A Diploid–Tetraploid Cytochimera of Dashu Tea Selected from a Natural Bud Mutant
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Methods
2.2.1. Ploidy Analysis by Using Flow Cytometry
2.2.2. Chromosome Preparation
2.2.3. Leaf Morphology and Anatomical Structure Investigation
2.2.4. Photosynthetic Character Analysis
2.2.5. Detection of Main Components Contents
2.2.6. Pollen Viability Observation
2.2.7. Statistical Analysis
3. Results
3.1. Plant Screening and Cytochimera Identification
3.2. Morphology and Anatomical Structure of Leaves
3.3. Photosynthetic Characteristics of Leaves
3.4. Contents of Main Components
3.5. Pollen Viability and Ploidy of Progeny
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| DAPI | 4′,6-diamidino-2-phenylindole. |
| HPLC | High-performance liquid chromatography. |
References
- Van de Peer, Y.; Mizrachi, E.; Marchal, K. The evolutionary significance of polyploidy. Nat. Rev. Genet. 2017, 18, 411–424. [Google Scholar] [CrossRef]
- Trojak-Goluch, A.; Kawka-Lipińska, M.; Wielgusz, K.; Praczyk, M. Polyploidy in industrial crops: Applications and perspectives in plant breeding. Agronomy 2021, 11, 2574. [Google Scholar] [CrossRef]
- Rice, A.; Šmarda, P.; Novosolov, M.; Drori, M.; Glick, L.; Sabath, N.; Meiri, S.; Belmaker, J.; Mayrose, I. The global bio-geography of polyploid plants. Nat. Ecol. Evol. 2019, 3, 265–273. [Google Scholar] [CrossRef]
- Liu, S.Y.; Wang, Y. Analysis and prospect of current research status on polyploidy in tea plants. China Tea 2025, 47, 40–48. (In Chinese) [Google Scholar]
- Salman-Minkov, A.; Sabath, N.; Mayrose, I. Whole-genome duplication as a key factor in crop domestication. Nat. Plants 2016, 2, 16115. [Google Scholar] [CrossRef]
- Zhai, X.M.; Tang, M.; Luo, H.Y.; Wu, X.C.; Hou, Y.J. Research progress of tea polyploidy breeding. Chin. Agric. Sci. Bull. 2018, 34, 8–12. (In Chinese) [Google Scholar]
- Liu, Q.; Lin, K.Q.; Wei, J.; Chen, W.J.; Chen, Z.W. Summary of research progress and prospects on tea polyploid species. Mol. Plant Breed. 2023, 4, 1272–1278. (In Chinese) [Google Scholar]
- Wachira, F.N. Triploidy in tea (Camellia sinensis): Effect on yield and yield attributes. J. Horticul. Sci. 1994, 69, 53–60. [Google Scholar] [CrossRef]
- Alam, H.; Razaq, M.; Salahuddin. Induced polyploidy as a tool for increasing tea (Camellia sinensis L.) production. J. Northeast Agric. Univ. 2015, 22, 43–47. [Google Scholar] [CrossRef]
- Zakir, M.; Dawid, J. Polyploidy and it’s applications in tea (Camellia sinensis L.) breeding, review. Int. J. Res. Stud. Sci. Eng. Technol. 2020, 7, 30–34. [Google Scholar]
- Tao, H. The influence of chromosomal multiple changes in tea plants on the content of major chemical components. J. Tea Busi. 1988, 11–14. (In Chinese) [Google Scholar]
