G.; Ricciardi, V.; Demarco, C.; Zingarofalo, G.; De Lorenzis, G.; Buccolieri, R.; Cola, G.; Rustioni, L. Climate change impacts on plant phenology: Grapevine (Vitis vinifera) bud break in wintertime in Southern Italy. Foods 2021, 10, 2769. [Google Scholar] [CrossRef]
- Arias, L.A.; Berli, F.; Fontana, A.; Bottini, R.; Piccoli, P. Climate Change Effects on Grapevine Physiology and Biochemistry: Benefits and Challenges of High Altitude as an Adaptation Strategy. Front. Plant Sci. 2022, 13, 835425. [Google Scholar] [CrossRef]
- Venios, X.; Banilas, G.; Beris, E.; Biniari, K.; Korkas, E. Heat Stress Tolerance and Photosynthetic Responses to Transient Light Intensities of Greek Grapevine Cultivars. Agronomy 2025, 15, 2344. [Google Scholar] [CrossRef]
- Castillo, N.; Cavazos, T.; Pavia, E.G. Impact of climate change in Mexican winegrape regions. Int. J. Climatol. 2023, 43, 6621–6642. [Google Scholar] [CrossRef]
- Hernández García, M.; Garza-Lagler, M.C.; Cavazos, T.; Espejel, I. Impacts of Climate Change in Baja California Winegrape Yield. Climate 2024, 12, 14. [Google Scholar] [CrossRef]
- Valenzuela Solano, C.; Ariel Ruiz Corral, J.; Ramírez Ojeda, G.; Hernández Martínez, R. Efectos del cambio climático sobre el potencial vitícola de Baja California, México. Rev. Mex. Cienc. Agric. 2014, 10, 2047–2059. [Google Scholar]
- Balogh, J.M.; Maró, Z.M. Impacts of climate change on the global wine sector: The case of cool-climate countries. Amfiteatru Econ. 2025, 27, 571–586. [Google Scholar] [CrossRef]
- Enjolras, G.; Viviani, J.L. The Impact of Climate Change on the Income of Wine Producers in the Bordeaux Region. Bus. Strategy Environ. 2025, 34, 4337–4353. [Google Scholar] [CrossRef]
- Fischer, N.; Efferth, T. The impact of “omics” technologies for grapevine (Vitis vinifera) research. J. Berry Res. 2020, 11, 567–581. [Google Scholar] [CrossRef]
- Frioni, T.; Pirez, F.J.; Diti, I.; Ronney, L.; Poni, S.; Gatti, M. Post-budbreak pruning changes intra-spur phenology dynamics, vine productivity and berry ripening parameters in Vitis vinifera L. cv. ‘Pinot Noir.’ Sci. Hortic. 2019, 256, 108584. [Google Scholar] [CrossRef]
- Matus, M.S.; Rodríguez, J.G.; Ocvirk, M.M. Raleo de Racimos en Vitis vinifera cv. Malbec. Efecto Sobre los Componentes del Rendimiento y la Composición Polifenólica de las Bayas. Rev. Fac. Cienc. Agrar. 2006, 38, 105–112. Available online: https://www.redalyc.org/pdf/3828/382838552011.pdf (accessed on 10 September 2025).
- Monteiro, E.; Gonçalves, B.; Cortez, I.; Castro, I. The Role of Biostimulants as Alleviators of Biotic and Abiotic Stresses in Grapevine: A Review. Plants 2022, 11, 396. [Google Scholar] [CrossRef]
- Petoumenou, D.G.; Liava, V. Sustainable Foliar Applications to Improve Grapevine Responses to Drought, High Temperatures, and Salinity: Impacts on Physiology, Yields, and Berry Quality. Plants 2025, 14, 2157. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Yang, M.; Martinez-Luscher, J.; Hilbert-Masson, G.; Gomès, E.; Pascual, I.; Fan, P.; Kong, J.; Liang, Z.; Xu, Z.; et al. Effects of elevated temperature and shaded UV-B radiation exclusion on berry biochemical composition in four grape (Vitis vinifera L.) cultivars with distinct anthocyanin profiles. Food Res. Int. 2025, 218, 116823. [Google Scholar] [CrossRef] [PubMed]
- Jindo, K.; Goron, T.L.; Pizarro-Tobías, P.; Sánchez-Monedero, M.Á.; Audette, Y.; Deolu-Ajayi, A.O.; van der Werf, A.; Goitom Teklu, M.; Shenker, M.; Pombo Sudré, C.; et al. Application of biostimulant products and biological control agents in sustainable viticulture: A review. Front. Plant Sci. 2022, 13, 932311. [Google Scholar] [CrossRef] [PubMed]
- Khder, O.M.M.; El-Ashry, R.M.; El-Deeb, A.M.A.; Bouqellah, N.A.; Ashkan, M.F.; Dablool, A.S.; Thagfan, F.A.; Algopishi, U.B.; Alshammari, N.M.; Al-Gheffari, H.K.; et al. The combination of composted animal manure and plant growth-promoting rhizobacteria is a sustainable biofertilizer and bionematicide for grapevine (Vitis vinifera L.) cultivars. Eur. J. Plant Pathol. 2025, 172, 219–239. [Google Scholar] [CrossRef]
- Maffia, A.; Oliva, M.; Marra, F.; Mallamaci, C.; Nardi, S.; Muscolo, A. Humic Substances: Bridging Ecology and Agriculture for a Greener Future. Agronomy 2025, 15, 410. [Google Scholar] [CrossRef]
- Samuels, L.J.; Setati, M.E.; Blancquaert, E.H. Towards a Better Understanding of the Potential Benefits of Seaweed Based Biostimulants in Vitis vinifera L. Cultivars. Plants 2022, 11, 348. [Google Scholar] [CrossRef]
- Soares, B.; Barbosa, C.; Oliveira, M.J. Chitosan application towards the improvement of grapevine performance and wine quality. Cienc. Tec. Vitivinic. 2023, 38, 43–59. [Google Scholar] [CrossRef]
- Alfonso, E.; Andlauer, W.; Brück, W.M.; Rienth, M. Whey protein hydrolysates enhance grapevine resilience to abiotic and biotic stresses. Front. Plant Sci. 2025, 16, 1521275. [Google Scholar] [CrossRef]
- Boselli, M.; Bahouaoui, M.A.; Lachhab, N.; Sanzani, S.M.; Ferrara, G.; Ippolito, A. Protein hydrolysates effects on grapevine (Vitis vinifera L., cv. Corvina) performance and water stress tolerance. Sci. Hortic. 2019, 258, 108784. [Google Scholar] [CrossRef]
- Meggio, F.; Trevisan, S.; Manoli, A.; Ruperti, B.; Quaggiotti, S. Systematic investigation of the effects of a novel protein hydrolysate on the growth, physiological parameters, fruit development and yield of grapevine (Vitis vinifera L., cv. sauvignon blanc) under water stress conditions. Agronomy 2020, 10, 1785. [Google Scholar] [CrossRef]
