Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (708)

Search Parameters:
Keywords = photo-chemistry

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2597 KiB  
Article
Chemical and Isotopic Investigation of Abiotic Oxidation of Lactate Substrate in the Presence of Varied Electron Acceptors and Under Circumneutral Anaerobic Conditions
by Tsigabu A. Gebrehiwet and R. V. Krishnamurthy
Water 2025, 17(15), 2308; https://doi.org/10.3390/w17152308 - 3 Aug 2025
Viewed by 231
Abstract
Abiotic processes have ramifications in wastewater treatment, in situ degradation of organic matter, and cycling of nutrients in wetland ecosystems. Experiments were conducted to investigate abiotic oxidation of organic compounds (lactate) as a function of electron acceptors (ferric citrate and hydrous ferric oxide [...] Read more.
Abiotic processes have ramifications in wastewater treatment, in situ degradation of organic matter, and cycling of nutrients in wetland ecosystems. Experiments were conducted to investigate abiotic oxidation of organic compounds (lactate) as a function of electron acceptors (ferric citrate and hydrous ferric oxide (HFO), media composition, and pH under anaerobic conditions, using sodium bicarbonate as the buffering agent. Dissolved inorganic carbon (DIC) was used as a proxy for the oxidation of substrates. HFO media generated more DIC compared to ferric citrate containing media. Light and pH had major roles in the oxidation of lactate in the presence of ferric iron. Under dark conditions in the presence or absence of Fe(III), the DIC produced was low in all pH conditions. Inhibition of DIC production was also observed upon photo exposure when Fe (III) was absent. Isotopically, the system showed initial mixing between the bicarbonate and the carbon dioxide produced from oxidation later being dominated by carbon isotope value of lactate used. These redox conditions align with previous studies suggesting cleavage of organic compounds by hydroxyl radicals. The slower redox processes observed here, compared to previous studies, could be due to the scavenging effect of chloride ion on the hydroxyl radical. Full article
Show Figures

Figure 1

9 pages, 1477 KiB  
Proceeding Paper
Preparation of Nanosized Mesoporous Metal Oxides
by Olena Korchuganova, Emiliia Tantsiura, Kamila Abuzarova and Alina M. Balu
Chem. Proc. 2025, 17(1), 7; https://doi.org/10.3390/chemproc2025017007 - 1 Aug 2025
Viewed by 3
Abstract
Nowadays, nanosized mesoporous oxides are of increasing interest to scientists. They can be used as components of heterogeneous catalysts, for photo- and electrocatalysis, as gas sensors, etc. For instance, the desired properties in catalysts include a nano size and homogeneity of the particles [...] Read more.
Nowadays, nanosized mesoporous oxides are of increasing interest to scientists. They can be used as components of heterogeneous catalysts, for photo- and electrocatalysis, as gas sensors, etc. For instance, the desired properties in catalysts include a nano size and homogeneity of the particles that form the catalyst. The particle sizes of oxides are set at the initial stage of their formation, as precursors of precipitation in the context of wet chemistry. The creation of optimal conditions is possible through the use of homogeneous precipitation, where the precipitant is formed within the solution itself as a result of a hydrolysis reaction. The resolution of this issue involved the utilization of urea in our experimental setup, obtaining the hydrolysis products of ammonia and carbon dioxide. Consequently, precipitation reactions can be utilized to obtain hydroxides, carbonates, or hydroxy carbonates of metals. The precursors were calcined, obtaining nanosized mesoporous oxides, which can have a wide range of applications. Nanosized 0.1–50 nm metal oxides were obtained, including those aluminum, iron, indium, zinc, nickel, and cobalt. Full article
Show Figures

