Next Issue
Volume 12, June
Previous Issue
Volume 12, April
 
 

Viruses, Volume 12, Issue 5 (May 2020) – 98 articles

Cover Story (view full-size image): HIV-1 retroviral nucleocapsid (NC) proteins facilitate the rearrangement of nucleic acid secondary structures during reverse transcription, allowing the transactivation response (TAR) RNA hairpin to be transiently destabilized and annealed to a complementary DNA hairpin. Yet during viral assembly, NC, as a domain of the group-specific antigen (Gag) polyprotein, binds genomic RNA and facilitates packaging into new virions. So how can the same protein, alone or as part of Gag, perform such different RNA binding functions in the viral life cycle? Combining single-molecule optical tweezers measurements with a quantitative mfold-based model, we characterize the stability and unfolding barrier for TAR RNA. While both NCp7 and Gagp6 destabilize the TAR hairpin, only NCp7 destabilizes the top loop, shifting the barrier location toward the folded state and increasing the natural rate of hairpin opening by [...] Read more.
  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
15 pages, 2472 KiB  
Article
In Vitro and In Vivo Antiviral Activity of Nylidrin by Targeting the Hemagglutinin 2-Mediated Membrane Fusion of Influenza A Virus
by Yejin Jang, Jin Soo Shin, Joo-Youn Lee, Heegwon Shin, Sang Jick Kim and Meehyein Kim
Viruses 2020, 12(5), 581; https://doi.org/10.3390/v12050581 - 25 May 2020
Cited by 10 | Viewed by 3507
Abstract
Influenza A virus, one of the major human respiratory pathogens, is responsible for annual seasonal endemics and unpredictable periodic pandemics. Despite the clinical availability of vaccines and antivirals, the antigenic diversity and drug resistance of this virus makes it a persistent threat to [...] Read more.
Influenza A virus, one of the major human respiratory pathogens, is responsible for annual seasonal endemics and unpredictable periodic pandemics. Despite the clinical availability of vaccines and antivirals, the antigenic diversity and drug resistance of this virus makes it a persistent threat to public health, underlying the need for the development of novel antivirals. In a cell culture-based high-throughput screen, a β2-adrenergic receptor agonist, nylidrin, was identified as an antiviral compound against influenza A virus. The molecule was effective against multiple isolates of subtype H1N1, but had limited activity against subtype H3N2, depending on the strain. By examining the antiviral activity of its chemical analogues, we found that ifenprodil and clenbuterol also had reliable inhibitory effects against A/H1N1 strains. Field-based pharmacophore modeling with comparisons of active and inactive compounds revealed the importance of positive and negative electrostatic patterns of phenyl aminoethanol derivatives. Time-of-addition experiments and visualization of the intracellular localization of nucleoprotein NP demonstrated that an early step of the virus life cycle was suppressed by nylidrin. Ultimately, we discovered that nylidrin targets hemagglutinin 2 (HA2)-mediated membrane fusion by blocking conformational change of HA at acidic pH. In a mouse model, preincubation of a mouse-adapted influenza A virus (H1N1) with nylidrin completely blocked intranasal viral infection. The present study suggests that nylidrin could provide a core chemical skeleton for the development of a direct-acting inhibitor of influenza A virus entry. Full article
(This article belongs to the Section Viral Immunology, Vaccines, and Antivirals)
Show Figures

Figure 1

15 pages, 2197 KiB  
Article
A High-Throughput HIV-1 Drug Screening Platform, Based on Lentiviral Vectors and Compatible with Biosafety Level-1
by Bernhard Ellinger, Daniel Pohlmann, Jannis Woens, Felix M. Jäkel, Jeanette Reinshagen, Carol Stocking, Vladimir S. Prassolov, Boris Fehse and Kristoffer Riecken
Viruses 2020, 12(5), 580; https://doi.org/10.3390/v12050580 - 25 May 2020
Cited by 2 | Viewed by 3293
Abstract
HIV-1 infection is a complex, multi-step process involving not only viral, but also multiple cellular factors. To date, drug discovery methods have primarily focused on the inhibition of single viral proteins. We present an efficient and unbiased approach, compatible with biosafety level 1 [...] Read more.
HIV-1 infection is a complex, multi-step process involving not only viral, but also multiple cellular factors. To date, drug discovery methods have primarily focused on the inhibition of single viral proteins. We present an efficient and unbiased approach, compatible with biosafety level 1 (BSL-1) conditions, to identify inhibitors of HIV-1 reverse transcription, intracellular trafficking, nuclear entry and genome integration. Starting with a fluorescent assay setup, we systematically improved the screening methodology in terms of stability, efficiency and pharmacological relevance. Stability and throughput were optimized by switching to a luciferase-based readout. BSL-1 compliance was achieved without sacrificing pharmacological relevance by using lentiviral particles pseudo-typed with the mouse ecotropic envelope protein to transduce human PM1 T cells gene-modified to express the corresponding murine receptor. The cellular assay was used to screen 26,048 compounds selected for maximum diversity from a 200,640-compound in-house library. This yielded z’ values greater than 0.8 with a hit rate of 3.3% and a confirmation rate of 50%. We selected 93 hits and enriched the collection with 279 similar compounds from the in-house library to identify promising structural features. The most active compounds were validated using orthogonal assay formats. The similarity of the compound profiles across the different platforms demonstrated that the reported lentiviral assay system is a robust and versatile tool for the identification of novel HIV-1 inhibitors. Full article
(This article belongs to the Special Issue Antiretroviral Drug Development and HIV Cure Research)
Show Figures

Figure 1

17 pages, 3159 KiB  
Article
Zika Virus with Increased CpG Dinucleotide Frequencies Shows Oncolytic Activity in Glioblastoma Stem Cells
by Ivan Trus, Nathalie Berube, Peng Jiang, Janusz Rak, Volker Gerdts and Uladzimir Karniychuk
Viruses 2020, 12(5), 579; https://doi.org/10.3390/v12050579 - 25 May 2020
Cited by 14 | Viewed by 3714
Abstract
We studied whether cytosine phosphate–guanine (CpG) recoding in a viral genome may provide oncolytic candidates with reduced infection kinetics in nonmalignant brain cells, but with high virulence in glioblastoma stem cells (GSCs). As a model, we used well-characterized CpG-recoded Zika virus vaccine candidates [...] Read more.
We studied whether cytosine phosphate–guanine (CpG) recoding in a viral genome may provide oncolytic candidates with reduced infection kinetics in nonmalignant brain cells, but with high virulence in glioblastoma stem cells (GSCs). As a model, we used well-characterized CpG-recoded Zika virus vaccine candidates that previously showed genetic stability and safety in animal models. In vitro, one of the CpG-recoded Zika virus variants had reduced infection kinetics in nonmalignant brain cells but high infectivity and oncolytic activity in GSCs as represented by reduced cell proliferation. The recoded virus also efficiently replicated in GSC-derived tumors in ovo with a significant reduction of tumor growth. We also showed that some GSCs may be resistant to Zika virus oncolytic activity, emphasizing the need for personalized oncolytic therapy or a strategy to overcome resistance in GSCs. Collectively, we demonstrated the potential of the CpG recoding approach for oncolytic virus development that encourages further research towards a better understanding of host–tumor–CpG-recoded virus interactions. Full article
(This article belongs to the Section Animal Viruses)
Show Figures