- Monteiro, E.; De Lorenzis, G.; Ricciardi, V.; Baltazar, M.; Pereira, S.; Correia, S.; Ferreira, H.; Alves, F.; Cortez, I.; Gonçalves, B.; et al. Exploring Seaweed and Glycine Betaine Biostimulants for Enhanced Phenolic Content, Antioxidant Properties, and Gene Expression of Vitis vinifera cv. “Touriga Franca” Berries. Int. J. Mol. Sci. 2024, 25, 5335. [Google Scholar] [CrossRef] [PubMed]
- Aazami, M.A.; Maleki, M.; Rasouli, F.; Gohari, G. Protective effects of chitosan based salicylic acid nanocomposite (CS-SA NCs) in grape (Vitis vinifera cv. ‘Sultana’) under salinity stress. Sci. Rep. 2023, 13, 883. [Google Scholar] [CrossRef] [PubMed]
- Gallucci, N.; De Cristofaro, I.; Krauss, I.R.; D’Errico, G.; Paduano, L. Eco-sustainable delivery strategies to drive agriculture forward. In Current Opinion in Colloid and Interface Science. Curr. Opin. Colloid Interface Sci. 2025, 77, 101917. [Google Scholar] [CrossRef]
- Prokisch, J.; Ferroudj, A.; Labidi, S.; El-Ramady, H.; Brevik, E.C. Biological Nano-Agrochemicals for Crop Production as an Emerging Way to Address Heat and Associated Stresses. Nanomaterials 2024, 14, 1253. [Google Scholar] [CrossRef]
- Khoulati, A.; Ouahhoud, S.; Taibi, M.; Ezrari, S.; Mamri, S.; Merah, O.; Hakkou, A.; Addi, M.; Maleb, A.; Saalaoui, E. Harnessing biostimulants for sustainable agriculture: Innovations, challenges, and future prospects. Discov. Agric. 2025, 3, 56. [Google Scholar] [CrossRef]
- Keller, M. The Science of Grapevines, 3rd ed.; Maragioglio, N., Ed.; Academic Press Elsevier: London, UK, 2020. [Google Scholar]
- Conde, C.; Silva, P.; Fontes, N.; Dias, A.C.P.; Tavares, R.M.; Sousa, M.J.; Agasse, A.; Delrot, S.; Gerós, H. Biochemical Changes throughout Grape Berry Development and Fruit and Wine Quality. Food 2007, 1, 1–22. [Google Scholar]
- Dominguez, D.L.E.; Cirrincione, M.A.; Deis, L.; Martínez, L.E. Impacts of Climate Change-Induced Temperature Rise on Phenology, Physiology, and Yield in Three Red Grape Cultivars: Malbec, Bonarda, and Syrah. Plants 2024, 13, 3219. [Google Scholar] [CrossRef]
- Merrill, N.K.; García de Cortázar-Atauri, I.; Parker, A.K.; Walker, M.A.; Wolkovich, E.M. Exploring Grapevine Phenology and High Temperatures Response Under Controlled Conditions. Front. Environ. Sci. 2020, 8, 516527. [Google Scholar] [CrossRef]
- Teker, T. Effects of temperature rise on grapevine phenology (Vitis vinifera L.): Impacts on early flowering and harvest in the 2024 Growing Season. Int. J. Agric. Environ. Food Sci. 2024, 8, 970–979. [Google Scholar] [CrossRef]
- Venios, X.; Korkas, E.; Nisiotou, A.; Banilas, G. Grapevine responses to heat stress and global warming. Plants 2020, 9, 1754. [Google Scholar] [CrossRef] [PubMed]
- Hugalde, I.; Paolinelli, M.; Agüero, C.B.; Riaz, S.; Talquenca, S.G.; Walker, M.A.; Vila, H. Prioritization of vigor QTL-associated genes for future genome-directed Vitis breeding. Rev. Fac. Cienc. Agrar. UNCuyo 2021, 53, 27–35. [Google Scholar] [CrossRef]
- Daldoul, S.; Hanzouli, F.; Boubakri, H.; Nick, P.; Mliki, A.; Gargouri, M. Deciphering the regulatory networks involved in mild and severe salt stress responses in the roots of wild grapevine Vitis vinifera spp. sylvestris. Protoplasma 2024, 261, 447–462. [Google Scholar] [CrossRef] [PubMed]
- Nazir, N.; Iqbal, A.; Hussain, H.; Ali, F.; Almaary, K.S.; Aktar, M.N.; Sajid, M.; Bourhia, M.; Salamatullah, A.M. In silico genome-wide analysis of the growth-regulating factor gene family and their expression profiling in Vitis vinifera under biotic stress. Cell Biochem. Biophys. 2024, 83, 1207–1221. [Google Scholar] [CrossRef]
- Yao, H.; Zheng, Y.; Sun, Y.; Liu, Y. Genome-Wide Identification and Expression Analysis of the FAR1-RELATED SEQUENCE (FRS) Gene Family in Grape (Vitis vinifera L.). Int. J. Mol. Sci. 2025, 26, 4675. [Google Scholar] [CrossRef]
- Hasanuzzaman, M.; Nahar, K.; Alam, M.M.; Roychowdhury, R.; Fujita, M. Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants. Int. J. Mol. Sci. 2013, 14, 9643–9684. [Google Scholar] [CrossRef]
- Oliveira, H.; Costa, A.; Santos, C. NaCl and Phaeomoniella chlamydospora affect differently starch and sucrose metabolism in grapevines. Acta Sci. Agron. 2013, 35, 153–159. [Google Scholar] [CrossRef]
- Franco-Bañuelos, A.; Contreras-Martínez, C.S.; Carranza-Téllez, J.; Carranza-Concha, J. Total Phenolic Content and Antioxidant Capacity of Non-Native Wine Grapes Grown in Zacatecas, Mexico. Agrociencia 2017, 51, 661–671. Available online: https://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1405-31952017000600661 (accessed on 10 September 2025).
- Errichiello, F.; Forino, M.; Picariello, L.; Moio, L.; Gambuti, A. Analysis of Polyphenols During Alcoholic Fermentation of Red Grape Aglianico (Vitis vinifera L.): Potential Winemaking Optimization and Pomace Valorization. Molecules 2024, 29, 5962. [Google Scholar] [CrossRef]
- Vila, H.; Paladino, S.; Nazrala, J.; Galiotti, H. Desarrollo de Estándares de Calidad para Uvas Vitis vinifera L. cv. Malbec y Syrah. Rev. Fac. Cienc. Agrar. 2009, 41, 139–152. Available online: https://bdigital.uncu.edu.ar/objetos_digitales/3190/t41-2-11-vila.pdf (accessed on 10 September 2025).