Graphical abstract

13 pages, 3937 KiB  
Article
Vanillin Quantum–Classical Photodynamics and Photostatic Optical Spectra
by Vladimir Pomogaev and Olga Tchaikovskaya
ChemEngineering 2025, 9(4), 76; https://doi.org/10.3390/chemengineering9040076 - 23 Jul 2025
Viewed by 215
Abstract
Vanillin photoinduced deprotonation was evaluated and analyzed. Vibronic states and transitions were computationally investigated. Optimizations and vertical electron transitions in the gas phase and with the continuum solvation model were computed using the time-dependent density functional theory. Static absorption and emission (photostatic optical) [...] Read more.
Vanillin photoinduced deprotonation was evaluated and analyzed. Vibronic states and transitions were computationally investigated. Optimizations and vertical electron transitions in the gas phase and with the continuum solvation model were computed using the time-dependent density functional theory. Static absorption and emission (photostatic optical) spectra were statistically averaged over the excited instantaneous molecular conformers fluctuating on quantum–classical molecular dynamic trajectories. Photostatic optical spectra were generated using the hybrid quantum–classical molecular dynamics for explicit solvent models. Conical intersection searching and nonadiabatic molecular dynamics simulations defined potential energy surface propagations, intersections, dissipations, and dissociations. The procedure included mixed-reference spin–flip excitations for both procedures and trajectory surface hopping for photodynamics. Insignificant structural deformations vs. hydroxyl bond cleavage followed by deprotonation were demonstrated starting from different initial structural conditions, which included optimized, transition state, and several other important fluctuating configurations in various environments. Vanillin electronic structure changes were illustrated and analyzed at the key points on conical intersection and nonadiabatic molecular dynamics trajectories by investigating molecular orbital symmetry and electron density difference. The hydroxyl group decomposed on transition to a σ-molecular orbital localized on the elongated O–H bond. Full article
Show Figures

Figure 1

24 pages, 2496 KiB  
Article
Zinc and Selenium Biofortification Modulates Photosynthetic Performance: A Screening of Four Brassica Microgreens
by Martina Šrajer Gajdošik, Vesna Peršić, Anja Melnjak, Doria Ban, Ivna Štolfa Čamagajevac, Zdenko Lončarić, Lidija Kalinić and Selma Mlinarić
Agronomy 2025, 15(8), 1760; https://doi.org/10.3390/agronomy15081760 - 23 Jul 2025
Viewed by 318
Abstract
Microgreens, having short growth cycles and efficient nutrient uptake, are ideal candidates for biofortification. This study investigated the effects of selenium (Se) and zinc (Zn) on photosynthetic performance in four hydroponically grown Brassica microgreens (broccoli, pak choi, kohlrabi, and kale), using direct and [...] Read more.
Microgreens, having short growth cycles and efficient nutrient uptake, are ideal candidates for biofortification. This study investigated the effects of selenium (Se) and zinc (Zn) on photosynthetic performance in four hydroponically grown Brassica microgreens (broccoli, pak choi, kohlrabi, and kale), using direct and modulated chlorophyll a fluorescence and chlorophyll-to-carotenoid ratios (Chl/Car). The plants were treated with Na2SeO4 at 0 (control), 2, 5, and 10 mg/L or ZnSO4 × 7H2O at 0 (control), 5, 10, and 20 mg/L. The results showed species-specific responses with Se or Zn uptake. Selenium enhanced photosynthetic efficiency in a dose-dependent manner for most species (8–26% on average compared to controls). It increased the plant performance index (PItot), particularly in pak choi (+62%), by improving both primary photochemistry and inter-photosystem energy transfer. Kale and kohlrabi exhibited high PSII-PSI connectivity for efficient energy distribution, with increased cyclic electron flow around PSI and reduced Chl/Car up to 8.5%, while broccoli was the least responsive. Zinc induced variable responses, reducing PItot at lower doses (19–23% average decline), with partial recovery at 20 mg/L (9% average reduction). Broccoli exhibited higher susceptibility, with inhibited QA re-oxidation, low electron turnover due to donor-side restrictions, and increased pigment ratio (+3.6%). Kohlrabi and pak choi tolerated moderate Zn levels by redirecting electron flow, but higher Zn levels impaired PSII and PSI function. Kale showed the highest tolerance, maintaining stable photochemical parameters and total electron flow, with increased pigment ratio (+4.5%) indicating better acclimation. These results highlight the beneficial stimulant role of Se and the dual essential/toxic nature of Zn, thus emphasizing genotype and dose-specific optimizations for effective biofortification. Full article
Show Figures