Figure 1

21 pages, 14952 KiB  
Article
Isolation of a Chinook Salmon Bafinivirus (CSBV) in Imported Goldfish Carassius auratus L. in the United Kingdom and Evaluation of Its Virulence in Resident Fish Species
by Irene Cano, David Stone, Jacqueline Savage, Gareth Wood, Brian Mulhearn, Joshua Gray, Nick Stinton, Stuart Ross, Michaela Bonar, Nick G. H. Taylor, Kelly S. Bateman and Stephen W. Feist
Viruses 2020, 12(5), 578; https://doi.org/10.3390/v12050578 - 25 May 2020
Cited by 11 | Viewed by 3916
Abstract
This is the first record of a fish nidovirus isolated from a consignment of goldfish at the United Kingdom (UK) border. The full-length viral genome was 25,985 nt, sharing a 97.9% nucleotide identity with the Chinook salmon bafinivirus (CSBV) NIDO with two deletions [...] Read more.
This is the first record of a fish nidovirus isolated from a consignment of goldfish at the United Kingdom (UK) border. The full-length viral genome was 25,985 nt, sharing a 97.9% nucleotide identity with the Chinook salmon bafinivirus (CSBV) NIDO with two deletions of 537 and 480 nt on the ORF Ia protein. To assess the potential impact on UK fish species, Atlantic salmon, common carp and goldfish were exposed to the virus via an intraperitoneal (IP) injection and bath challenge. Moribundity was recorded in only 8% of IP-injected goldfish. A high viral load, ≈107 of the CSBV PpIa gene, was measured in the kidney of moribund goldfish. Mild histopathological changes were observed in the kidneys of challenged carps. Ultrastructural observations in renal tubule epithelial cells of goldfish showed cylindrical tubes (≈15 nm in diameter) and tubular structures budding spherical virions (≈200 nm in diameter) with external spike-like structures. Negative staining showed both circular and bacilliform virions. Seroconversion was measured in common carp and goldfish but not in Atlantic salmon. This study reinforces the potential risk of novel and emerging pathogens being introduced to recipient countries via the international ornamental fish trade and the importance of regular full health screens at the border inspection posts to reduce this risk. Full article
Show Figures

Figure 1

16 pages, 633 KiB  
Article
Comparative Genomics Unveils Regionalized Evolution of the Faustovirus Genomes
by Khalil Geballa-Koukoulas, Hadjer Boudjemaa, Julien Andreani, Bernard La Scola and Guillaume Blanc
Viruses 2020, 12(5), 577; https://doi.org/10.3390/v12050577 - 24 May 2020
Cited by 7 | Viewed by 3518
Abstract
Faustovirus is a recently discovered genus of large DNA virus infecting the amoeba Vermamoeba vermiformis, which is phylogenetically related to Asfarviridae. To better understand the diversity and evolution of this viral group, we sequenced six novel Faustovirus strains, mined published metagenomic datasets [...] Read more.
Faustovirus is a recently discovered genus of large DNA virus infecting the amoeba Vermamoeba vermiformis, which is phylogenetically related to Asfarviridae. To better understand the diversity and evolution of this viral group, we sequenced six novel Faustovirus strains, mined published metagenomic datasets and performed a comparative genomic analysis. Genomic sequences revealed three consistent phylogenetic groups, within which genetic diversity was moderate. The comparison of the major capsid protein (MCP) genes unveiled between 13 and 18 type-I introns that likely evolved through a still-active birth and death process mediated by intron-encoded homing endonucleases that began before the Faustovirus radiation. Genome-wide alignments indicated that despite genomes retaining high levels of gene collinearity, the central region containing the MCP gene together with the extremities of the chromosomes evolved at a faster rate due to increased indel accumulation and local rearrangements. The fluctuation of the nucleotide composition along the Faustovirus (FV) genomes is mostly imprinted by the consistent nucleotide bias of coding sequences and provided no evidence for a single DNA replication origin like in circular bacterial genomes. Full article
(This article belongs to the Section Viruses of Plants, Fungi and Protozoa)
Show Figures

Figure 1

9 pages, 2552 KiB  
Communication
Antiviral Effects of Hydroxychloroquine and Type I Interferon on In Vitro Fatal Feline Coronavirus Infection
by Tomomi Takano, Kumi Satoh, Tomoyoshi Doki, Taishi Tanabe and Tsutomu Hohdatsu
Viruses 2020, 12(5), 576; https://doi.org/10.3390/v12050576 - 24 May 2020
Cited by 13 | Viewed by 5407
Abstract
Feline infectious peritonitis (FIP) is a viral disease with a high morbidity and mortality by the FIP virus (FIPV, virulent feline coronavirus). Several antiviral drugs for FIP have been identified, but many of these are expensive and not available in veterinary medicine. Hydroxychloroquine [...] Read more.
Feline infectious peritonitis (FIP) is a viral disease with a high morbidity and mortality by the FIP virus (FIPV, virulent feline coronavirus). Several antiviral drugs for FIP have been identified, but many of these are expensive and not available in veterinary medicine. Hydroxychloroquine (HCQ) is a drug approved by several countries to treat malaria and immune-mediated diseases in humans, and its antiviral effects on other viral infections (e.g., SARS-CoV-2, dengue virus) have been confirmed. We investigated whether HCQ in association with interferon-ω (IFN-ω) is effective for FIPV in vitro. A total of 100 μM of HCQ significantly inhibited the replication of types I and II FIPV. Interestingly, the combination of 100 μM of HCQ and 104 U/mL of recombinant feline IFN-ω (rfIFN-ω, veterinary registered drug) increased its antiviral activity against type I FIPV infection. Our study suggested that HCQ and rfIFN-ω are applicable for treatment of FIP. Further clinical studies are needed to verify the combination of HCQ and rIFN-ω will be effective and safe treatment for cats with FIP. Full article
(This article belongs to the Special Issue Viral Infections in Companion Animals)
Show Figures

Figure 1

12 pages, 374 KiB  
Article
Tolerance of Honey Bees to Varroa Mite in the Absence of Deformed Wing Virus
by John M. K. Roberts, Nelson Simbiken, Chris Dale, Joel Armstrong and Denis L. Anderson
Viruses 2020, 12(5), 575; https://doi.org/10.3390/v12050575 - 23 May 2020
Cited by 27 | Viewed by 6753
Abstract
The global spread of the parasitic mite Varroa destructor has emphasized the significance of viruses as pathogens of honey bee (Apis mellifera) populations. In particular, the association of deformed wing virus (DWV) with V. destructor and its devastating effect on honey [...] Read more.
The global spread of the parasitic mite Varroa destructor has emphasized the significance of viruses as pathogens of honey bee (Apis mellifera) populations. In particular, the association of deformed wing virus (DWV) with V. destructor and its devastating effect on honey bee colonies has led to that virus now becoming one of the most well-studied insect viruses. However, there has been no opportunity to examine the effects of Varroa mites without the influence of DWV. In Papua New Guinea (PNG), the sister species, V. jacobsoni, has emerged through a host-shift to reproduce on the local A. mellifera population. After initial colony losses, beekeepers have maintained colonies without chemicals for more than a decade, suggesting that this bee population has an unknown mite tolerance mechanism. Using high throughput sequencing (HTS) and target PCR detection, we investigated whether the viral landscape of the PNG honey bee population is the underlying factor responsible for mite tolerance. We found A. mellifera and A. cerana from PNG and nearby Solomon Islands were predominantly infected by sacbrood virus (SBV), black queen cell virus (BQCV) and Lake Sinai viruses (LSV), with no evidence for any DWV strains. V. jacobsoni was infected by several viral homologs to recently discovered V. destructor viruses, but Varroa jacobsoni rhabdovirus-1 (ARV-1 homolog) was the only virus detected in both mites and honey bees. We conclude from these findings that A. mellifera in PNG may tolerate V. jacobsoni because the damage from parasitism is significantly reduced without DWV. This study also provides further evidence that DWV does not exist as a covert infection in all honey bee populations, and remaining free of this serious viral pathogen can have important implications for bee health outcomes in the face of Varroa. Full article
(This article belongs to the Special Issue Advances in Honey Bee Virus Research)
Show Figures