- Das, S.K.; Sabhapondit, S.; Ahmed, G.; Das, S. Biochemical evaluation of triploid progenies of diploid × tetraploid breeding populations of Camellia for genotypes rich in catechin and caffeine. Biochem. Genet. 2013, 51, 358–376. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Apostolides, Z.; Chen, Z.M. Global Tea Breeding; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Samarina, L.S.; Matskiv, A.O.; Shkhalakhova, R.M.; Koninskaya, N.G.; Hanke, M.-V.; Flachowsky, H.; Shumeev, A.N.; Manakhova, K.A.; Malyukova, L.S.; Liu, S.; et al. Genetic diversity and genome size variability in the Russian genebank collection of tea plant [Camellia sinensis (L.) O. Kuntze]. Front. Plant Sci. 2022, 12, 800141. [Google Scholar] [CrossRef] [PubMed]
- Gunasekara, M.T.K.; Ranatunga, M.A.B. Polyploid in tea (Camellia sinensis L.) and its application in tea breeding: A review. Int. J. Res. Stud. Sci. Eng. Technol. 2003, 68, 14–26. [Google Scholar]
- Tang, Z.P.; Gao, X.; Qin, R.Y.; Sun, N.J.; Lan, H.G.; Wei, R.J.; Deng, G.Z.; Liu, B.H. A new Fortunella crassifiolia cultivar ‘Cuimi Kumquat’. J. Fruit Sci. 2018, 35, 131–134. [Google Scholar]
- Dang, J.B.; Li, C.; Sun, D.N.; Guo, Q.G.; Liang, G.L. A tetraploid-dominated cytochimera developed from a natural bud mutant of the nonapomictic mandarin variety ‘Orah’. Mol. Breed. 2024, 44, 20. [Google Scholar] [CrossRef]
- Ban, S.; Jung, J.H. Somatic mutations in fruit trees: Causes, detection methods, and mo-lecular mechanisms. Plants 2023, 12, 1316. [Google Scholar] [CrossRef]
- Kumar, A.; Sharma, D.P.; Kumar, P.; Sharma, G.; Suprun, I.I. Comprehensive insights on apple (Malus × domestica Borkh.) bud sport mutations and epigenetic regulations. Sci. Hortic. 2022, 297, 110979. [Google Scholar] [CrossRef]
- Wang, L.; Huang, Y.; Liu, Z.; He, J.; Jiang, X.; He, F.; Lu, Z.; Yang, S.; Chen, P.; Yu, H.; et al. Somatic variations led to the selection of acidic and acidless orange cultivars. Nat. Plants 2021, 7, 954–965. [Google Scholar] [CrossRef]
- Wei, T.L.; Wan, Y.T.; Liu, H.N.; Pei, M.S.; He, G.Q.; Guo, D.L. CHH hypermethylation con-tributes to the early ripening of grapes revealed by DNA methylome landscape of ‘Kyoho’ and its bud mutant. Hortic. Res. 2024, 12, uhae285. [Google Scholar] [CrossRef]
- Luo, F.Q. Bud mutation tea cultivar—Yanling Silver Side Tea. J. Tea Commun. 2015, 42, 60–61. (In Chinese) [Google Scholar]
- Ji, H.G.; Lee, Y.R.; Lee, M.S.; Hwang, K.H.; Kim, E.H.; Park, J.S.; Hong, Y.S. Metabolic phe-notyping of various tea (Camellia sinensis L.) cultivars and understanding of their intrin-sic metabolism. Food Chem. 2017, 233, 321–330. [Google Scholar] [CrossRef]
- Yu, Y.S.; Feng, X.X.; Blank, I.; Wang, H.L.; Zhu, Y.W.; Liu, Z.B.; Ni, L.; Lin, C.; Wang, K.Q.; Liu, Y. A review of umami taste of Tea: Substances, perception mechanism, and physiological measurement prospects. Trends Food Sci. Technol. 2025, 162, 105082. [Google Scholar] [CrossRef]