Figure 1

18 pages, 2185 KiB  
Article
Halogen Migration in the Photofragmentation of Halothane
by Anna Rita Casavola, Filippo Morini, Mattea Carmen Castrovilli, Jacopo Chiarinelli, Laura Carlini, Antonella Cartoni, Daniele Catone, Paola Bolognesi, Robert Richter, Bratislav Marinkovic, Sanja Tosic and Lorenzo Avaldi
Molecules 2025, 30(14), 2902; https://doi.org/10.3390/molecules30142902 - 9 Jul 2025
Viewed by 270
Abstract
The photofragmentation of halothane (CF3CHBrCl) was studied with synchrotron radiation by photoionization efficiency (PIE) measurements and photoelectron–photoion coincidence (PEPICO) experiments, as well as by a theoretical exploration of potential energy surfaces. Among the other fragments, the formation of the CHClF+ [...] Read more.
The photofragmentation of halothane (CF3CHBrCl) was studied with synchrotron radiation by photoionization efficiency (PIE) measurements and photoelectron–photoion coincidence (PEPICO) experiments, as well as by a theoretical exploration of potential energy surfaces. Among the other fragments, the formation of the CHClF+ and CHBrF+ ions, which involves the transfer of a F atom between the two moieties of the parent molecule, was observed. To understand the mechanisms leading to the halogen migration, a detailed theoretical study of the production of CHClF+, m/z 67+, based on DFT calculations and natural bond orbital (NBO) analysis was conducted. The results contribute to the understanding of the photochemistry of halothane, its polluting behavior in the high atmosphere, and the formation of highly reactive species. Full article
Show Figures

Figure 1

15 pages, 1019 KiB  
Article
Genotypic Variability in Growth and Leaf-Level Physiological Performance of Highly Improved Genotypes of Pinus radiata D. Don Across Different Sites in Central Chile
by Sergio Espinoza, Marco Yáñez, Carlos Magni, Eduardo Martínez-Herrera, Karen Peña-Rojas, Sergio Donoso, Marcos Carrasco-Benavides and Samuel Ortega-Farias
Forests 2025, 16(7), 1108; https://doi.org/10.3390/f16071108 - 4 Jul 2025
Viewed by 240
Abstract
Pinus radiata D. Don is planted in South Central Chile on a wide range of sites using genetically improved genotypes for timber production. As drought events are expected to increase with ongoing climatic change, the variability in gas exchange, which could impact growth [...] Read more.
Pinus radiata D. Don is planted in South Central Chile on a wide range of sites using genetically improved genotypes for timber production. As drought events are expected to increase with ongoing climatic change, the variability in gas exchange, which could impact growth and water use, needs to be evaluated. In this study, we assessed the genotypic variability of leaf-level light-saturated photosynthesis (Asat), stomatal conductance (gs), transpiration (E), intrinsic water use efficiency (iWUE), and Chlorophyll a fluorescence (OJIP-test parameters) among 30 P. radiata genotypes (i.e., full-sib families) from third-cycle parents at age 6 years on three sites in Central Chile. We also evaluated tree height (HT), diameter at breast height (DBH), and stem index volume (VOL). Families were ranked for HT as top-15 and bottom-15. In the OJIP-test parameters we observed differences at the family level for the maximum quantum yield of primary PSII photochemistry (Fv/Fm), the probability that a photon trapped by the PSII reaction center enters the electron transport chain (ψEo), and the potential for energy conservation from photons captured by PSII to the reduction in intersystem electron acceptors (PIABS). Fv/Fm, PIABS, and ψEo ranged from 0.82 to 0.87, 45 to 95, and 0.57 to 0.64, respectively. Differences among families for growth and not for leaf-level physiology were detected. DBT, H, and VOL were higher in the top-15 families (12.6 cm, 8.4 m, and 0.10 m3, respectively) whereas Asat, gs, E, and iWUE were similar in both the top-15 and bottom-15 families (4.0 μmol m−2 s−1, 0.023 mol m−2 s−1, 0.36 mmol m−2 s−1, and 185 μmol mol m−2 s−1, respectively). However, no family by site interaction was detected for growth and leaf-level physiology. The results of this study suggest that highly improved genotypes of P. radiata have uniformity in leaf-level physiological rates, which could imply uniform water use at the stand-level. The family variation found in PIABS suggests that this parameter could be incorporated to select genotypes tolerant to environmentally stressful conditions. Full article
(This article belongs to the Special Issue Water Use Efficiency of Forest Trees)
Show Figures