Figure 1

21 pages, 3901 KiB  
Article
Unexpected Genetic Diversity of Two Novel Swine MRVs in Italy
by Lara Cavicchio, Luca Tassoni, Gianpiero Zamperin, Mery Campalto, Marilena Carrino, Stefania Leopardi, Paola De Benedictis and Maria Serena Beato
Viruses 2020, 12(5), 574; https://doi.org/10.3390/v12050574 - 22 May 2020
Cited by 5 | Viewed by 2930
Abstract
Mammalian Orthoreoviruses (MRV) are segmented dsRNA viruses in the family Reoviridae. MRVs infect mammals and cause asymptomatic respiratory, gastro-enteric and, rarely, encephalic infections. MRVs are divided into at least three serotypes: MRV1, MRV2 and MRV3. In Europe, swine MRV (swMRV) was first [...] Read more.
Mammalian Orthoreoviruses (MRV) are segmented dsRNA viruses in the family Reoviridae. MRVs infect mammals and cause asymptomatic respiratory, gastro-enteric and, rarely, encephalic infections. MRVs are divided into at least three serotypes: MRV1, MRV2 and MRV3. In Europe, swine MRV (swMRV) was first isolated in Austria in 1998 and subsequently reported more than fifteen years later in Italy. In the present study, we characterized two novel reassortant swMRVs identified in one same Italian farm over two years. The two viruses shared the same genetic backbone but showed evidence of reassortment in the S1, S4, M2 segments and were therefore classified into two serotypes: MRV3 in 2016 and MRV2 in 2018. A genetic relation to pig, bat and human MRVs and other unknown sources was identified. A considerable genetic diversity was observed in the Italian MRV3 and MRV2 compared to other available swMRVs. The S1 protein presented unique amino acid signatures in both swMRVs, with unexpected frequencies for MRV2. The remaining genes formed distinct and novel genetic groups that revealed a geographically related evolution of swMRVs in Italy. This is the first report of the complete molecular characterization of novel reassortant swMRVs in Italy and Europe, which suggests a greater genetic diversity of swMRVs never identified before. Full article
(This article belongs to the Special Issue Reoviruses)
Show Figures

Figure 1

11 pages, 3383 KiB  
Article
First crAss-Like Phage Genome Encoding the Diversity-Generating Retroelement (DGR)
by Vera Morozova, Mikhail Fofanov, Nina Tikunova, Igor Babkin, Vitaliy V. Morozov and Artem Tikunov
Viruses 2020, 12(5), 573; https://doi.org/10.3390/v12050573 - 22 May 2020
Cited by 10 | Viewed by 3762
Abstract
A new crAss-like genome encoding diversity-generating retroelement (DGR) was found in the fecal virome of a healthy volunteer. The genome of the phage referred to as the crAssphage LMMB, belonged to the candidate genus I of the AlphacrAssvirinae subfamily. The DGR-cassette of the [...] Read more.
A new crAss-like genome encoding diversity-generating retroelement (DGR) was found in the fecal virome of a healthy volunteer. The genome of the phage referred to as the crAssphage LMMB, belonged to the candidate genus I of the AlphacrAssvirinae subfamily. The DGR-cassette of the crAssphage LMMB contained all the essential elements: the gene encoding reverse transcriptase (RT), the target gene (TG) encoding the tail-collar fiber protein, and variable and template repeats (VR and TR) with IMH (initiation of mutagenic homing) and IMH* sequences at the 3′-end of the VR and TR, respectively. Architecture of the DGR-cassette was TG-VR(IMH)-TR(IMH*)-RT and an accessory variable determinant (avd) was absent from the cassette. Analysis of 91 genomes and genome fragments from genus I of the AlphacrAssvirinae showed that 15 (16%) of the genomes had DGRs with the same architecture as the crAssphage LMMB, while 66 of the genomes contained incomplete DGR-cassettes or some elements of the DGR. Full article
(This article belongs to the Section Bacterial Viruses)
Show Figures

Figure 1

24 pages, 3883 KiB  
Article
Development, Characterization, and Application of Two Reporter-Expressing Recombinant Zika Viruses
by Sang-Im Yun, Byung-Hak Song, Michael E. Woolley, Jordan C. Frank, Justin G. Julander and Young-Min Lee
Viruses 2020, 12(5), 572; https://doi.org/10.3390/v12050572 - 22 May 2020
Cited by 8 | Viewed by 3229
Abstract
Zika virus (ZIKV), a mosquito-borne transplacentally transmissible flavivirus, is an enveloped virus with an ~10.8 kb plus-strand RNA genome that can cause neurological disease. To facilitate the identification of potential antivirals, we developed two reporter-expressing ZIKVs, each capable of expressing an enhanced green [...] Read more.
Zika virus (ZIKV), a mosquito-borne transplacentally transmissible flavivirus, is an enveloped virus with an ~10.8 kb plus-strand RNA genome that can cause neurological disease. To facilitate the identification of potential antivirals, we developed two reporter-expressing ZIKVs, each capable of expressing an enhanced green fluorescent protein or an improved luminescent NanoLuc luciferase. First, a full-length functional ZIKV cDNA clone was engineered as a bacterial artificial chromosome, with each reporter gene under the cap-independent translational control of a cardiovirus-derived internal ribosome entry site inserted downstream of the single open reading frame of the viral genome. Two reporter-expressing ZIKVs were then generated by transfection of ZIKV-susceptible BHK-21 cells with infectious RNAs derived by in vitro run-off transcription from the respective cDNAs. As compared to the parental virus, the two reporter-expressing ZIKVs grew to lower titers with slower growth kinetics and formed smaller foci; however, they displayed a genome-wide viral protein expression profile identical to that of the parental virus, except for two previously unrecognized larger forms of the C and NS1 proteins. We then used the NanoLuc-expressing ZIKV to assess the in vitro antiviral activity of three inhibitors (T-705, NITD-008, and ribavirin). Altogether, our reporter-expressing ZIKVs represent an excellent molecular tool for the discovery of novel antivirals. Full article
(This article belongs to the Special Issue Flavivirus Replication and Pathogenesis)
Show Figures

Figure 1

22 pages, 1644 KiB  
Review
The Role of Extracellular Vesicles as Allies of HIV, HCV and SARS Viruses
by Flavia Giannessi, Alessandra Aiello, Francesca Franchi, Zulema Antonia Percario and Elisabetta Affabris
Viruses 2020, 12(5), 571; https://doi.org/10.3390/v12050571 - 22 May 2020
Cited by 34 | Viewed by 13505
Abstract
Extracellular vesicles (EVs) are lipid bilayer-enclosed entities containing proteins and nucleic acids that mediate intercellular communication, in both physiological and pathological conditions. EVs resemble enveloped viruses in both structural and functional aspects. In full analogy with viral biogenesis, some of these vesicles are [...] Read more.
Extracellular vesicles (EVs) are lipid bilayer-enclosed entities containing proteins and nucleic acids that mediate intercellular communication, in both physiological and pathological conditions. EVs resemble enveloped viruses in both structural and functional aspects. In full analogy with viral biogenesis, some of these vesicles are generated inside cells and, once released into the extracellular milieu, are called “exosomes”. Others bud from the plasma membrane and are generally referred to as “microvesicles”. In this review, we will discuss the state of the art of the current studies on the relationship between EVs and viruses and their involvement in three important viral infections caused by HIV, HCV and Severe Acute Respiratory Syndrome (SARS) viruses. HIV and HCV are two well-known pathogens that hijack EVs content and release to create a suitable environment for viral infection. SARS viruses are a new entry in the world of EVs studies, but are equally important in this historical framework. A thorough knowledge of the involvement of the EVs in viral infections could be helpful for the development of new therapeutic strategies to counteract different pathogens. Full article
(This article belongs to the Special Issue Viruses and Extracellular Vesicles)
Show Figures