- Teixeira, A.; Eiras-Dias, J.; Castellarin, S.D.; Gerós, H. Berry phenolics of grapevine under challenging environments. Int. J. Mol. Sci. 2013, 14, 18711–18739. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.K.; Pal, P.; Sahoo, U.K.; Sharma, L.; Pandey, B.; Prakash, A.; Sarangi, P.K.; Prus, P.; Pașcalău, R.; Imbrea, F. Enhancing Crop Resilience: The Role of Plant Genetics, Transcription Factors, and Next-Generation Sequencing in Addressing Salt Stress. Int. J. Mol. Sci. 2024, 25, 12537. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Yang, X.; Dong, S.; Ge, Y.; Zhang, X.; Zhao, X.; Han, N. Overexpression of β-Ketoacyl-CoA Synthase From Vitis vinifera L. Improves Salt Tolerance in Arabidopsis thaliana. Front. Plant Sci. 2020, 11, 564385. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; He, N.; Huang, B.; Chen, C.; Zhang, Y.; Yang, X.; Li, J.; Dong, Z. Genome-Wide Identification and Expression Analysis of Amino Acid/Auxin Permease (AAAP) Genes in Grapes (Vitis vinifera L.) Under Abiotic Stress and During Development. Plants 2025, 14, 128. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Liang, X.; Cai, W.; Wang, H.; Liu, X.; Cheng, L.; Song, P.; Luo, G.; Han, D. Isolation and Functional Analysis of VvWRKY28, a Vitis vinifera WRKY Transcription Factor Gene, with Functions in Tolerance to Cold and Salt Stress in Transgenic Arabidopsis thaliana. Int. J. Mol. Sci. 2022, 23, 13418. [Google Scholar] [CrossRef]
- Ferrandino, A.; Lovisolo, C. Abiotic stress effects on grapevine (Vitis vinifera L.): Focus on abscisic acid-mediated consequences on secondary metabolism and berry quality. Environ. Exp. Bot. 2014, 103, 138–147. [Google Scholar] [CrossRef]
- Han, Y.; Li, X. Current progress in research focused on salt tolerance in Vitis vinifera L. Front. Plant Sci. 2024, 15, 1353436. [Google Scholar] [CrossRef]
- Han, K.; Ji, W.; Luo, Y.; Zhang, X.; Abe-Kanoh, N.; Ma, X. Transcriptome Analysis Reveals Flower Development and the Role of Hormones in Three Flower Types of Grapevine. Plant Mol. Biol. Rep. 2024, 42, 308–325. [Google Scholar] [CrossRef]
- Liu, K.; Li, X.; Wang, C.; Han, Y.; Zhu, Z.; Li, B. Genome-wide identification and characterization of the LRX gene family in grapevine (Vitis vinifera L.) and functional characterization of VvLRX7 in plant salt response. BMC Genom. 2024, 25, 1155. [Google Scholar] [CrossRef]
- Sarkar, M.A.R.; Sarkar, S.; Islam, M.S.U.; Zohra, F.T.; Rahman, S.M. Genome-Wide Identification and Characterization of LIM Gene Family in Grapevine (Vitis vinifera L.) and Their Expression Analysis at Early Bud Developmental Stages. Plant Mol. Biol. Rep. 2024, 42, 246–264. [Google Scholar] [CrossRef]
- Li, S.; Gao, H.; Li, X.; Liu, Y.; Zhao, H.; Qiu, N.; Zhang, H. Genome-Wide Analysis of NPH3/RPT2-like (NRL) Genes in Grape (Vitis vinifera L.): Their Identification, Characterization, and Different Responses to Light Quality. Horticulturae 2025, 11, 274. [Google Scholar] [CrossRef]
- Zhang, X.; Ma, J.; Yang, S.; Yao, W.; Zhang, N.; Hao, X.; Xu, W. Analysis of GATA transcription factors and their expression patterns under abiotic stress in grapevine (Vitis vinifera L.). BMC Plant Biol. 2023, 23, 611. [Google Scholar] [CrossRef]
- Niu, Z.; Zhang, Z.; Zhao, Y.; Xuan, L.; Chen, Z.; Yang, L. Transcription Factor VvbHLH137 Positively Regulates Anthocyanin Accumulation in Grape (Vitis vinifera). Plants 2025, 14, 871. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Chen, C.; Lin, H.; Jiang, C.; Zhao, Y.; Guo, Y. The VvHY5-VvMYB24-VvMYBA1 transcription factor cascade regulates the biosynthesis of anthocyanin in grape. Hortic. Plant J. 2025, 11, 1066–1077. [Google Scholar] [CrossRef]
- Wei, L.; Cheng, J.; Xiang, J.; Wu, J. Genome-wide identification and characterization of grapevine UFD1 genes during berry development and salt stress response. J. Plant Biochem. Biotechnol. 2022, 31, 592–601. [Google Scholar] [CrossRef]
- Heidarpour, S.; Abbaspour, N.; Mohammadkhani, N.; Rahmani, F. Understanding the Role of Silicon in Alleviating Salinity Stress in Grapevine: Insights into Physiological and Molecular Mechanisms. J. Plant Growth Regul. 2025, 44, 3093–3109. [Google Scholar] [CrossRef]
- Zeng, B.Z.; Zhou, X.T.; Gou, H.M.; Che, L.L.; Lu, S.X.; Yang, J.B.; Cheng, Y.J.; Liang, G.P.; Mao, J. Molecular Evolution of SNAREs in Vitis vinifera and Expression Analysis under Phytohormones and Abiotic Stress. Int. J. Mol. Sci. 2024, 25, 5984. [Google Scholar] [CrossRef]
- Xue, X.; Hou, C.; Yang, P.; Hu, H.; Li, L.; Li, J.; Liu, H.; Zhou, Y.; Ning, L.; Li, D.; et al. Regulation of proanthocyanidin accumulation by VvMYB1 in response to vine water constraint in “Marselan” grape berries. Sci. Hortic. 2025, 347, 114184. [Google Scholar] [CrossRef]
- Antoniou, C.; Panagi, E.; Georgiadou, E.C.; Gohari, G.; Panahirad, S.; Theodorou, N.; Manganaris, G.A.; Koundouras, S.; Fotopoulos, V. The effect of recurring drought conditions on anthocyanins biosynthesis of ‘Syrah’ grapes: A physiological, biochemical, and molecular approach. S. Afr. J. Bot. 2025, 182, 226–235. [Google Scholar] [CrossRef]
- Berhe, D.T. Post-Veraison Water Stress and Pruning Level on Merlot Grapevine (Vitis vinifera L.): Effects on Berry Development and Composition. Int. J. Agron. 2022, 2022, 7307078. [Google Scholar] [CrossRef]
- Savoi, S.; Wong, D.C.J.; Arapitsas, P.; Miculan, M.; Bucchetti, B.; Peterlunger, E.; Fait, A.; Mattivi, F.; Castellarin, S.D. Transcriptome and metabolite profiling reveals that prolonged drought modulates the phenylpropanoid and terpenoid pathway in white grapes (Vitis vinifera L.). BMC Plant Biol. 2016, 16, 67. [Google Scholar] [CrossRef]
- Mirás-Avalos, J.M.; Intrigliolo, D.S. Grape composition under abiotic constrains: Water stress and salinity. Front. Plant Sci. 2017, 8, 851. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, C.; Lu, X.; Yan, H.; Nai, G.; Gong, M.; Lai, Y.; Pu, Z.; Wei, L.; Ma, S.; et al. Impact of exogenous melatonin foliar application on physiology and fruit quality of wine grapes (Vitis vinifera) under salt stress. Funct. Plant Biol. 2024, 51, FP24019. [Google Scholar] [CrossRef] [PubMed]
- Hewitt, S.; Hernández-Montes, E.; Dhingra, A.; Keller, M. Impact of heat stress, water stress, and their combined effects on the metabolism and transcriptome of grape berries. Sci. Rep. 2023, 13, 9907. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Li, S.; García-Caparros, P.; Wang, L.; Liang, Z. Grapevine adaptation to cold and heat stress. J. Exp. Bot. 2025, 76, 3038–3058. [Google Scholar] [CrossRef] [PubMed]
- Šebela, D.; Turóczy, Z.; Olejníčková, J.; Kumšta, M.; Sotolář, R. Effect of Ambient Sunlight Intensity on the Temporal Phenolic Profiles of Vitis vinifera L. cv. Chardonnay During the Ripening Season-A Field Study. S. Afr. J. Enol. Vitic. 2017, 38, 94–102. [Google Scholar] [CrossRef]
- Maya-Meraz, I.O.; Ornelas-Paz, J.d.J.; Pérez-Martínez, J.D.; Gardea-Béjar, A.A.; Rios-Velasco, C.; Ruiz-Cruz, S.; Ornelas-Paz, J.; Pérez-Leal, R.; Virgen-Ortiz, J.J. Foliar Application of CaCO3-Rich Industrial Residues on ‘Shiraz’ Vines Improves the Composition of Phenolic Compounds in Grapes and Aged Wine. Foods 2023, 12, 1566. [Google Scholar] [CrossRef]
- Martínez-Pérez, M.E.; Ruíz-Anchondo, T.d.J.R.; Cuéllar, J.L.J.; Quezada, R.Á.P.; Hernández-Ochoa, L.R. Brassinosteroids: An alternative to vine cultivation to enhance drought tolerance, in semiarid land at Chihuahua, Mexico. Not. Bot. Horti Agrobot. Cluj-Napoca 2024, 52, 13555. [Google Scholar] [CrossRef]
- Ghoneem, G.M.; Khalil, R.; Yusuf, M.; Allam, A.; Gamal, A.; Galal, H. Brassinosteroids enhance the tolerance, production, and fruit quality of covered table grape vines. N. Z. J. Crop Hortic. Sci. 2024, 53, 1693–1712. [Google Scholar] [CrossRef]
- Plant Biostimulants-EBIC. Available online: https://biostimulants.eu/plant-biostimulants/ (accessed on 10 September 2025).