Figure 1

35 pages, 5123 KiB  
Review
Prebiotic Oligosaccharides in Skin Health: Benefits, Mechanisms, and Cosmetic Applications
by Meijun Zeng, Yang Li, Jie Cheng, Jingyu Wang and Qiyu Liu
Antioxidants 2025, 14(6), 754; https://doi.org/10.3390/antiox14060754 - 18 Jun 2025
Cited by 2 | Viewed by 1409
Abstract
Prebiotic oligosaccharides have attracted significant interest in dermatology and skin health due to their ability to modulate the skin microbiome and microbiota–host interactions. This review offers a novel dual perspective, systematically examining the benefits of both oral intake and topical application of prebiotic [...] Read more.
Prebiotic oligosaccharides have attracted significant interest in dermatology and skin health due to their ability to modulate the skin microbiome and microbiota–host interactions. This review offers a novel dual perspective, systematically examining the benefits of both oral intake and topical application of prebiotic oligosaccharides, including well-established prebiotics (e.g., human milk oligosaccharides, galacto- and fructo-oligosaccharides) and emerging prebiotic candidates (e.g., gluco-oligosaccharides, chitosan-oligosaccharides, agaro-oligosaccharides). First, cutting-edge synthetic processes for producing diverse oligosaccharides and their structural chemistry are introduced. Then, we discuss in vitro studies demonstrating their efficacy in promoting skin commensals, inhibiting pathogens, and conferring protective effects, such as antioxidant, anti-inflammatory, anti-melanogenic, and wound-healing properties. Furthermore, we emphasize in vivo animal studies and clinical trials revealing that prebiotic oligosaccharides, administered orally or topically, alleviate atopic dermatitis, enhance skin hydration, attenuate acne, and protect against photo-aging by modulating skin–gut microbiota and immune responses. Mechanistically, we integrate genetic and molecular insights to elucidate how oligosaccharides mediate these benefits, including gut–skin axis crosstalk, immune regulation, and microbial metabolite signaling. Finally, we highlight current commercial applications of oligosaccharides in cosmetic formulations while addressing scientific and practical challenges, such as structure–function relationships, clinical scalability, and regulatory considerations. This review bridges mechanistic understanding with practical applications, offering a comprehensive resource for advancing prebiotic oligosaccharides-based skincare therapies. Full article
Show Figures