Figure 1

19 pages, 2433 KiB  
Review
Molecular, Evolutionary, and Structural Analysis of the Terminal Protein Domain of Hepatitis B Virus Polymerase, a Potential Drug Target
by Timothy S. Buhlig, Anastasia F. Bowersox, Daniel L. Braun, Desiree N. Owsley, Kortney D. James, Alfredo J. Aranda, Connor D. Kendrick, Nicole A. Skalka and Daniel N. Clark
Viruses 2020, 12(5), 570; https://doi.org/10.3390/v12050570 - 22 May 2020
Cited by 9 | Viewed by 5792
Abstract
Approximately 250 million people are living with chronic hepatitis B virus (HBV) infections, which claim nearly a million lives annually. The target of all current HBV drug therapies (except interferon) is the viral polymerase; specifically, the reverse transcriptase domain. Although no high-resolution structure [...] Read more.
Approximately 250 million people are living with chronic hepatitis B virus (HBV) infections, which claim nearly a million lives annually. The target of all current HBV drug therapies (except interferon) is the viral polymerase; specifically, the reverse transcriptase domain. Although no high-resolution structure exists for the HBV polymerase, several recent advances have helped to map its functions to specific domains. The terminal protein (TP) domain, unique to hepadnaviruses such as HBV, has been implicated in the binding and packaging of the viral RNA, as well as the initial priming of and downstream synthesis of viral DNA—all of which make the TP domain an attractive novel drug target. This review encompasses three types of analysis: sequence conservation analysis, secondary structure prediction, and the results from mutational studies. It is concluded that the TP domain of HBV polymerase is comprised of seven subdomains (three unstructured loops and four helical regions) and that all three loop subdomains and Helix 5 are the major determinants of HBV function within the TP domain. Further studies, such as modeling inhibitors of these critical TP subdomains, will advance the TP domain of HBV polymerase as a therapeutic drug target in the progression towards a cure. Full article
(This article belongs to the Special Issue Hepatitis B Virus: From Diagnostics to Treatments)
Show Figures

Figure 1

16 pages, 2481 KiB  
Communication
Polyinosinic: Polycytidylic Acid and Murine Cytomegalovirus Modulate Expression of Murine IL-10 and IL-21 in White Adipose Tissue
by Pablo Garcia-Valtanen, Ruth Marian Guzman-Genuino, John D. Hayball and Kerrilyn R. Diener
Viruses 2020, 12(5), 569; https://doi.org/10.3390/v12050569 - 22 May 2020
Cited by 3 | Viewed by 2330
Abstract
White adipose tissue (WAT) produces interleukin-10 and other immune suppressors in response to pathogen-associated molecular patterns (PAMPs). It also homes a subset of B-cells specialized in the production of IL-10, referred to as regulatory B-cells. We investigated whether viral stimuli, polyinosinic: polycytidylic acid [...] Read more.
White adipose tissue (WAT) produces interleukin-10 and other immune suppressors in response to pathogen-associated molecular patterns (PAMPs). It also homes a subset of B-cells specialized in the production of IL-10, referred to as regulatory B-cells. We investigated whether viral stimuli, polyinosinic: polycytidylic acid (poly(I:C)) or whole replicative murine cytomegalovirus (MCMV), could stimulate the expression of IL-10 in murine WAT using in vivo and ex vivo approaches. Our results showed that in vivo responses to systemic administration of poly(I:C) resulted in high levels of endogenously-produced IL-10 and IL-21 in WAT. In ex vivo WAT explants, a subset of B-cells increased their endogenous IL-10 expression in response to poly(I:C). Finally, MCMV replication in WAT explants resulted in decreased IL-10 levels, opposite to the effect seen with poly(I:C). Moreover, downregulation of IL-10 correlated with relatively lower number of Bregs. To our knowledge, this is the first report of IL-10 expression by WAT and WAT-associated B-cells in response to viral stimuli. Full article
(This article belongs to the Section Animal Viruses)
Show Figures

Figure 1

19 pages, 2746 KiB  
Article
Rous Sarcoma Virus Genomic RNA Dimerization Capability In Vitro Is Not a Prerequisite for Viral Infectivity
by Shuohui Liu, Rebecca Kaddis Maldonado, Tiffiny Rye-McCurdy, Christiana Binkley, Aissatou Bah, Eunice C. Chen, Breanna L. Rice, Leslie J. Parent and Karin Musier-Forsyth
Viruses 2020, 12(5), 568; https://doi.org/10.3390/v12050568 - 22 May 2020
Cited by 9 | Viewed by 4258
Abstract
Retroviruses package their full-length, dimeric genomic RNA (gRNA) via specific interactions between the Gag polyprotein and a “Ψ” packaging signal located in the gRNA 5′-UTR. Rous sarcoma virus (RSV) gRNA has a contiguous, well-defined Ψ element, that directs the packaging of heterologous RNAs [...] Read more.
Retroviruses package their full-length, dimeric genomic RNA (gRNA) via specific interactions between the Gag polyprotein and a “Ψ” packaging signal located in the gRNA 5′-UTR. Rous sarcoma virus (RSV) gRNA has a contiguous, well-defined Ψ element, that directs the packaging of heterologous RNAs efficiently. The simplicity of RSV Ψ makes it an informative model to examine the mechanism of retroviral gRNA packaging, which is incompletely understood. Little is known about the structure of dimerization initiation sites or specific Gag interaction sites of RSV gRNA. Using selective 2′-hydroxyl acylation analyzed by primer extension (SHAPE), we probed the secondary structure of the entire RSV 5′-leader RNA for the first time. We identified a putative bipartite dimerization initiation signal (DIS), and mutation of both sites was required to significantly reduce dimerization in vitro. These mutations failed to reduce viral replication, suggesting that in vitro dimerization results do not strictly correlate with in vivo infectivity, possibly due to additional RNA interactions that maintain the dimers in cells. UV crosslinking-coupled SHAPE (XL-SHAPE) was next used to determine Gag-induced RNA conformational changes, revealing G218 as a critical Gag contact site. Overall, our results suggest that disruption of either of the DIS sequences does not reduce virus replication and reveal specific sites of Gag–RNA interactions. Full article
(This article belongs to the Special Issue The 11th International Retroviral Nucleocapsid and Assembly Symposium)
Show Figures

Figure 1

19 pages, 15789 KiB  
Article
Genome Analysis of a Novel Tembusu Virus in Taiwan
by Shih-Huan Peng, Chien-Ling Su, Mei-Chun Chang, Huai-Chin Hu, Su-Lin Yang and Pei-Yun Shu
Viruses 2020, 12(5), 567; https://doi.org/10.3390/v12050567 - 22 May 2020
Cited by 20 | Viewed by 5580
Abstract
We identified and isolated a novel Tembusu virus (TMUV) strain TP1906 (TMUV-TP1906) from a Culex annulus mosquito pool collected from the northern part of Taiwan in 2019. The TMUV-TP1906 genome is a 10,990-nucleotide-long, positive-sense, single-stranded RNA, consisting of a single open reading frame [...] Read more.
We identified and isolated a novel Tembusu virus (TMUV) strain TP1906 (TMUV-TP1906) from a Culex annulus mosquito pool collected from the northern part of Taiwan in 2019. The TMUV-TP1906 genome is a 10,990-nucleotide-long, positive-sense, single-stranded RNA, consisting of a single open reading frame (ORF) encoding a polyprotein of 3425 amino acids, with 5′ and 3′ untranslated regions (UTRs) of 94 and 618 nucleotides, respectively. The nucleotide sequence of the TMUV-TP1906 of ORF exhibited 93.71% and 91.27% similarity with Sitiawan virus (STWV) and the TMUV prototype strain MM1775, respectively. The 3′-UTR variable region of TMUV-TP1906 showed nucleotide sequence divergence with other TMUV strains. Phylogenetic analysis of the complete ORF and polyprotein sequences revealed that TMUV-TP1906 is most closely related to STWV which causes encephalitis and retarded growth in chickens. We found that the TMUV-TP1906 caused a cytopathic effect (CPE) in the DF-1 chicken fibroblast cell line, while no apparent CPE was observed in Vero and C6/36 cells. In this study, we first identified and isolated a novel TMUV strain in Taiwan. In addition, to our knowledge, it is the first time that the TMUV strain was isolated from the Cx. annulus mosquitoes. Further study is warranted to investigate the host range and virulence of TMUV-TP1906. Full article
(This article belongs to the Section Animal Viruses)
Show Figures