- du Jardin, P. Plant biostimulants: Definition, concept, main categories and regulation. In Scientia Horticulturae. Sci. Hortic. 2015, 196, 3–14. [Google Scholar] [CrossRef]
- Rouphael, Y.; Colla, G. Editorial: Biostimulants in Agriculture. In Frontiers in Plant Science. Front. Plant Sci. 2020, 11, 40. [Google Scholar] [CrossRef]
- Santos, F.; Melkani, S.; Oliveira-Paiva, C.; Bini, D.; Pavuluri, K.; Gatiboni, L.; Mahmud, A.; Torres, M.; McLamore, E.; Bhadha, J.H. Biofertilizer use in the United States: Definition, regulation, and prospects. In Applied Microbiology and Biotechnology; Springer: Berlin/Heidelberg, Germany, 2024; Volume 108. [Google Scholar] [CrossRef]
- Oficial, D.; Sección, P.; Oficial, N. Martes 11 de Abril de 2000 SECRETARIA DE AGRICULTURA, GANADERIA Y DESARROLLO RURAL. Available online: https://www.dof.gob.mx/normasOficiales/4579/SAGARPA/SAGARPA.htm (accessed on 10 September 2025).
- Ganugi, P.; Caffi, T.; Gabrielli, M.; Secomandi, E.; Fiorini, A.; Zhang, L.; Bellotti, G.; Puglisi, E.; Fittipaldi, M.B.; Asinari, F.; et al. A 3-year application of different mycorrhiza-based plant biostimulants distinctively modulates photosynthetic performance, leaf metabolism, and fruit quality in grapes (Vitis vinifera L.). Front. Plant Sci. 2023, 14, 1236199. [Google Scholar] [CrossRef]
- Ye, Q.; Wang, H.; Li, H. Arbuscular Mycorrhizal Fungi Enhance Drought Stress Tolerance by Regulating Osmotic Balance, the Antioxidant System, and the Expression of Drought-Responsive Genes in Vitis vinifera L. Aust. J. Grape Wine Res. 2023, 2023, 7208341. [Google Scholar] [CrossRef]
- Papantzikos, V.; Papanikou, A.; Stournaras, V.; Mpeza, P.; Mantzoukas, S.; Patakioutas, G. Biostimulant Effect of Commercial Rhizobacteria Formulation on the Growth of Vitis vinifera L.: Case of Optimal and Water Deficit Conditions. Appl. Biosci. 2024, 3, 151–164. [Google Scholar] [CrossRef]
- Zapata-García, S.; Temnani, A.; Berríos, P.; Marín-Durán, L.; Espinosa, P.J.; Monllor, C.; Pérez-Pastor, A. Combined Effects of Deficit Irrigation and Biostimulation on Water Productivity in Table Grapes. Plants 2024, 13, 3424. [Google Scholar] [CrossRef] [PubMed]
- Frioni, T.; VanderWeide, J.; Palliotti, A.; Tombesi, S.; Poni, S.; Sabbatini, P. Foliar vs. soil application of Ascophyllum nodosum extracts to improve grapevine water stress tolerance. Sci. Hortic. 2021, 277, 109807. [Google Scholar] [CrossRef]
- Del Zozzo, F.; Barmpa, D.M.; Canavera, G.; Giordano, L.; Palliotti, A.; Battista, F.; Poni, S.; Frioni, T. Effects of foliar applications of a proline-rich specific yeast derivative on physiological and productive performances of field-grown grapevines (Vitis vinifera L.). Sci. Hortic. 2023, 326, 112759. [Google Scholar] [CrossRef]
- Mustafa, S.A.; Al-Atrushy, S.M. Effect of tipping and foliar application of proline and botminn plus on vegetative growth and leaves minerals content of grapevine. Iraqi J. Agric. Sci. 2025, 56, 799–807. [Google Scholar] [CrossRef]
- Olavarrieta, C.E.; Sampedro, M.C.; Vallejo, A.; Štefelová, N.; Barrio, R.J.; De Diego, N. Biostimulants as an Alternative to Improve the Wine Quality from Vitis vinifera (cv. Tempranillo) in La Rioja. Plants 2022, 11, 1594. [Google Scholar] [CrossRef]
- Zeng, G.; Wan, Z.; Xie, R.; Lei, B.; Li, C.; Gao, F.; Zhang, Z.; Xi, Z. 24-epibrassinolide enhances drought tolerance in grapevine (Vitis vinifera L.) by regulating carbon and nitrogen metabolism. Plant Cell Rep. 2024, 43, 219. [Google Scholar] [CrossRef]
- Qin, L.; Kang, W.H.; Qi, Y.L.; Zhang, Z.W.; Wang, N. The influence of silicon application on growth and photosynthesis response of salt stressed grapevines (Vitis vinifera L.). Acta Physiol. Plant. 2016, 38, 68. [Google Scholar] [CrossRef]
- Gharbi, P.; Amiri, J.; Mahna, N.; Naseri, L.; Sadaghiani, M.H.R. Silicon-induced mitigation of salt stress in GF677 and GN15 rootstocks: Insights into physiological, biochemical, and molecular mechanisms. BMC Plant Biol. 2025, 25, 719. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, H.; Nai, G.; Ma, L.; Lu, X.; Yan, H.; Gong, M.; Li, Y.; Lai, Y.; Pu, Z.; et al. Nitrogen application regulates antioxidant capacity and flavonoid metabolism, especially quercetin, in grape seedlings under salt stress. J. Integr. Agric. 2024, 23, 4074–4092. [Google Scholar] [CrossRef]
- Yağcı, A. Shikonin-induced secondary metabolite modulation in grape berries (Vitis vinifera L. cv. ’Öküzgözü’) under salinity stress. BMC Plant Biol. 2025, 25, 763. [Google Scholar] [CrossRef] [PubMed]
- Shokri, G.; Amiri, J.; Barin, M. Spermidine mitigates salt stress in grapevine with alterations in physicochemical properties and nutrient composition. J. Plant Nutr. Soil Sci. 2024, 187, 516–532. [Google Scholar] [CrossRef]
- Panahirad, S.; Gohari, G.; Mahdavinia, G.; Jafari, H.; Kulak, M.; Fotopoulos, V.; Alcázar, R.; Dadpour, M. Foliar application of chitosan-putrescine nanoparticles (CTS-Put NPs) alleviates cadmium toxicity in grapevine (Vitis vinifera L.) cv. Sultana: Modulation of antioxidant and photosynthetic status. BMC Plant Biol. 2023, 23, 411. [Google Scholar] [CrossRef] [PubMed]
- Zahedi, S.M.; Abolhassani, M.; Hadian-Deljou, M.; Feyzi, H.; Akbari, A.; Rasouli, F.; Koçak, M.Z.; Kulak, M.; Gohari, G. Proline-functionalized graphene oxide nanoparticles (GO-Pro NPs): A new engineered nanoparticle to ameliorate salinity stress on grape (Vitis vinifera L. cv. Sultana). Plant Stress 2023, 7, 100128. [Google Scholar] [CrossRef]