Figure 1

22 pages, 9227 KiB  
Review
Review: The Application of MXene in Thermal Energy Storage Materials for Efficient Solar Energy Utilization
by Han Sun, Yingai Jin and Firoz Alam
Materials 2025, 18(12), 2839; https://doi.org/10.3390/ma18122839 - 16 Jun 2025
Viewed by 477
Abstract
Two-dimensional transition metal carbides/nitrides (MXenes) have shown potential in biosensors, cancer theranostics, microbiology, electromagnetic interference shielding, photothermal conversion, and thermal energy storage due to their unique electronic structure, ability to absorb a wide range of light, and tunable surface chemistry. In spite of [...] Read more.
Two-dimensional transition metal carbides/nitrides (MXenes) have shown potential in biosensors, cancer theranostics, microbiology, electromagnetic interference shielding, photothermal conversion, and thermal energy storage due to their unique electronic structure, ability to absorb a wide range of light, and tunable surface chemistry. In spite of the growing interest in MXenes, there are relatively few studies on their applications in phase-change materials for enhancing thermal conductivity and weak photo-responsiveness between 0 °C and 150 °C. Thus, this study aims to provide a current overview of recent developments, to examine how MXenes are made, and to outline the combined effects of different processes that can convert light into heat. This study illustrates the mechanisms that include enhanced broadband photon harvesting through localized surface plasmon resonance, electron–phonon coupling-mediated nonradiative relaxation, and interlayer phonon transport that optimizes thermal diffusion pathways. This study emphasizes that MXene-engineered 3D thermal networks can greatly improve energy storage and heat conversion, solving important problems with phase-change materials (PCMs), like poor heat conductivity and low responsiveness to light. This study also highlights the real-world issues of making MXene-based materials on a large scale, and suggests future research directions for using them in smart thermal management systems and solar thermal grid technologies. Full article
Show Figures

Figure 1

18 pages, 2368 KiB  
Article
The Role of Light-Harvesting Complex II Organization in the Efficiency of Light-Dependent Reactions in the Photosynthetic Apparatus of Pisum sativum L.
by Georgi D. Rashkov, Martin A. Stefanov, Amarendra N. Misra and Emilia L. Apostolova
Plants 2025, 14(12), 1846; https://doi.org/10.3390/plants14121846 - 16 Jun 2025
Viewed by 483
Abstract
In this study, the functions of the photosynthetic machinery were evaluated using chlorophyll a fluorescence technique (PAM and JIP test) in pea plants (Pisum sativum L. cv Borec) and its LHC II oligomerization variants (mutants Costata 2/133 and Coeruleovireus 2 [...] Read more.
In this study, the functions of the photosynthetic machinery were evaluated using chlorophyll a fluorescence technique (PAM and JIP test) in pea plants (Pisum sativum L. cv Borec) and its LHC II oligomerization variants (mutants Costata 2/133 and Coeruleovireus 2/16). The oligomeric forms of LHCII increased in the following order: Costata 2/133 < Borec wt < Coeruleovireus 2/16. Data revealed that the mutant with higher LHCII oligomerization (Coeruleovireus 2/16) at low light intensity (LL, 150 µmol photons/m2·s) exhibited the following: (i) decreased energy dissipation and increased electron transport efficiency; (ii) higher reaction center density; (iii) increased amounts of the open reaction centers (qp) and their excitation efficiency (Φexc); and (iv) influenced the reoxidation of QA, alleviating its interaction with plastoquinone. These effects enhanced photosynthetic performance related to PSII photochemistry (PIABS) and overall photosynthetic efficiency (PItotal). High light intensity (HL, 500 µmol photons/m2·s) caused a reduction in open reaction centers (qp), excitation efficiency (Φexc), photochemical energy conversion of PSII (ΦPSII), maximum efficiency of PSII photochemistry in light (Fv′/Fm′), and linear electron transport via PSII, with more pronounced effects observed in membranes with a lower degree of LHCII oligomerization (Costata 2/133). This study provides novel experimental evidence for the pivotal role of the LHCII structural organization in determining the efficiency of light-dependent reactions of photosynthesis. Full article
Show Figures