Figure 1

19 pages, 1045 KiB  
Review
Pesticide–Virus Interactions in Honey Bees: Challenges and Opportunities for Understanding Drivers of Bee Declines
by Gyan P. Harwood and Adam G. Dolezal
Viruses 2020, 12(5), 566; https://doi.org/10.3390/v12050566 - 21 May 2020
Cited by 31 | Viewed by 6076
Abstract
Honey bees are key agricultural pollinators, but beekeepers continually suffer high annual colony losses owing to a number of environmental stressors, including inadequate nutrition, pressures from parasites and pathogens, and exposure to a wide variety of pesticides. In this review, we examine how [...] Read more.
Honey bees are key agricultural pollinators, but beekeepers continually suffer high annual colony losses owing to a number of environmental stressors, including inadequate nutrition, pressures from parasites and pathogens, and exposure to a wide variety of pesticides. In this review, we examine how two such stressors, pesticides and viruses, may interact in additive or synergistic ways to affect honey bee health. Despite what appears to be a straightforward comparison, there is a dearth of studies examining this issue likely owing to the complexity of such interactions. Such complexities include the wide array of pesticide chemical classes with different modes of actions, the coupling of many bee viruses with ectoparasitic Varroa mites, and the intricate social structure of honey bee colonies. Together, these issues pose a challenge to researchers examining the effects pesticide-virus interactions at both the individual and colony level. Full article
(This article belongs to the Special Issue Advances in Honey Bee Virus Research)
Show Figures

Figure 1

13 pages, 1859 KiB  
Article
Hepatitis B Virus-X Downregulates Expression of Selenium Binding Protein 1
by Young-Man Lee, Soojin Kim, Ran-Young Park and Yeon-Soo Kim
Viruses 2020, 12(5), 565; https://doi.org/10.3390/v12050565 - 20 May 2020
Cited by 7 | Viewed by 3206
Abstract
Selenium binding protein 1 (SELENBP1) has been known to be reduced in various types cancer, and epigenetic change is shown to be likely to account for the reduction of SELNEBP1 expression. With cDNA microarray comparative analysis, we found that SELENBP1 is markedly decreased [...] Read more.
Selenium binding protein 1 (SELENBP1) has been known to be reduced in various types cancer, and epigenetic change is shown to be likely to account for the reduction of SELNEBP1 expression. With cDNA microarray comparative analysis, we found that SELENBP1 is markedly decreased in hepatitis B virus-X (HBx)-expressing cells. To clarify the effect of HBx on SELENBP1 expression, we compared the expression levels of SELENBP1 mRNA and protein by semi-quantitative RT-PCR, Northern blot, and Western blot. As expected, SELENBP1 expression was shown to be reduced in cells expressing HBx, and reporter gene analysis showed that the SELENBP1 promoter is repressed by HBx. In addition, the stepwise deletion of 5′ flanking promoter sequences resulted in a gradual decrease in basal promoter activity and inhibition of SELENBP1 expression by HBx. Moreover, immunohistochemistry on tissue microarrays containing 60 pairs of human liver tissue showed decreased intensity of SELENBP1 in tumor tissues as compared with their matched non-tumor liver tissues. Taken together, our findings suggest that inhibition of SELENBP1 expression by HBx might act as one of the causes in the development of hepatocellular carcinoma caused by HBV infection. Full article
(This article belongs to the Special Issue Hepatitis B Virus: From Diagnostics to Treatments)
Show Figures

Figure 1

15 pages, 2274 KiB  
Article
An Elvitegravir Nanoformulation Crosses the Blood–Brain Barrier and Suppresses HIV-1 Replication in Microglia
by Yuqing Gong, Kaining Zhi, Prashanth K. B. Nagesh, Namita Sinha, Pallabita Chowdhury, Hao Chen, Santhi Gorantla, Murali M. Yallapu and Santosh Kumar
Viruses 2020, 12(5), 564; https://doi.org/10.3390/v12050564 - 20 May 2020
Cited by 23 | Viewed by 3898
Abstract
Even with an efficient combination of antiretroviral therapy (ART), which significantly decreases viral load in human immunodeficiency virus type 1 (HIV-1)-positive individuals, the occurrence of HIV-1-associated neurocognitive disorders (HAND) still exists. Microglia have been shown to have a significant role in HIV-1 replication [...] Read more.
Even with an efficient combination of antiretroviral therapy (ART), which significantly decreases viral load in human immunodeficiency virus type 1 (HIV-1)-positive individuals, the occurrence of HIV-1-associated neurocognitive disorders (HAND) still exists. Microglia have been shown to have a significant role in HIV-1 replication in the brain and in subsequent HAND pathogenesis. However, due to the limited ability of ART drugs to cross the blood–brain barrier (BBB) after systemic administration, in addition to efflux transporter expression on microglia, the efficacy of ART drugs for viral suppression in microglia is suboptimal. Previously, we developed novel poly (lactic-co-glycolic acid) (PLGA)-based elvitegravir nanoparticles (PLGA-EVG NPs), which showed improved BBB penetration in vitro and improved viral suppression in HIV-1-infected primary macrophages, after crossing an in vitro BBB model. Our objective in the current study was to evaluate the efficacy of our PLGA-EVG NPs in an important central nervous system (CNS) HIV-1 reservoir, i.e., microglia. In this study, we evaluated the cyto-compatibility of the PLGA-EVG NPs in microglia, using an XTT (2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide) assay and cellular morphology observation. We also studied the endocytosis pathway and the subcellular localization of PLGA NPs in microglia, using various endocytosis inhibitors and subcellular localization markers. We determined the ability of PLGA-EVG NPs to suppress HIV-1 replication in microglia, after crossing an in vitro BBB model. We also studied the drug levels in mouse plasma and brain tissue, using immunodeficient NOD scid gamma (NSG) mice, and performed a pilot study, to evaluate the efficacy of PLGA-EVG NPs on viral suppression in the CNS, using an HIV-1 encephalitic (HIVE) mouse model. From our results, the PLGA-EVG NPs showed ~100% biocompatibility with microglia, as compared to control cells. The internalization of PLGA NPs in microglia occurred through caveolae-/clathrin-mediated endocytosis. PLGA NPs can also escape from endo-lysosomal compartments and deliver the therapeutics to cells efficiently. More importantly, the PLGA-EVG NPs were able to show ~25% more viral suppression in HIV-1-infected human-monocyte-derived microglia-like cells after crossing the in vitro BBB compared to the EVG native drug, without altering BBB integrity. PLGA-EVG NPs also showed a ~two-fold higher level in mouse brain and a trend of decreasing CNS HIV-1 viral load in HIV-1-infected mice. Overall, these results help us to create a safe and efficient drug delivery method to target HIV-1 reservoirs in the CNS, for potential clinical use. Full article
(This article belongs to the Special Issue Antiretroviral Drug Development and HIV Cure Research)
Show Figures