- Silem, A.A.E.M.; Mohamed, S.H.F. Alleviation of soil and irrigation water salinity stress in early sweet grape (Vitis vinifera L.) seedlings through the application of selective inducers. Arch. Agric. Sci. J. 2025, 8, 29–41. [Google Scholar] [CrossRef]
- Jalili, I.; Ebadi, A.; Askari, M.A.; KalatehJari, S.; Aazami, M.A. Foliar application of putrescine, salicylic acid, and ascorbic acid mitigates frost stress damage in Vitis vinifera cv. ‘Giziluzum’. BMC Plant Biol. 2023, 23, 135. [Google Scholar] [CrossRef] [PubMed]
- Yssel, J.; Everaerts, V.; Van Hemelrijk, W.; Bylemans, D.; Setati, M.E.; Lievens, B.; Blancquaert, E.; Crauwels, S. Assessing the potential of seaweed extracts to improve vegetative, physiological and berry quality parameters in Vitis vinifera cv. Chardonnay under cool climatic conditions. PLoS ONE 2025, 20, e0331039. [Google Scholar] [CrossRef] [PubMed]
- Kose, B.; Uray, Y.; Kaya, O.; Turk, F.; Bayram, K.; Svyantek, A. Foliar applications improves grapevine plant cold hardiness. Sci. Hortic. 2024, 330, 113088. [Google Scholar] [CrossRef]
- Hajizadeh Sisakhti, S.; Dehdari, M.; Ebrahimi, M.A. Responses of some important physiological traits of regenerated plantlet grape (Vitis vinifera L.) genotypes to cold stress. Discov. Plants 2025, 2, 120. [Google Scholar] [CrossRef]
- Zarraonaindia, I.; Cretazzo, E.; Mena-Petite, A.; Díez-Navajas, A.M.; Pérez-López, U.; Lacuesta, M.; Pérez-Álvarez, E.P.; Puertas, B.; Fernandez-Diaz, C.; Bertazzon, N.; et al. Holistic understanding of the response of grapevines to foliar application of seaweed extracts. Front. Plant Sci. 2023, 14, 1119854. [Google Scholar] [CrossRef]
- Samuels, L.J.; Papageorgiou, A.E.; Setati, M.E.; Blancquaert, E.H. Effects of Ecklonia maxima seaweed extract on the fruit, wine—Quality and microbiota in Vitis vinifera L. cv. Cabernet Sauvignon. S. Afr. J. Bot. 2024, 172, 647–662. [Google Scholar] [CrossRef]
- Pessenti, I.L.; Ayub, R.A.; Filho, J.L.M.; Clasen, F.C.; Rombaldi, C.V.; Botelho, R.V. Influence of abscisic acid, Ascophyllum nodosum and Aloe vera on the phenolic composition and color of grape berry and wine of “Cabernet Sauvignon” variety. Cienc. Tec. Vitivinic. 2022, 37, 1–12. [Google Scholar] [CrossRef]
- Taskos, D.; Stamatiadis, S.; Yvin, J.C.; Jamois, F. Effects of an Ascophyllum nodosum (L.) Le Jol. extract on grapevine yield and berry composition of a Merlot vineyard. Sci. Hortic. 2019, 250, 27–32. [Google Scholar] [CrossRef]
- Salmerón-Bravo, S.A.; Zermeño-González, A.; Méndez-González, J.; Ramírez-Rodríguez, H.; Cadena-Zapata, M. Foliar Biofertilization with Sea Weeds (Algae (L.)) on a Vineyard in Relation to Iron Content, Photosynthesis and Yield. Agrociencia 2020, 54, 967–976. [Google Scholar] [CrossRef]
- Kara, Z.; Uğur, B.N.; Doğan, O. The effects of Ortho Silicon (Optysil) and Ascophyllum nodosum Based Sea-weed Extract (KelpGreen) Applications on the Quality of Table Grape cvs. Gök Üzüm and Müşküle. Selcuk J. Agric. Food Sci. 2022, 36, 482–492. [Google Scholar] [CrossRef]
- Garde-Cerdán, T.; Gutiérrez-Gamboa, G.; Ayestarán, B.; González-Lázaro, M.; Rubio-Bretón, P.; Pérez-Álvarez, E.P. Influence of seaweed foliar application to Tempranillo grapevines on grape and wine phenolic compounds over two vintages. Food Chem. 2021, 345, 128843. [Google Scholar] [CrossRef] [PubMed]
- Frioni, T.; Sabbatini, P.; Tombesi, S.; Norrie, J.; Poni, S.; Gatti, M.; Palliotti, A. Effects of a biostimulant derived from the brown seaweed Ascophyllum nodosum on ripening dynamics and fruit quality of grapevines. Sci. Hortic. 2018, 232, 97–106. [Google Scholar] [CrossRef]
- Monteiro, E.; Baltazar, M.; Pereira, S.; Correia, S.; Ferreira, H.; Alves, F.; Cortez, I.; Castro, I.; Gonçalves, B. Ascophyllum nodosum Extract and Glycine Betaine Preharvest Application in Grapevine: Enhancement of Berry Quality, Phytochemical Content and Antioxidant Properties. Antioxidants 2023, 12, 1835. [Google Scholar] [CrossRef] [PubMed]
- Kok, D. The Effect of Phenylalanine, Proline Amino Acid and Bunch Tip Reduction Applications on Berry Quality Parameters of ‘Red Globe’ Table Grape Variety (Vitis vinifera L.). Appl. Fruit Sci. 2024, 66, 1579–1587. [Google Scholar] [CrossRef]
- Peli, M.; Ambrosini, S.; Sorio, D.; Pasquarelli, F.; Zamboni, A.; Varanini, Z. The soil application of a plant-derived protein hydrolysate speeds up selectively the ripening-specific processes in table grape. Physiol. Plant. 2024, 177, e70033. [Google Scholar] [CrossRef]
- Popescu, G.C.; Popescu, M. Yield, berry quality and physiological response of grapevine to foliar humic acid application. Bragantia 2018, 77, 273–282. [Google Scholar] [CrossRef]
- Rasouli, M.; Bayanati, M.; Tavakoli, F. Improving Quantitative and Qualitative Traits of Grapes cv. ‘Fakhri’ of Iran with Foliar Application of Potassium Silicate and Humic Acid. J. Plant Physiol. 2024, 71, 86. [Google Scholar] [CrossRef]
- Bartkovský, M.; Semjon, B.; Regecová, I.; Baričičová, V.; Očenáš, P.; Šuľáková, L.; Marcinčák, S. The Effect of a Leaf Fertilization Method Using Humic Acids on the Minerality and Chemical Composition of Sauvignon Blanc Wine from the Slovak Wine Region. Fermentation 2024, 10, 651. [Google Scholar] [CrossRef]