Figure 1

27 pages, 2653 KiB  
Article
Temporal and Machine Learning-Based Principal Component and Clustering Analysis of VOCs and Their Role in Urban Air Pollution and Ozone Formation
by Balendra V. S. Chauhan, Maureen J. Berg, Ajit Sharma, Kirsty L. Smallbone and Kevin P. Wyche
Atmosphere 2025, 16(6), 724; https://doi.org/10.3390/atmos16060724 - 15 Jun 2025
Viewed by 615
Abstract
This study investigates the temporal dynamics, sources, and photochemical behaviour of key volatile organic compounds (VOCs) along Marylebone Road, London (1 January 2015–1 January 2023), a heavily trafficked urban area. Hourly measurements of benzene, toluene, ethylbenzene, ethene, propene, isoprene, propane, and ethyne, alongside [...] Read more.
This study investigates the temporal dynamics, sources, and photochemical behaviour of key volatile organic compounds (VOCs) along Marylebone Road, London (1 January 2015–1 January 2023), a heavily trafficked urban area. Hourly measurements of benzene, toluene, ethylbenzene, ethene, propene, isoprene, propane, and ethyne, alongside ozone (O3) and meteorological data, were analysed using correlation matrices, regression, cross-correlation, diurnal/seasonal analysis, wind-sector analysis, PCA (Principal Component Analysis), and clustering. Strong inter-VOC correlations (e.g., benzene–ethylbenzene: r = 0.86, R2 = 0.75; ethene–propene: r = 0.68, R2 = 0.53) highlighted dominant vehicular sources. Diurnal peaks of benzene, toluene, and ethylbenzene aligned with rush hours, while O3 minima occurred in early mornings due to NO titration. VOCs peaked in winter under low mixing heights, whereas O3 was highest in summer. Wind-sector analysis revealed dominant VOC emissions from SSW (south-southwest)–WSW (west-southwest) directions; ethyne peaked from the E (east)/ENE (east-northeast). O3 concentrations were highest under SE (southeast)–SSE (south-southeast) flows. PCA showed 39.8% of variance linked to traffic-related VOCs (PC1) and 14.8% to biogenic/temperature-driven sources (PC2). K-means clustering (k = 3) identified three regimes: high VOCs/low O3 in stagnant, cool air; mixed conditions; and low VOCs/high O3 in warmer, aged air masses. Findings highlight complex VOC–O3 interactions and stress the need for source-specific mitigation strategies in urban air quality management. Full article
(This article belongs to the Special Issue Air Pollution: Emission Characteristics and Formation Mechanisms)
Show Figures

Figure 1

13 pages, 1372 KiB  
Article
Phylogenetic Proximity vs. Environmental Adaptation: Exploring Photosynthetic Performances in Mediterranean and Andean Isolated Microalgae Under Different Light Intensities
by Giulio Panicucci, Carolina Chiellini, Cristiana Sbrana, Cristina Echeverría, Lorenzo Guglielminetti and Thais Huarancca Reyes
Phycology 2025, 5(2), 24; https://doi.org/10.3390/phycology5020024 - 11 Jun 2025
Viewed by 710
Abstract
The microalgal defense strategies for different white light intensities (70–700 μmol m−2 s−1) were investigated in isolates from unexplored habitats, focusing on photosynthetic performance. Chlorella sorokiniana strain F4 from a Mediterranean inland swamp and two strains related to Pectinodesmus pectinatus [...] Read more.
The microalgal defense strategies for different white light intensities (70–700 μmol m−2 s−1) were investigated in isolates from unexplored habitats, focusing on photosynthetic performance. Chlorella sorokiniana strain F4 from a Mediterranean inland swamp and two strains related to Pectinodesmus pectinatus (PEC) and Ettlia pseudoalveolaris (ETI) from an Ecuadorian highland lake were exposed to light over 18 h. The results showed that PSII photochemical efficiency was affected with increasing light due to photoinhibition or photodamage. F4 showed a low threshold of saturation light intensity, after which NPQ was compromised and total antioxidant levels were increased, leading to a reduction in its PSII photochemistry performance. F4 exhibited limited capacity for antennae reorganization in response to light stress. ETI and PEC differed in their photophysiological responses, although they came from the same habitat. ETI maintained high Chlb to Chla (i.e., large antennae), exhibited sustained energy dissipation, and preserved a high antioxidant pool (i.e., mycosporine-like amino acids) in all lights. Differently, in PEC, NPQ, antennae rearrangement, and reactive oxygen species scavenger pool were induced in a light-dependent manner. This study revealed the complex relationship between light parameters and microalgal physiology affected by environmental constraint adaptation and phylogenetic diversity. Full article
Show Figures