- Fang, R.; Redfern, S.P.; Kirkup, D.; Porter, E.A.; Kite, G.C.; Terry, L.A.; Berry, M.J.; Simmonds, M.S.J. Variation of theanine, phenolic, and methylxanthine compounds in 21 cultivars of Camellia sinensis harvested in different seasons. Food Chem. 2017, 220, 517–526. [Google Scholar] [CrossRef]
- Huang, R.; Wang, Z.; Wen, W.; Yao, M.; Liu, H.; Li, F.; Zhang, S.; Ni, D.; Chen, L. Comprehensive dissection of variation and accumulation of free amino acids in tea accessions. Hortic. Res. 2023, 11, uhad263. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.F. Guidance for Plant Physiology Experiments; Higher Education Press: Beijing, China, 2006; pp. 74–77. (In Chinese) [Google Scholar]
- Tan, F.; Tan, C.; Zhao, A.; Li, M. Simultaneous determination of free amino acid content in tea infusions by using high-performance liquid chromatography with fluorescence detection coupled with alternating penalty trilinear decomposition algorithm. J. Agric. Food Chem. 2011, 59, 10839–10847. [Google Scholar] [CrossRef]
- de Storme, N.; Copenhaver, G.P.; Geelen, D. Production of diploid male gametes in Arabidopsis by cold-induced destabilization of postmeiotic radial microtubule arrays. Plant Physiol. 2012, 160, 1808–1826. [Google Scholar] [CrossRef] [PubMed]
- Toda, E.; Okamoto, T. Polyspermy in angiosperms: Its contribution to polyploid formation and speciation. Mol. Reprod. Dev. 2020, 87, 374–379. [Google Scholar] [CrossRef]
- Lang, L.; Schnittger, A. Endoreplication—A means to an end in cell growth and stress response. Curr. Opin. Plant Biol. 2020, 54, 85–92. [Google Scholar] [CrossRef]
- Guo, L.; Xu, W.; Zhang, Y.; Zhang, J.; Wei, Z. Inducing triploids and tetraploids with high temperatures in Populus sect. Tacamahaca. Plant Cell Rep. 2017, 36, 313–326. [Google Scholar] [CrossRef]
- Wang, J.; Li, D.; Shang, F.; Kang, X. High temperature-induced production of unreduced pollen and its cytological effects in Populus. Sci. Rep. 2017, 7, 5281. [Google Scholar] [CrossRef]
- Shi, F.L.; Shi, F.L.; Zhao, M.; Wang, L.; Jia, H. The germination and chromosome mutagenesis effect analysis of 60Co-γ rays on Medicago falcata L. Seed 2016, 35, 40–43. (In Chinese) [Google Scholar]
- Scholes, D.R.; Paige, K.N. Plasticity in ploidy: A generalized response to stress. Trends Plant Sci. 2015, 20, 165–175. [Google Scholar] [CrossRef] [PubMed]
- Barow, M. Endopolyploidy in seed plants. Bioessays 2006, 28, 271–281. [Google Scholar] [CrossRef]
- Tourdot, E.; Mauxion, J.P.; Gonzalez, N.; Chevalier, C. Endoreduplication in plant organogenesis: A means to boost fruit growth. J. Exp. Bot. 2023, 74, 6269–6284. [Google Scholar] [CrossRef]