Graphical abstract

15 pages, 5150 KiB  
Article
The gp44 Ejection Protein of Staphylococcus aureus Bacteriophage 80α Binds to the Ends of the Genome and Protects It from Degradation
by Keith A Manning and Terje Dokland
Viruses 2020, 12(5), 563; https://doi.org/10.3390/v12050563 - 20 May 2020
Cited by 5 | Viewed by 2969
Abstract
Bacteriophage 80α is a representative of a class of temperate phages that infect Staphylococcus aureus and other Gram-positive bacteria. Many of these phages carry genes encoding toxins and other virulence factors. This phage, 80α, is also involved in high-frequency mobilization of S. aureus [...] Read more.
Bacteriophage 80α is a representative of a class of temperate phages that infect Staphylococcus aureus and other Gram-positive bacteria. Many of these phages carry genes encoding toxins and other virulence factors. This phage, 80α, is also involved in high-frequency mobilization of S. aureus pathogenicity islands (SaPIs), mobile genetic elements that carry virulence factor genes. Bacteriophage 80α encodes a minor capsid protein, gp44, between the genes for the portal protein and major capsid protein. Gp44 is essential for a productive infection by 80α but not for transduction of SaPIs or plasmids. We previously demonstrated that gp44 is an ejection protein that acts to promote progression to the lytic cycle upon infection and suggested that the protein might act as an anti-repressor of CI in the lytic–lysogenic switch. However, an 80α Δ44 mutant also exhibited a reduced rate of lysogeny. Here, we show that gp44 is a non-specific DNA binding protein with affinity for the blunt ends of linear DNA. Our data suggest a model in which gp44 promotes circularization of the genome after injection into the host cell, a key initial step both for lytic growth and for the establishment of lysogeny. Full article
(This article belongs to the Section Bacterial Viruses)
Show Figures

Figure 1

17 pages, 1858 KiB  
Article
Evaluation of Viral RNA Recovery Methods in Vectors by Metagenomic Sequencing
by Joyce Odeke Akello, Stephen L. Leib, Olivier Engler and Christian Beuret
Viruses 2020, 12(5), 562; https://doi.org/10.3390/v12050562 - 19 May 2020
Viewed by 4300
Abstract
Identification and characterization of viral genomes in vectors including ticks and mosquitoes positive for pathogens of great public health concern using metagenomic next generation sequencing (mNGS) has challenges. One such challenge is the ability to efficiently recover viral RNA which is typically dependent [...] Read more.
Identification and characterization of viral genomes in vectors including ticks and mosquitoes positive for pathogens of great public health concern using metagenomic next generation sequencing (mNGS) has challenges. One such challenge is the ability to efficiently recover viral RNA which is typically dependent on sample processing. We evaluated the quantitative effect of six different extraction methods in recovering viral RNA in vectors using negative tick homogenates spiked with serial dilutions of tick-borne encephalitis virus (TBEV) and surrogate Langat virus (LGTV). Evaluation was performed using qPCR and mNGS. Sensitivity and proof of concept of optimal method was tested using naturally positive TBEV tick homogenates and positive dengue, chikungunya, and Zika virus mosquito homogenates. The amount of observed viral genome copies, percentage of mapped reads, and genome coverage varied among different extractions methods. The developed Method 5 gave a 120.8-, 46-, 2.5-, 22.4-, and 9.9-fold increase in the number of viral reads mapping to the expected pathogen in comparison to Method 1, 2, 3, 4, and 6, respectively. Our developed Method 5 termed ROVIV (Recovery of Viruses in Vectors) greatly improved viral RNA recovery and identification in vectors using mNGS. Therefore, it may be a more sensitive method for use in arbovirus surveillance. Full article
(This article belongs to the Special Issue Emerging Arboviruses)
Show Figures

Figure 1

13 pages, 1816 KiB  
Article
West Nile Virus Lineage 2 Vector Competence of Indigenous Culex and Aedes Mosquitoes from Germany at Temperate Climate Conditions
by Cora M. Holicki, Ute Ziegler, Cristian Răileanu, Helge Kampen, Doreen Werner, Jana Schulz, Cornelia Silaghi, Martin H. Groschup and Ana Vasić
Viruses 2020, 12(5), 561; https://doi.org/10.3390/v12050561 - 19 May 2020
Cited by 25 | Viewed by 3645
Abstract
West Nile virus (WNV) is a widespread zoonotic arbovirus and a threat to public health in Germany since its first emergence in 2018. It has become of particular relevance in Germany in 2019 due to its rapid geographical spread and the detection of [...] Read more.
West Nile virus (WNV) is a widespread zoonotic arbovirus and a threat to public health in Germany since its first emergence in 2018. It has become of particular relevance in Germany in 2019 due to its rapid geographical spread and the detection of the first human clinical cases. The susceptibility of indigenous Culex pipiens (biotypes pipiens and molestus) for a German WNV lineage 2 strain was experimentally compared to that of Serbian Cx. pipiens biotype molestus and invasive German Aedes albopictus. All tested populations proved to be competent laboratory vectors of WNV. Culex pipiens biotype pipiens displayed the highest transmission efficiencies (40.0%–52.9%) at 25 °C. This biotype was also able to transmit WNV at 18 °C (transmission efficiencies of 4.4%–8.3%), proving that temperate climates in Central and Northern Europe may support WNV circulation. Furthermore, due to their feeding behaviors, Cx. pipiens biotype molestus and Ae. albopictus can act as “bridge vectors”, leading to human WNV infections. Full article
(This article belongs to the Special Issue Emerging Arboviruses)
Show Figures

Figure 1

24 pages, 6139 KiB  
Article
Drug Resistance Prediction Using Deep Learning Techniques on HIV-1 Sequence Data
by Margaret C. Steiner, Keylie M. Gibson and Keith A. Crandall
Viruses 2020, 12(5), 560; https://doi.org/10.3390/v12050560 - 19 May 2020
Cited by 28 | Viewed by 5442
Abstract
The fast replication rate and lack of repair mechanisms of human immunodeficiency virus (HIV) contribute to its high mutation frequency, with some mutations resulting in the evolution of resistance to antiretroviral therapies (ART). As such, studying HIV drug resistance allows for real-time evaluation [...] Read more.
The fast replication rate and lack of repair mechanisms of human immunodeficiency virus (HIV) contribute to its high mutation frequency, with some mutations resulting in the evolution of resistance to antiretroviral therapies (ART). As such, studying HIV drug resistance allows for real-time evaluation of evolutionary mechanisms. Characterizing the biological process of drug resistance is also critically important for sustained effectiveness of ART. Investigating the link between “black box” deep learning methods applied to this problem and evolutionary principles governing drug resistance has been overlooked to date. Here, we utilized publicly available HIV-1 sequence data and drug resistance assay results for 18 ART drugs to evaluate the performance of three architectures (multilayer perceptron, bidirectional recurrent neural network, and convolutional neural network) for drug resistance prediction, jointly with biological analysis. We identified convolutional neural networks as the best performing architecture and displayed a correspondence between the importance of biologically relevant features in the classifier and overall performance. Our results suggest that the high classification performance of deep learning models is indeed dependent on drug resistance mutations (DRMs). These models heavily weighted several features that are not known DRM locations, indicating the utility of model interpretability to address causal relationships in viral genotype-phenotype data. Full article
Show Figures