Figure 1

18 pages, 2909 KiB  
Article
Characterization of a Supersonic Plasma Jet by Means of Optical Emission Spectroscopy
by Ruggero Barni, Hanaa Zaka, Dipak Pal, Irsa Amjad and Claudia Riccardi
Photonics 2025, 12(6), 595; https://doi.org/10.3390/photonics12060595 - 10 Jun 2025
Viewed by 967
Abstract
We discuss an innovative thin film deposition method, Plasma Assisted Supersonic Jet Deposition, which combines the chemistry richness of a reactive cold plasma environment and the assembly control of the film growth allowed by a supersonic jet directed at the substrate. Optical Emission [...] Read more.
We discuss an innovative thin film deposition method, Plasma Assisted Supersonic Jet Deposition, which combines the chemistry richness of a reactive cold plasma environment and the assembly control of the film growth allowed by a supersonic jet directed at the substrate. Optical Emission Spectroscopy was used to characterize the plasma state and the supersonic jet, together with its interaction with the substrate. We obtained several results in the deposition of silicon oxide thin films from Hexamethyldisiloxane, with different degrees of organic groups retention. In particular we exploited the features of emission spectra to measure the plasma dissociation and oxidation degree of the organic groups, as a function of the jet parameters. If controlled growth is achieved, such films are nanostructured materials suitable for applications like catalysis, photo catalysis, energy conversion and storage, besides their traditional uses as a barrier or protective coatings. Full article
Show Figures

Figure 1

57 pages, 11752 KiB  
Review
Cellulose-Based Hybrid Hydrogels for Tissue Engineering Applications: A Sustainable Approach
by Elizabeth Vázquez-Rivas, Luis Alberto Desales-Guzmán, Juan Horacio Pacheco-Sánchez and Sofia Guillermina Burillo-Amezcua
Gels 2025, 11(6), 438; https://doi.org/10.3390/gels11060438 - 6 Jun 2025
Viewed by 3237
Abstract
Cellulose is a sustainable biopolymer, being renewable and abundant, non-toxic, biodegradable, and easily functionalizable. However, the development of hydrogels for tissue engineering applications presents significant challenges that require interdisciplinary expertise, given the intricate and dynamic nature of the human body. This paper delves [...] Read more.
Cellulose is a sustainable biopolymer, being renewable and abundant, non-toxic, biodegradable, and easily functionalizable. However, the development of hydrogels for tissue engineering applications presents significant challenges that require interdisciplinary expertise, given the intricate and dynamic nature of the human body. This paper delves into current research focused on creating advanced cellulose-based hydrogels with tailored mechanical, biological, chemical, and surface properties. These hydrogels show promise in healing, regenerating, and even replacing human tissues and organs. The synthesis of these hydrogels employs a range of innovative techniques, including supramolecular chemistry, click chemistry, enzyme-induced crosslinking, ultrasound, photo radiation, high-energy ionizing radiation, 3D printing, and other emerging methods. In the realm of tissue engineering, various types of hydrogels are explored, such as stimuli-responsive, hybrid, injectable, bio-printed, electrospun, self-assembling, self-healing, drug-releasing, biodegradable, and interpenetrating network hydrogels. Moreover, these materials can be further enhanced by incorporating cell growth factors, biological molecules, or by loading them with cells or drugs. Looking ahead, future research aims to engineer and tailor hydrogels to meet specific needs. This includes exploring safer and more sustainable materials and synthesis techniques, identifying less invasive application methods, and translating these studies into practical applications. Full article
(This article belongs to the Special Issue Recent Advances in Biopolymer Gels (2nd Edition))
Show Figures