- Malagoli, M.; Sut, S.; Kumar, G.; Dall’Acqua, S. Variations of elements, pigments, amino acids and secondary metabolites in Vitis vinifera (L.) cv. Garganega after 501 biodynamic treatment. Chem. Biol. Technol. Agric. 2022, 9, 36. [Google Scholar] [CrossRef]
- Zhu, X.; Yang, X.; Yang, L.; Fang, Y.; Jiang, Y.; Li, Y. Preharvest salicylic acid application improves the amino acid content and volatile profile in Vitis vinifera L. cv. Chardonnay during development. Plant Physiol. Biochem. 2023, 204, 108103. [Google Scholar] [CrossRef]
- Nazari, F.; Maleki, M.; Rasouli, M. Effect of Salicylic Acid on Changes in Superoxide Dismutase Enzyme Activity, Protein, Proline, and Some Photosynthetic Pigments in Grape (Vitis vinifera L.) Bidane Ghermez and Bidane Sefid Cultivars at Two Growth Stages. Erwerbs-Obstbau 2022, 64, 37–45. [Google Scholar] [CrossRef]
- Rashid, D.A.; Al-Atrushy, S.M.; Lecture, A. Effect of foliar application of amino acids, benzyl adenine, and nano NPK on pollen traits, and some characteristics of grape. Iraqi J. Agric. Sci. 2025, 56, 808–816. [Google Scholar] [CrossRef]
- Chen, H.; Zhang, L.; Yang, B.; Wang, M.; Ma, L.; Shi, J.; Zhang, Z.; Zeng, Q. Effects of foliar applications of γ-polyglutamic acid and alginic acid on the quality and antioxidant activity of Marselan grapes and wines. Food Chem. X 2024, 25, 102112. [Google Scholar] [CrossRef]
- Cataldo, E.; Fucile, M.; Manzi, D.; Masini, C.M.; Doni, S.; Mattii, G.B. Sustainable Soil Management: Effects of Clinoptilolite and Organic Compost Soil Application on Eco-Physiology, Quercitin, and Hydroxylated, Methoxylated Anthocyanins on Vitis vinifera. Plants 2023, 12, 708. [Google Scholar] [CrossRef]
- Wang, L.; Yang, M.; Dong, Y.; Reiter, R.J.; Xu, Y.; Lin, X.; Luo, Z.; Li, L. Melatonin confers enhanced polyamine metabolism and cell tolerance in Vitis vinifera against oxidative damage: Quantitative proteomic evidence. Postharvest Biol. Technol. 2022, 184, 111756. [Google Scholar] [CrossRef]
- Wang, X.F.; Dong, F.X.; Jiang, Y.S.; Wei, J.F.; Zhao, Q.F.; Ji, W. Exogenous melatonin and salicylic acid enhance postharvest quality and boost antioxidant capacity in Vitis vinifera cv. “Cuibao seedless” grape berries. Plant Physiol. Biochem. 2025, 223, 109850. [Google Scholar] [CrossRef] [PubMed]
- Magnabosco, P.; Masi, A.; Shukla, R.; Bansal, V.; Carletti, P. Advancing the impact of plant biostimulants to sustainable agriculture through nanotechnologies. Chem. Biol. Technol. Agric. 2023, 10, 117. [Google Scholar] [CrossRef]
- Ferro, M.V.; Catania, P. Technologies and Innovative Methods for Precision Viticulture: A Comprehensive Review. Horticulturae 2023, 9, 399. [Google Scholar] [CrossRef]
Grapevine Cultivar | Stress Type | Treatment and Application Method | Phenological Stage | Applications (n/Interval) | Response in Grapevine | References |
---|---|---|---|---|---|---|
Malvasia di Candia Aromatica | Water | Arbuscular mycorrhizae (Tricoveg®; soil, annual for 3 years) | Full production cycles | 3/yr | ↑ Anthocyanins, phenolic acids, and stilbenes in fruit | [78] |
Malvasia di Candia Aromatica | Water | Arbuscular mycorrhizae (MycoUp®; soil) | Full production cycles | NR | ↑ Photosynthetic efficiency | [78] |
Ecolly (Chardonnay × Riesling × Chenin blanc) | Water | MycoApply® (AMF consortium; substrate) | Early stages | NR | ↑ Osmolytes (proline, sucrose), ↓ ROS and lipid peroxidation, ↑ antioxidant enzymes (SOD, POD, GSH); gene induction (VvNCED, VvP5CS, VvSIP, VvPIP1;2, VvTIP2;1) | [79] |
Debina | Water | Bacillus amyloliquefaciens QST713 (SERENADE®) + Sinorhizobium meliloti B2352 (HYDROMAAT®); soil | Early stages | NR | ↑ Vegetative and root growth, ↑ dry biomass and physiology (chlorophyll, RWC, phenols, proline); compensation of water deficit | [80] |
Sweet Celebration (table grape) | Water | Accudo® (Bacillus paralicheniformis; fertigation) + Seamac Rhizo® (Ascophyllum nodosum + amino acids; foliar) | Budburst, flowering, fruit set | 3/season | ↑ Mycorrhization, ↑ water-use efficiency, earlier harvest, no yield reduction | [81] |
Pinot Noir | Water | Ascophyllum nodosum extract (Acadian®; foliar) | Budburst | NR | ↑ Foliar sugars, ↑ photosynthesis; under progressive deficit: ↑ WUE (+35%), stable Fv/Fm, ↑ soluble sugars and dry matter | [82] |
Sauvignon Blanc | Water | APR® (thermal collagen hydrolysate; fertigation) | Flower separation | NR | Maintained young organ growth under drought; ↑ berry diameter under deficit (+9.5%) and control (+3.4%) | [23] |
Barbera | Water | LalVigne ProHydro™ (proline-rich yeast hydrolysate; foliar) | Pea size to veraison | 5/wk | ↑ Leaf Ψh, photosynthesis, gs, PSII, pigments, and proline; in fruit: ↓ sunburn and berry dehydration, ↑ yield, ↑ anthocyanins and phenols, ↓ °Brix | [83] |
Khoshnaw | Water | Foliar proline (200 mg/L) + Botminn Plus® (humic + fulvic acids; foliar) | Pre-flowering and post-fruit set | 2/15 d | ↑ Leaf area, ↑ chlorophyll and nitrogen in leaves, improved drought tolerance | [84] |
Tempranillo | Water | β-aminobutyric acid (BABA, 0.1 mM; foliar) | Before and after flowering | 2/15 d | ↑ Berry diameter, ↑ yield in less dry years, ↑ malic acid and sugars in berries and must, ↑ survival in drier years | [85] |
Cabernet Sauvignon | Water | 24-epibrassinolide (foliar) | Early vegetative | 1/— | ↑ Photosynthesis, ↑ carbohydrate and N metabolism, ↓ ROS, ↑ proline | [86] |