Figure 1

16 pages, 2769 KiB  
Article
Efficacy of Lytic Phage Cocktails on Staphylococcus aureus and Pseudomonas aeruginosa in Mixed-Species Planktonic Cultures and Biofilms
by Legesse Garedew Kifelew, Morgyn S. Warner, Sandra Morales, Nicky Thomas, David L. Gordon, James G. Mitchell and Peter G. Speck
Viruses 2020, 12(5), 559; https://doi.org/10.3390/v12050559 - 18 May 2020
Cited by 21 | Viewed by 4216
Abstract
The efficacy of phages in multispecies infections has been poorly examined. The in vitro lytic efficacies of phage cocktails AB-SA01, AB-PA01, which target Staphylococcus aureus and Pseudomonas aeruginosa, respectively, and their combination against their hosts were evaluated in S. aureus and P. aeruginosa [...] Read more.
The efficacy of phages in multispecies infections has been poorly examined. The in vitro lytic efficacies of phage cocktails AB-SA01, AB-PA01, which target Staphylococcus aureus and Pseudomonas aeruginosa, respectively, and their combination against their hosts were evaluated in S. aureus and P. aeruginosa mixed-species planktonic and biofilm cultures. Green fluorescent protein (GFP)-labelled P. aeruginosa PAO1 and mCherry-labelled S. aureus KUB7 laboratory strains and clinical isolates were used as target bacteria. During real-time monitoring using fluorescence spectrophotometry, the density of mCherry S. aureus KUB7 and GFP P. aeruginosa PAO1 significantly decreased when treated by their respective phage cocktail, a mixture of phage cocktails, and gentamicin. The decrease in bacterial density measured by relative fluorescence strongly associated with the decline in bacterial cell counts. This microplate-based mixed-species culture treatment monitoring through spectrophotometry combine reproducibility, rapidity, and ease of management. It is amenable to high-throughput screening for phage cocktail efficacy evaluation. Each phage cocktail, the combination of the two phage cocktails, and tetracycline produced significant biofilm biomass reduction in mixed-species biofilms. This study result shows that these phage cocktails lyse their hosts in the presence of non-susceptible bacteria. These data support the use of phage cocktails therapy in infections with multiple bacterial species. Full article
(This article belongs to the Section Bacterial Viruses)
Show Figures

Figure 1

15 pages, 28169 KiB  
Article
Administration of Defective Virus Inhibits Dengue Transmission into Mosquitoes
by Tarunendu Mapder, John Aaskov and Kevin Burrage
Viruses 2020, 12(5), 558; https://doi.org/10.3390/v12050558 - 18 May 2020
Cited by 2 | Viewed by 2564
Abstract
The host-vector shuttle and the bottleneck in dengue transmission is a significant aspect with regard to the study of dengue outbreaks. As mosquitoes require 100–1000 times more virus to become infected than human, the transmission of dengue virus from human to mosquito is [...] Read more.
The host-vector shuttle and the bottleneck in dengue transmission is a significant aspect with regard to the study of dengue outbreaks. As mosquitoes require 100–1000 times more virus to become infected than human, the transmission of dengue virus from human to mosquito is a vulnerability that can be targeted to improve disease control. In order to capture the heterogeneity in the infectiousness of an infected patient population towards the mosquito population, we calibrate a population of host-to-vector virus transmission models based on an experimentally quantified infected fraction of a mosquito population. Once the population of models is well-calibrated, we deploy a population of controls that helps to inhibit the human-to-mosquito transmission of the dengue virus indirectly by reducing the viral load in the patient body fluid. We use an optimal bang-bang control on the administration of the defective virus (transmissible interfering particles (TIPs)) to symptomatic patients in the course of their febrile period and observe the dynamics in successful reduction of dengue spread into mosquitoes. Full article
(This article belongs to the Special Issue Computational Biology of Viruses: From Molecules to Epidemics)
Show Figures

Figure 1

12 pages, 2841 KiB  
Article
Ethanol Extract of Caesalpinia decapetala Inhibits Influenza Virus Infection In Vitro and In Vivo
by Li Zhang, Jungang Chen, Chang Ke, Haiwei Zhang, Shoujun Zhang, Wei Tang, Chunlan Liu, Ge Liu, Si Chen, Ao Hu, Wenyu Sun, Yu Xiao, Minli Liu and Xulin Chen
Viruses 2020, 12(5), 557; https://doi.org/10.3390/v12050557 - 18 May 2020
Cited by 10 | Viewed by 3071
Abstract
Influenza virus infections can lead to viral pneumonia and acute respiratory distress syndrome in severe cases, causing significant morbidity and mortality and posing a great threat to human health. Because of the diversity of influenza virus strains and drug resistance to the current [...] Read more.
Influenza virus infections can lead to viral pneumonia and acute respiratory distress syndrome in severe cases, causing significant morbidity and mortality and posing a great threat to human health. Because of the diversity of influenza virus strains and drug resistance to the current direct antiviral agents, there have been no effective drugs as yet to cure all patients infected by influenza viruses. Natural products from plants contain compounds with diverse structures that have the potential to interact with multiple host and virus factors. In this study, we identified the ethanol extract of Caesalpinia decapetala (Roth) Alston (EEC) as an inhibitor against the replication of a panel of influenza A and B viruses both on human pulmonary epithelial A549 and human monocytic U937 cells. The animal study revealed that EEC administration reduces the weight loss and improves the survival rate of mice infected with lethal influenza virus. Also, EEC treatment attenuated lung injury and reduced virus titer significantly. In conclusion, we showed that EEC has antiviral activity both in vitro and in vivo, suggesting that the plant C. decapetala has the potential to be further developed as a resource of new anti-influenza drugs. Full article
(This article belongs to the Section Viral Immunology, Vaccines, and Antivirals)
Show Figures

Figure 1

18 pages, 567 KiB  
Opinion
External Quality Assessment Program for Next-Generation Sequencing-Based HIV Drug Resistance Testing: Logistical Considerations
by Hezhao Ji, Neil Parkin, Feng Gao, Thomas Denny, Cheryl Jennings, Paul Sandstrom and Rami Kantor
Viruses 2020, 12(5), 556; https://doi.org/10.3390/v12050556 - 18 May 2020
Cited by 7 | Viewed by 3093
Abstract
Next-generation sequencing (NGS) is likely to become the new standard method for HIV drug resistance (HIVDR) genotyping. Despite the significant advances in the development of wet-lab protocols and bioinformatic data processing pipelines, one often-missing critical component of an NGS HIVDR assay for clinical [...] Read more.
Next-generation sequencing (NGS) is likely to become the new standard method for HIV drug resistance (HIVDR) genotyping. Despite the significant advances in the development of wet-lab protocols and bioinformatic data processing pipelines, one often-missing critical component of an NGS HIVDR assay for clinical use is external quality assessment (EQA). EQA is essential for ensuring assay consistency and laboratory competency in performing routine biomedical assays, and the rollout of NGS HIVDR tests in clinical practice will require an EQA. In September 2019, the 2nd International Symposium on NGS HIVDR was held in Winnipeg, Canada. It convened a multidisciplinary panel of experts, including research scientists, clinicians, bioinformaticians, laboratory biologists, biostatisticians, and EQA experts. A themed discussion was conducted on EQA strategies towards such assays during the symposium. This article describes the logistical challenges identified and summarizes the opinions and recommendations derived from these discussions, which may inform the development of an inaugural EQA program for NGS HIVDR in the near future. Full article
(This article belongs to the Special Issue Next Generation Sequencing for HIV Drug Resistance Testing)
Show Figures