Graphical abstract

18 pages, 1809 KiB  
Article
A Photo-Crosslinked Casein-Tannic Acid System for Enhanced Hair Protection: A Green Chemistry Approach
by Sujin Kyung, Won-Gun Koh and Hyun Jong Lee
Polymers 2025, 17(12), 1585; https://doi.org/10.3390/polym17121585 - 6 Jun 2025
Viewed by 903
Abstract
Hair is continuously exposed to various damaging factors in daily life, necessitating effective protective strategies that balance efficacy with environmental sustainability. In this study, we developed an environmentally friendly hair protective coating using casein proteins crosslinked with tannic acid via riboflavin phosphate-mediated photo-initiation. [...] Read more.
Hair is continuously exposed to various damaging factors in daily life, necessitating effective protective strategies that balance efficacy with environmental sustainability. In this study, we developed an environmentally friendly hair protective coating using casein proteins crosslinked with tannic acid via riboflavin phosphate-mediated photo-initiation. Casein solutions containing tannic acid (0.05% w/v) and riboflavin phosphate (0.01–0.1% w/v) were prepared and applied to virgin Asian hair, followed by blue light irradiation to initiate crosslinking. The coating formation mechanism was investigated through rheological characterization, which confirmed successful network formation with optimal mechanical stability at a 0.05% tannic acid concentration. Chemical analysis using FTIR spectroscopy revealed subtle but meaningful interactions between the coating components, while SEM analysis demonstrated the coating’s integration with the hair surface. Mechanical property evaluations showed that the photo-crosslinked coating significantly enhanced hair tensile strength by approximately 21% compared to untreated hair, while maintaining appropriate elasticity. Region-specific analysis of stress–strain behavior indicated that the coating extended the initial Hookean region while preserving natural resistance in the post-yield region, creating a balanced enhancement in mechanical properties. This approach offers a promising alternative to conventional hair treatments by utilizing natural, food-grade components and mild processing conditions, addressing growing demands for sustainable hair care solutions that effectively protect against daily damage. Full article
Show Figures

Figure 1

14 pages, 1814 KiB  
Article
Atmospheric Photochemical Oxidation of 4-Nitroimidazole
by Nayan Kondapalli, Oliver Cernero, Aaron Welch and Aaron W. Harrison
Atmosphere 2025, 16(5), 624; https://doi.org/10.3390/atmos16050624 - 20 May 2025
Viewed by 618
Abstract
Nitro-functionalized heterocycles, such as nitroimidazoles, are significant environmental contaminants and have been identified as components of secondary organic aerosols (SOA) and biomass-burning organic aerosols (BBOA). Their strong absorption in the near-UV (300–400 nm) makes photochemistry a critical aspect of their atmospheric processing. This [...] Read more.
Nitro-functionalized heterocycles, such as nitroimidazoles, are significant environmental contaminants and have been identified as components of secondary organic aerosols (SOA) and biomass-burning organic aerosols (BBOA). Their strong absorption in the near-UV (300–400 nm) makes photochemistry a critical aspect of their atmospheric processing. This study investigates both the direct near-UV photochemistry and hydroxyl radical (OH) oxidation of 4-nitroimidazole (4-NI). The atmospheric photolysis rate of 4-NI in the near-UV (300–400 nm) was found to be J4-NI = 4.3 × 10−5 (±0.8) s−1, corresponding to an atmospheric lifetime of 391 (±77) min under bulk aqueous conditions simulating aqueous aerosols and cloud water. Electrospray ionization mass spectrometry (ESI-MS) analysis following irradiation indicated loss of the nitro group, while NO elimination was observed as a more minor channel in direct photolysis. In addition, the rate constant for the reaction of 4-NI with OH radicals, kNI+OH, was determined to be 2.9 × 109 (±0.6) M−1s−1. Following OH oxidation, ESI-MS results show the emergence of a dominant peak at m/z = 130 amu, consistent with hydroxylation of 4-NI. Computational results indicate that OH radical addition occurs with the lowest barrier at the C2 and C5 positions of 4-NI. The combined results from direct photolysis and OH oxidation experiments suggest that OH-mediated degradation is likely to dominate under aerosol-phase conditions, where OH radical concentrations are elevated, while direct photolysis is expected to be the primary loss mechanism in high-humidity environments and bulk cloud water. Full article
Show Figures

Figure 1

Back to TopTop