- Nukaya, T.; Sudo, M.; Yahata, M.; Ohta, T.; Tominaga, A.; Mukai, H.; Yasuda, K.; Kunitake, H. The confirmation of a ploidy periclinal chimera of the meiwa kumquat (Fortunella crassifolia Swingle) induced by colchicine treatment to nucellar embryos and its morphological characteristics. Agronomy 2019, 9, 562. [Google Scholar] [CrossRef]
- Liu, W.G.; Zhao, S.J.; Cheng, Z.Q.; Wan, X.S.; Yan, Z.H.; King, S.R. Lycopene and citrulline contents in watermelon (Citrullus lanatus) fruit with different ploidy and changes during fruit development. Acta Hortic. 2010, 871, 543–550. [Google Scholar] [CrossRef]
- Zheng, F.; Zan, Y.F.; Dang, X.M.; Yang, Y. Comparative study on lycopene and citrulline content in different ploidy mini-watermelons fruit. Chin. J. Trop. Agric. 2012, 32, 7–10. [Google Scholar]
- Chen, Z.H.; Lu, X.Q.; He, N.; Yang, D.D.; Zhu, H.J.; Liu, W.G. Changes of main amino acid contents in citrulline biosynthesis pathway and expression analysis of related genes during fruit development of watermel-on with different ploidy. Chin. Cucurbits Veg. 2024, 37, 18–26. [Google Scholar]





| Material | Length | Width | Leaf Shape Index |
|---|---|---|---|
| 2x | 10.87 ± 0.55 | 3.61 ± 0.32 | 3.04 ± 0.38 |
| 2x + 4x | 14.18 ± 0.81 | 5.74 ± 0.42 | 2.48 ± 0.12 |
| p-value (t-test) | 3.19 × 10−9 | 2.16 × 10−10 | 2.66 × 10−4 |
| Material | Thickness of Leaves | Thickness of Upper Epidermis | Transverse Length of Upper Epidermis Cell | Thickness of Palisade Parenchyma | Thickness of Spongy Parenchyma | Thickness of Lower Epidermis | Transverse Length of Lower Epidermis Cell |
|---|---|---|---|---|---|---|---|
| 2x | 295.66 ± 8.24 | 21.99 ± 1.63 | 20.64 ± 2.25 | 77.64 ± 8.11 | 177.06 ± 13.30 | 18.96 ± 1.41 | 28.16 ± 1.57 |
| 2x + 4x | 347.60 ± 7.58 | 21.93 ± 1.44 | 20.95 ± 1.80 | 110.15 ± 11.46 | 197.77 ± 12.34 | 17.75 ± 2.52 | 22.19 ± 2.50 |
| p-value (t-test) | 1.86 × 10−11 | 0.94 | 0.81 | 8.42 × 10−7 | 2.00 × 10−3 | 0.2 | 1.94 × 10−3 |
| Material | Chlorophyll A | Chlorophyll B | Total Chlorophyll | Carotenoid |
|---|---|---|---|---|
| 2x | 0.31 ± 0.06 | 0.20 ± 0.03 | 0.51 ± 0.09 | 0.13 ± 0.01 |
| 2x + 4x | 0.53 ± 0.02 | 0.30 ± 0.01 | 0.83 ± 0.03 | 0.14 ± 0.01 |
| p-value (t-test) | 0.0040 | 0.0030 | 0.0035 | 0.1824 |
| Materials | Gallic acid | Gallocatechin | Epigallocatechin | Catechin | Epicatechin |
| D1 | 0.06 ± 0.01 Bb | 22.85 ± 2.41 Cd | 24.81 ± 2.91 Aa | 3.98 ± 0.47 Aa | 12.52 ± 1.01 Aa |
| D2 | 0.08 ± 0.01 Aa | 41.97 ± 1.51 Ab | 22.43 ± 0.26 ABab | 1.73 ± 0.00 Bc | 10.62 ± 1.29 ABb |
| 2x | 0.08 ± 0.00 Aa | 33.53 ± 1.20 Bc | 20.83 ± 1.10 ABb | 1.88 ± 0.17 Bbc | 9.17 ± 0.70 Bbc |
| 2x + 4x | 0.08 ± 0.00 Aa | 46.53 ± 1.44 Aa | 19.85 ± 0.38 Bb | 2.13 ± 0.18 Bb | 8.76 ± 0.31 Bc |
| Material | Epigallocatechin gallate | Gallocatechin gallate | Epicatechin gallate | Catechin gallate | Caffeine |
| D1 | 93.20 ± 11.93 Bb | 1.06 ± 0.08 Ab | 19.67 ± 1.82 Aab | 0.00 ± 0.00 Cc | 56.57 ± 5.24 ABab |
| D2 | 111.48 ± 2.16 Aa | 1.43 ± 0.15 Aa | 21.37 ± 0.88 Aa | 0.09 ± 0.00 Bb | 51.28 ± 2.34 ABbc |
| 2x | 98.51 ± 3.53 Bb | 1.38 ± 0.19 Aa | 18.14 ± 0.90 Ab | 0.14 ± 0.01 Aa | 48.67 ± 2.58 Bc |
| 2x + 4x | 86.80 ± 3.18 Bc | 1.21 ± 0.04 Aab | 20.77 ± 0.75 Aa | 0.08 ± 0.00 Bb | 58.50 ± 1.96 Aa |
| Materials | Asp | Glu | Asn | Gln | Ser | Thr | Pro | Thea | γ-Aminobutyric Acid | Arg |
| D1 | 0.14 ± 0.01 B b | 0.67 ± 0.05 Bb | 0.04 ± 0.00 Bb | 1.45 ± 0.12 Aa | 0.44 ± 0.05 Bc | 0.14 ± 0.02 Aa | 0.01 ± 0.00 Dd | 7.49 ± 0.65 Cc | 0.55 ± 0.01 Bb | 0.05 ± 0.01 Cd |
| D2 | 0.08 ± 0.00 D d | 0.47 ± 0.01 Cc | - | 1.23 ± 0.03 ABb | 0.47 ± 0.03 Bc | 0.1 ± 0.00 Bb | 0.03 ± 0.00 Cc | 7.62 ± 0.17 Cc | 0.16 ± 0.02 Cc | 0.14 ± 0.01 Bb |
| 2x | 0.10 ± 0.00 C c | 0.42 ± 0.04 Cc | - | 1.26 ± 0.05 ABb | 0.53 ± 0.02 Bb | 0.1 ± 0.00 Bb | 0.04 ± 0.00 Bb | 9.08 ± 0.29 Bb | 0.14 ± 0.02 Cc | 0.11 ± 0.00 Bc |
| 2x + 4x | 0.28 ± 0.01 A a | 1.33 ± 0.01 Aa | 0.09 ± 0.00 Aa | 1.14 ± 0.07 Bb | 2.21 ± 0.08 Aa | 0.15 ± 0.00 Aa | 0.05 ± 0.00 Aa | 13.71 ± 0.35 Aa | 1.06 ± 0.10 Aa | 0.73 ± 0.02 Aa |
| Materials | Val | Met | Cys | Ile | Leu | Lys | Tyr | Gly | Ala | Total |
| D1 | 0.07 ± 0.00 Bb | 0.74 ± 0.07 Aa | 0.25 ± 0.00 Dd | - | - | 0.69 ± 0.04 A b | 0.03 ± 0.00 | 0.02 ± 0.00 Bc | 0.15 ± 0.00 Cd | 12.92 ± 0.95 Bc |
| D2 | 0.07 ± 0.00 Bb | 0.66 ± 0.05 ABa | 0.35 ± 0.02 Cc | - | - | 0.77 ± 0.04 A a | - | 0.05 ± 0.01 Ab | 0.24 ± 0.01 Ab | 12.41 ± 0.27 Bbc |
| 2x | 0.07 ± 0.00 Bb | 0.47 ± 0.06 Cb | 0.54 ± 0.02 Bb | - | - | 0.71 ± 0.05 A ab | - | 0.05 ± 0.01 Aab | 0.25 ± 0.00 Aa | 13.82 ± 0.43 Bb |
| 2x + 4x | 0.08 ± 0.00 Aa | 0.55 ± 0.03 BCb | 0.63 ± 0.05 Aa | - | - | 0.72 ± 0.01 A ab | - | 0.05 ± 0.00 Aa | 0.20 ± 0.00 Bc | 22.96 ± 0.58 Aa |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, C.; She, S.; Wang, H.; Li, J.; Long, X.; Liang, G.; Guo, Q.; Li, S.; Li, G.; Qian, L.; et al. A Diploid–Tetraploid Cytochimera of Dashu Tea Selected from a Natural Bud Mutant. Horticulturae 2025, 11, 1259. https://doi.org/10.3390/horticulturae11101259
Zhang C, She S, Wang H, Li J, Long X, Liang G, Guo Q, Li S, Li G, Qian L, et al. A Diploid–Tetraploid Cytochimera of Dashu Tea Selected from a Natural Bud Mutant. Horticulturae. 2025; 11(10):1259. https://doi.org/10.3390/horticulturae11101259
Chicago/Turabian StyleZhang, Chi, Sulei She, Haiyan Wang, Jiaheng Li, Xiao Long, Guolu Liang, Qigao Guo, Songkai Li, Ge Li, Lanyan Qian, and et al. 2025. "A Diploid–Tetraploid Cytochimera of Dashu Tea Selected from a Natural Bud Mutant" Horticulturae 11, no. 10: 1259. https://doi.org/10.3390/horticulturae11101259
APA StyleZhang, C., She, S., Wang, H., Li, J., Long, X., Liang, G., Guo, Q., Li, S., Li, G., Qian, L., Wu, D., & Dang, J. (2025). A Diploid–Tetraploid Cytochimera of Dashu Tea Selected from a Natural Bud Mutant. Horticulturae, 11(10), 1259. https://doi.org/10.3390/horticulturae11101259