Cabernet Sauvignon | Salinity | K2SiO3·9H2O (2 mM; fertigation) | Budburst | NR | Under 100 mM NaCl: ↑ Chlorophyll, photosynthesis, sugars, and starch; ↓ Na+ in leaves; improved growth | [87] |
GharaUzum × V. riparia Kober 5BB (tolerant) and GhezelUzum (sensitive) | Salinity | Na2SiO3 (3 mM; hydroponic fertigation) | Under 100 mM NaCl | NR | ↑ Biomass, photosynthesis, osmolytes; ↓ Na+/Cl− in leaves/roots; induction of VvNIP2;1 and VvArsb in tolerant genotype | [59] |
Pinot Noir | Salinity | Quercetin (0.01 g/L; foliar) | Early development | NR | ↑ SOD/POD, ↑ AsA and GSH, ↓ ROS and leaf necrosis | [89] |
Öküzgözü | Salinity | Shikonin (foliar) | Veraison and post-veraison | 2/15 d | ↑ Phenolics (gallic acid, quercetin), ↑ sugars, ↑ malvidin-3-O-glucoside; improved quality under 150 mM NaCl | [90] |
Bidaneh-Sefid and Siah-Sardasht (seedlings) | Salinity | Spermidine (foliar) | Early vegetative | 3/15 d | ↑ Ca, Mg, K, P, Fe, Zn uptake; ↓ Na+/Cl−; ↑ CAT/GPX enzymes, ↓ MDA and electrolyte leakage | [91] |
Sultana | Salinity/metals | Nanochitosan + putrescine (foliar) | Early vegetative | 2/14 d | ↑ PSII, ↑ SOD/CAT/APX, ↑ anthocyanins and phenols, ↓ Cd in tissues | [92] |
Chardonnay | Thermal | Ascophyllum nodosum and Ecklonia maxima extracts (foliar) | Pre-flowering to pre-veraison | 5/season | A. nodosum: ↑ Photosynthesis and berry size in cool climate; E. maxima: ↑ Resistance to heat peaks >36 °C | [96] |
Cabernet Sauvignon (seedlings) | Thermal + water | Whey protein hydrolysates (foliar) | Early vegetative | NR | Under 40 °C + water deficit: ↑ Photosynthetic recovery after rehydration, stable Fv/Fm; induction of HSFA2, HSP101, TIP2;1, NCED1 | [21] |
Ugni Blanc (cuttings) | Thermal (cold) | Sprays with K2SO4 and CaCl2 (foliar) | Winterbud | NR | ↑ Proline, ↓ MDA; improved cold resistance and growth | [97] |
Giziluzum | Thermal (cold) | Putrescine, salicylic acid, and ascorbic acid (foliar) | Early vegetative | 3/10 d | ↑ Antioxidants, ↑ photosynthetic pigments, ↓ ROS and lipid peroxidation; ascorbic acid most effective | [95] |
Grapevine Cultivar | Treatment and Application Method | Phenological Stage | Plant/Fruit Response | References |
---|---|---|---|---|
Tempranillo | Hydroalcoholic brown seaweed extracts (Rugulopteryx okamurae; foliar) | Young plants (greenhouse) | Induction of PR10, PAL, STS48, GST1; ↑ trans-piceid and trans-resveratrol; ↑ jasmonic acid, ↓ salicylic acid; ↑ SOD and CAT | [99] |
Cabernet Sauvignon | Kelpak® (Ecklonia maxima + amino acids, phytohormones, nutrients; foliar, 3 times) | Before flowering, fruit set, veraison | ↑ Leaf area, ↑ sugars and organic acids, ↑ phenolics during ripening | [100] |
Cabernet Sauvignon | Ascophyllum nodosum extract (foliar, 2 times) | Veraison and +2 weeks | ↑ Anthocyanins and total polyphenols in berries | [101] |
Merlot | AZAL5 (A. nodosum + auxins, ABA, cytokinins; foliar, 4 times) | 2× fruit set, 2× veraison | ↑ Yield, ↑ berry number, ↑ anthocyanins | [102] |
Sauvignon Blanc | Ferrum® (marine algae + auxins, cytokinins, gibberellins, Fe 6%, Mn 3%; foliar, 3 times) | Not specified | ↑ Foliar Fe, ↑ chlorophyll, ↑ photosynthesis, ↑ yield | [103] |
Table grape (unspecified) | Orthosilicic acid + A. nodosum (foliar, every 15 days) | Fruit set | ↑ Cluster size, improved ripening | [104] |
Tempranillo | A. nodosum extract (Crop Plus; foliar, 2 times) | Veraison and +1 week | ↑ Malvidins and myricetins; ↑ trans-piceid and stilbenes | [105] |
Pinot Noir, Cabernet Franc, Sangiovese | A. nodosum extract (foliar, 5 times) | Starting 2 weeks before veraison | ↑ Anthocyanins and total polyphenols | [106] |
Touriga Franca | Glycine betaine (Greenstim®, foliar, 3 times) | Pea size, cluster closure, veraison | ↑ Diphenols and antioxidant activity in berries | [107] |
Red Globe | Phenylalanine + proline (foliar, 500–1000 ppm; 2 times) | Pre-veraison, veraison | ↑ Cluster length/weight; ↑ °Brix, pH, maturity index, phenols, anthocyanins, antioxidant capacity | [108] |
Black Magic | Corn gluten hydrolysate (GDPH; fertigation, 2 times) | Veraison and early ripening | ↑ Cluster weight, ↑ berry size, ↑ soluble solids; transcriptomic activation of ripening and anthocyanin transport genes | [109] |
Feteasca Regala, Italian Riesling | Vermicompost humic acids (foliar, 2 times) | Pre-flowering, fruit set | ↑ Yield, ↑ cluster/berry size, ↑ °Brix, ↓ acidity | [110] |
Fakhri | Potassium silicate + humic acid (foliar, 3 times) | Pre-flowering, post-flowering | ↑ Cluster weight, ↑ berry polyphenols/anthocyanins; ↑ leaf chlorophyll and antioxidant activity | [111] |
Sauvignon Blanc | Humic acids + boron (foliar, 3 times) | Pre-flowering, full flowering, post-veraison | ↑ Ca, P, K, Mg, Zn, B in leaves; ↑ N, K, P, B in must and wine; ↑ YAN | [112] |
Garganega | Horn Silica (501) biodynamic preparation (foliar) | Vegetative growth | ↑ Phenols and carotenoids in berries (epigallocatechin, violaxanthin) | [113] |
Chardonnay | Salicylic acid (foliar, 2 times, 3 mM) | Veraison and +1 week | ↑ Soluble solids, ↑ acidity, ↑ amino acids and aroma compounds in berries | [114] |
Bidane Ghermez, Bidane Sefid | Salicylic acid (foliar, 2 times, 0.1–1 mM) | Veraison, ripening | ↑ Photosynthetic pigments, ↑ sugars, ↑ proline/proteins, ↑ SOD; optimal doses varied by cultivar/stage | [115] |
Thompson Seedless | Amino acids + benzyladenine + nano-NPK (foliar, 2 times) | Before flowering, after fruit set | ↑ Vitamin C; ↓ total phenols | [116] |
Marselan | γ-Polyglutamic acid (0.35%) + alginic acid (0.45%; foliar, 2 times) | Veraison and +1 week | ↑ Anthocyanins (delphinidin, cyanidin, peonidin, malvidins); ↑ PAL, CHS, DFR, DOX expression | [117] |
Sangiovese | Zeowine (zeolite + winery compost; soil, 30 t ha−1) | Pre-budburst | ↑ Leaf water status, ↑ photosynthesis, ↑ berry size, ↑ sugars, ↑ anthocyanins, improved phenolic profile | [118] |
Kyoho (table grape) | Melatonin (postharvest, 50–400 μM; storage at 4 °C, 25 days) | Postharvest | ↓ Abscission/rot, ↓ MDA (−40.8%); ↑ amino acids (arginine, proline, GABA) and polyamines; ↑ VvADC, VvODC, VvSPDS, VvCuAO | [119] |
Cuibao Seedless | Melatonin + salicylic acid (postharvest; storage at 4 °C) | Postharvest | ↓ Browning and weight loss; ↑ antioxidant capacity; melatonin more effective than combined treatment | [120] |
Grapevine Cultivar | Biostimulant/Formulation | Application (Method & Stage) | Stress Condition | Main Yield/Vegetative Outcomes | Reference |
---|---|---|---|---|---|
Merlot | Ascophyllum nodosum extract (AZAL5®, foliar 4×) | Two sprays at fruit set and two at veraison | None (field) | +12–18% yield; ↑ berry number and anthocyanins | [102] |
Cabernet Sauvignon | Ecklonia maxima extract (Kelpak®, foliar 3×) | Before flowering, fruit set, veraison | None | +15% yield; ↑ leaf area, photosynthesis | [100] |
Barbera | Protein hydrolysate (LalVigne ProHydro™, foliar 5×) | From pea size to veraison | Drought (field) | +10–13% yield; ↓ sunburn, ↑ anthocyanins | [82] |
Feteasca regala, Italian Riesling | Vermicompost humic acids (foliar 2×) | Pre-flowering and fruit set | None | +8–10% cluster and berry size; ↑ °Brix | [110] |
Fakhri | Potassium silicate + humic acid (foliar 3×) | Pre- & post-flowering | Heat/salinity | +17% cluster weight; ↑ polyphenols | [111] |
Sweet Celebration | Bacillus paralicheniformis + Ascophyllum nodosum (Accudo® + Seamac Rhizo®) | Budburst–fruit set | Deficit irrigation | Maintained yield; ↑ water productivity, earlier harvest | [81] |
Malvasia di Candia Aromatica | Mycorrhizae (MycoUp®, soil) | Full production cycles | Drought | Sustained productivity; ↑ photosynthesis | [78] |
Cabernet Sauvignon | 24-epibrassinolide (foliar) | Early vegetative | Drought | ↑ berry diameter; ↑ carbohydrate metabolism | [85] |
Sultana | Chitosan + salicylic acid nanoparticles (foliar) | Early vegetative | [94] |
Grapevine Cultivar | Biostimulant/Formulation | Key Biochemical Modulation | Reported or Inferred Sensory Effect | Reference |
---|---|---|---|---|
Cabernet Sauvignon | Ecklonia maxima (Kelpak®, foliar 3×) | ↑ sugars, ↑ phenolics, stable acidity | Fuller body, enhanced aroma intensity, slightly higher alcohol | [100] |
Tempranillo | Ascophyllum nodosum extract (Crop Plus®, foliar 2×) | ↑ malvidins, ↑ stilbenes | Deeper color, longer persistence, improved mouthfeel | [105] |
Sauvignon Blanc | Salicylic acid (3 mM, foliar 2×) | ↑ amino acids, ↑ aromatic volatiles, balanced acids | Enhanced floral–fruit aroma and freshness | [115] |
Barbera | Protein hydrolysate (LalVigne ProHydro™, foliar 5×) | ↑ anthocyanins, ↑ polyphenols, ↓ berry dehydration | Improved color and texture; slightly higher alcohol | [82] |
Fakhri | K2SiO3 + Humic acid (foliar 3×) | ↑ polyphenols, ↑ micronutrients, stabilized pH | Enhanced minerality and aromatic balance | [111] |
Merlot | Ascophyllum nodosum (AZAL5®, foliar 4×) | ↑ anthocyanins, ↑ soluble solids | More vivid color, improved sensory structure | [102] |
Chardonnay | Salicylic acid (3 mM, foliar 2×) | ↑ benzenoid compounds, ↑ terpenes | Increased aromatic complexity and acidity retention | [114] |
Sangiovese | Zeowine (zeolite + compost, soil) | ↑ anthocyanins, ↑ quercetin derivatives | Greater color stability and mouthfeel smoothness | [118] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Verdugo-Gaxiola, S.E.; Diaz-Rubio, L.; Montaño-Soto, M.T.; Castro-López, L.d.R.; Castillo, G.; Córdova-Guerrero, I. Advances in Biostimulant Applications for Grapevine (Vitis vinifera L.): Physiological, Agronomic, and Quality Impacts. Horticulturae 2025, 11, 1261. https://doi.org/10.3390/horticulturae11101261
Verdugo-Gaxiola SE, Diaz-Rubio L, Montaño-Soto MT, Castro-López LdR, Castillo G, Córdova-Guerrero I. Advances in Biostimulant Applications for Grapevine (Vitis vinifera L.): Physiological, Agronomic, and Quality Impacts. Horticulturae. 2025; 11(10):1261. https://doi.org/10.3390/horticulturae11101261
Chicago/Turabian StyleVerdugo-Gaxiola, Sara Elizabeth, Laura Diaz-Rubio, Myriam Tatiana Montaño-Soto, Liliana del Rocío Castro-López, Guillermo Castillo, and Iván Córdova-Guerrero. 2025. "Advances in Biostimulant Applications for Grapevine (Vitis vinifera L.): Physiological, Agronomic, and Quality Impacts" Horticulturae 11, no. 10: 1261. https://doi.org/10.3390/horticulturae11101261
APA StyleVerdugo-Gaxiola, S. E., Diaz-Rubio, L., Montaño-Soto, M. T., Castro-López, L. d. R., Castillo, G., & Córdova-Guerrero, I. (2025). Advances in Biostimulant Applications for Grapevine (Vitis vinifera L.): Physiological, Agronomic, and Quality Impacts. Horticulturae, 11(10), 1261. https://doi.org/10.3390/horticulturae11101261