Figure 1

41 pages, 4555 KiB  
Review
HIV-1 Proviral Transcription and Latency in the New Era
by Ashutosh Shukla, Nora-Guadalupe P. Ramirez and Iván D’Orso
Viruses 2020, 12(5), 555; https://doi.org/10.3390/v12050555 - 18 May 2020
Cited by 26 | Viewed by 6375
Abstract
Three decades of extensive work in the HIV field have revealed key viral and host cell factors controlling proviral transcription. Various models of transcriptional regulation have emerged based on the collective information from in vitro assays and work in both immortalized and primary [...] Read more.
Three decades of extensive work in the HIV field have revealed key viral and host cell factors controlling proviral transcription. Various models of transcriptional regulation have emerged based on the collective information from in vitro assays and work in both immortalized and primary cell-based models. Here, we provide a recount of the past and current literature, highlight key regulatory aspects, and further describe potential limitations of previous studies. We particularly delve into critical steps of HIV gene expression including the role of the integration site, nucleosome positioning and epigenomics, and the transition from initiation to pausing and pause release. We also discuss open questions in the field concerning the generality of previous regulatory models to the control of HIV transcription in patients under suppressive therapy, including the role of the heterogeneous integration landscape, clonal expansion, and bottlenecks to eradicate viral persistence. Finally, we propose that building upon previous discoveries and improved or yet-to-be discovered technologies will unravel molecular mechanisms of latency establishment and reactivation in a “new era”. Full article
(This article belongs to the Special Issue HIV-1 Transcription Regulation)
Show Figures

Figure 1

10 pages, 804 KiB  
Article
Serological Immunity to Smallpox in New South Wales, Australia
by Valentina Costantino, Mallory J. Trent, John S. Sullivan, Mohana P. Kunasekaran, Richard Gray and Raina MacIntyre
Viruses 2020, 12(5), 554; https://doi.org/10.3390/v12050554 - 18 May 2020
Cited by 9 | Viewed by 4168
Abstract
The re-emergence of smallpox is an increasing and legitimate concern due to advances in synthetic biology. Vaccination programs against smallpox using the vaccinia virus vaccine ceased with the eradication of smallpox and, unlike many other countries, Australia did not use mass vaccinations. However, [...] Read more.
The re-emergence of smallpox is an increasing and legitimate concern due to advances in synthetic biology. Vaccination programs against smallpox using the vaccinia virus vaccine ceased with the eradication of smallpox and, unlike many other countries, Australia did not use mass vaccinations. However, vaccinated migrants contribute to population immunity. Testing for vaccinia antibodies is not routinely performed in Australia, and few opportunities exist to estimate the level of residual population immunity against smallpox. Serological data on population immunity in Australia could inform management plans against a smallpox outbreak. Vaccinia antibodies were measured in 2003 in regular plasmapheresis donors at the Australian Red Cross Blood Service from New South Wales (NSW). The data were analysed to estimate the proportion of Australians in NSW with detectable serological immunity to vaccinia. The primary object of this study was to measure neutralising antibody titres against vaccinia virus. Titre levels in donor samples were determined by plaque reduction assay. To estimate current levels of immunity to smallpox infection, the decline in geometric mean titres (GMT) over time was projected using two values for the antibody levels estimated on the basis of different times since vaccination. The results of this study suggest that there is minimal residual immunity to the vaccinia virus in the Australian population. Although humoral immunity is protective against orthopoxvirus infections, cell-mediated immunity and immunological memory likely also play roles, which are not quantified by antibody levels. These data provide an immunological snapshot of the NSW population, which could inform emergency preparedness planning and outbreak control, especially concerning the stockpiling of vaccinia vaccine. Full article
(This article belongs to the Section Animal Viruses)
Show Figures

Figure 1

7 pages, 219 KiB  
Article
Seroprevalence of Dromedary Camel HEV in Domestic and Imported Camels from Saudi Arabia
by Sherif Aly El-Kafrawy, Ahmed Mohamed Hassan, Mai Mohamed El-Daly, Ishtiaq Qadri, Ahmed Majdi Tolah, Tagreed Lafi Al-Subhi, Abdulrahman A. Alzahrani, Ghaleb A. Alsaaidi, Nabeela Al-Abdullah, Reham Mohammed Kaki, Tian-Cheng Li and Esam Ibraheem Azhar
Viruses 2020, 12(5), 553; https://doi.org/10.3390/v12050553 - 18 May 2020
Cited by 13 | Viewed by 3273
Abstract
Hepatitis E Virus (HEV) imposes a major health concern in areas with very poor sanitation in Africa and Asia. The pathogen is transmitted mainly through ingesting contaminated water or food, coming into contact with affected people, and blood transfusions. Very few reports including [...] Read more.
Hepatitis E Virus (HEV) imposes a major health concern in areas with very poor sanitation in Africa and Asia. The pathogen is transmitted mainly through ingesting contaminated water or food, coming into contact with affected people, and blood transfusions. Very few reports including old reports are available on the prevalence of HEV in Saudi Arabia in humans and no reports exist on HEV prevalence in camels. Dromedary camel trade and farming are increasing in Saudi Arabia with importation occurring unidirectionally from Africa to Saudi Arabia. DcHEV transmission to humans has been reported in one case from the United Arab Emeritus (UAE). This instigated us to perform this investigation of the seroprevalence of HEV in imported and domestic camels in Saudi Arabia. Serum samples were collected from imported and domestic camels. DcHEV-Abs were detected in collected sera using ELISA. The prevalence of DcHEV in the collected samples was 23.1% with slightly lower prevalence in imported camels than domestic camels (22.4% vs. 25.4%, p value = 0.3). Gender was significantly associated with the prevalence of HEV in the collected camels (p value = 0.015) where males (31.6%) were more infected than females (13.4%). This study is the first study to investigate the prevalence of HEV in dromedary camels from Saudi Arabia. The high seroprevalence of DcHEV in dromedaries might indicate their role as a zoonotic reservoir for viral infection to humans. Future HEV seroprevalence studies in humans are needed to investigate the role of DcHEV in the Saudi human population. Full article
(This article belongs to the Special Issue Hepatitis E Virus Molecular Epidemiology and Evolution)
19 pages, 1742 KiB  
Article
Phenotypic and Genotypic Comparison of a Live-Attenuated Genotype I Japanese Encephalitis Virus SD12-F120 Strain with Its Virulent Parental SD12 Strain
by Muhammad Naveed Anwar, Xin Wang, Muddassar Hameed, Abdul Wahaab, Chenxi Li, Mona Sharma, Linlin Pang, Muhammad Irfan Malik, Ke Liu, Beibei Li, Yafeng Qiu, Jianchao Wei and Zhiyong Ma
Viruses 2020, 12(5), 552; https://doi.org/10.3390/v12050552 - 16 May 2020
Cited by 6 | Viewed by 2799
Abstract
The phenotypic and genotypic characteristics of a live-attenuated genotype I (GI) strain (SD12-F120) of Japanese encephalitis virus (JEV) were compared with its virulent parental SD12 strain to gain an insight into the genetic changes acquired during the attenuation process. SD12-F120 formed smaller plaque [...] Read more.
The phenotypic and genotypic characteristics of a live-attenuated genotype I (GI) strain (SD12-F120) of Japanese encephalitis virus (JEV) were compared with its virulent parental SD12 strain to gain an insight into the genetic changes acquired during the attenuation process. SD12-F120 formed smaller plaque on BHK-21 cells and showed reduced replication in mouse brains compared with SD12. Mice inoculated with SD12-F120 via either intraperitoneal or intracerebral route showed no clinical symptoms, indicating a highly attenuated phenotype in terms of both neuroinvasiveness and neurovirulence. SD12-F120 harbored 29 nucleotide variations compared with SD12, of which 20 were considered silent nucleotide mutations, while nine resulted in eight amino acid substitutions. Comparison of the amino acid variations of SD12-F120 vs. SD12 pair with those from other four isogenic pairs of the attenuated and their virulent parental strains revealed that the variations at E138 and E176 positions of E protein were identified in four and three pairs, respectively, while the remaining amino acid variations were almost unique to their respective strain pairs. These observations suggest that the genetic changes acquired during the attenuation process were likely to be strain-specific and that the mechanisms associated with JEV attenuation/virulence are complicated. Full article
(This article belongs to the Section Animal Viruses)
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop