Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (607)

Search Parameters:
Keywords = long fiber processing

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1171 KiB  
Article
An Innovative Metal–Synthetic Hybrid Thread for the Construction of Aquaculture Nets
by Alexis Conides, Efthimia Cotou, Dimitris Klaoudatos and Branko Glamuzina
J. Mar. Sci. Eng. 2025, 13(8), 1384; https://doi.org/10.3390/jmse13081384 - 22 Jul 2025
Viewed by 229
Abstract
Based on the experience gained worldwide from potential solutions to the fouling problem of fisheries and aquaculture infrastructure, we attempted to design, construct and test the antifouling efficiency of a new hybrid filament created from non-laminated copper wire braided with synthetic fibers made [...] Read more.
Based on the experience gained worldwide from potential solutions to the fouling problem of fisheries and aquaculture infrastructure, we attempted to design, construct and test the antifouling efficiency of a new hybrid filament created from non-laminated copper wire braided with synthetic fibers made of Dyneema. The design involved the creation of a hybrid twine substituting a percentage of the synthetic fibers with 0.1–0.15 mm diameter copper wire at 5%, 10%, 20% and 40% levels. There is limited information in the international literature for comparison with our results, since there has never been any attempt to create such a hybrid net. The results showed that for the 6 mm mesh, the maximum openness obtained after the 8-month experimental period was 8.72%, with Cu wire substitution at 35%. For the 12 mm mesh, these values were 27.07% at 26%, and for the 20 mm mesh, they were 33.68% at 28%. A conservative average independent from mesh size to achieve optimum openness in the long term is 30 ± 4.73% Cu wire substitution. In addition, we found that both the mesh size (mm) and the copper substitution percentage affected the fouling process during the experimental period, which lasted 8 months. Full article
(This article belongs to the Section Marine Aquaculture)
Show Figures

Figure 1

30 pages, 4839 KiB  
Article
Acceptability of a Colorectal Cancer-Preventive Diet Promoting Red Meat Reduction and Increased Fiber and Micronutrient Intake: A Cross-Sectional Study in Romanian Adults
by Marius-Cătălin Belean, Teodor-Andrei Maghiar, Anca-Maria Căpraru, Andreea-Adriana Neamțu, Dan Iliescu, Valentin-Cristian Iovin, Flaviu-Ionuț Faur, Meda-Ada Bugi, Alina Totorean, Sorina Tăban, Sorin Dema, Cristina-Adriana Dehelean, Bogdan Dan Totolici, Ovidiu Laurian Pop, Octavian Crețu and Carmen Neamțu
Nutrients 2025, 17(14), 2386; https://doi.org/10.3390/nu17142386 - 21 Jul 2025
Viewed by 353
Abstract
Background/Objectives: Colorectal cancer is a leading cause of cancer-related death worldwide, with rising incidence in younger adults. Unhealthy diets high in red and processed meat and low in fiber are key modifiable risk factors, highlighting the need for preventive nutritional strategies targeting [...] Read more.
Background/Objectives: Colorectal cancer is a leading cause of cancer-related death worldwide, with rising incidence in younger adults. Unhealthy diets high in red and processed meat and low in fiber are key modifiable risk factors, highlighting the need for preventive nutritional strategies targeting CRC through dietary interventions. Methods: A one-day sample diet for colorectal cancer prevention, consisting of fiber-rich meals excluding red meat and incorporating whole grains, legumes, vegetables, fruits, nuts, and lean protein alternatives (such as fish and poultry), was developed. Its acceptability was assessed in a cross-sectional study using an online questionnaire among healthy Romanian adults aged 18–50, with a total of 395 included participants. Results: Of the 395 respondents meeting the inclusion criteria (aged 18–50, no cancer or chronic gastrointestinal disorders), 63.5% were females, predominantly urban (90.1%), and highly educated. Mean age was 32.4 years; mean BMI was 25.07 kg/m2. The proposed colorectal cancer-preventive diet was rated as “quite attractive” and “very attractive” by 74.9% of participants. All meals received high ratings, with dinner and the first snack being most favored. Most respondents (77.2%) found the diet satisfying and the satiety level and energy adequate, and 90.4% were willing to adopt it at least a few times per week. Financial accessibility was affirmed by 77.2% of the respondents. However, 61.8% reported difficulty eliminating red meat consumption. Female participants rated the diet significantly more attractive than males did (p = 0.041). Willingness to adopt the diet strongly correlated with higher acceptability (p < 0.0001), while BMI and education level showed no significant effect. Conclusions: The proposed colorectal cancer-preventive diet was well accepted by Romanian adults aged 18–50, with higher receptivity among women and those with higher education; willingness to adopt the diet at least a few days per week was high, especially among those psychologically ready for dietary change, while key barriers included red meat reduction and perceived cost, underscoring the need for gender-sensitive, culturally adapted interventions and further research on long-term adherence and clinical impact. Full article
(This article belongs to the Special Issue Nutrition and Dietary Guidelines for Colorectal Cancer Patients)
Show Figures

Figure 1

35 pages, 3170 KiB  
Review
Effects of Moisture Absorption on the Mechanical and Fatigue Properties of Natural Fiber Composites: A Review
by Ana Pavlovic, Lorenzo Valzania and Giangiacomo Minak
Polymers 2025, 17(14), 1996; https://doi.org/10.3390/polym17141996 - 21 Jul 2025
Viewed by 209
Abstract
This review critically examines the effects of moisture absorption on the mechanical and fatigue properties of natural fiber composites (NFCs), with a focus on tensile strength, elastic modulus, and long-term durability. Moisture uptake can cause reductions in tensile strength of up to 40% [...] Read more.
This review critically examines the effects of moisture absorption on the mechanical and fatigue properties of natural fiber composites (NFCs), with a focus on tensile strength, elastic modulus, and long-term durability. Moisture uptake can cause reductions in tensile strength of up to 40% and in elastic modulus by 20–30% depending on fiber type, mass fraction (typically in the range of 30–60%), and surface treatments. The review highlights Ithat while surface modifications (e.g., alkaline and silane treatments) significantly mitigate moisture-induced degradation, their effectiveness is highly sensitive to the processing conditions. Additionally, hybridization strategies and optimized fiber orientations show promise in enhancing fatigue resistance under humid environments. Despite substantial progress, major challenges remain, including the lack of standardized testing protocols and the limited understanding of multiscale aging mechanisms. Future research directions include developing predictive models that couple moisture diffusion and mechanical deterioration, implementing advanced in situ monitoring of damage evolution, and exploring novel bio-based treatments. By addressing these gaps, NFCs can become more reliable and widely adopted as sustainable alternatives in structural applications. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Figure 1

20 pages, 5397 KiB  
Article
Continuously Formed Fiber-Reinforced Thermoplastic Composite Rebar for Concrete Reinforcement
by Jacob C. Clark, William G. Davids, Roberto A. Lopez-Anido, Andrew P. Schanck and Cody A. Sheltra
J. Compos. Sci. 2025, 9(7), 378; https://doi.org/10.3390/jcs9070378 - 18 Jul 2025
Viewed by 305
Abstract
Despite the strength and ductility of steel reinforcing bars, their susceptibility to corrosion can limit the long-term durability of reinforced concrete structures. Fiber-reinforced polymer (FRP) reinforcing bars made with a thermosetting matrix offer corrosion resistance but cannot be field-bent, which limits flexibility during [...] Read more.
Despite the strength and ductility of steel reinforcing bars, their susceptibility to corrosion can limit the long-term durability of reinforced concrete structures. Fiber-reinforced polymer (FRP) reinforcing bars made with a thermosetting matrix offer corrosion resistance but cannot be field-bent, which limits flexibility during construction. FRP reinforcing bars made with fiber-reinforced thermoplastic polymers (FRTP) address this limitation; however, their high processing viscosity presents manufacturing challenges. In this study, the Continuous Forming Machine, a novel pultrusion device that uses pre-consolidated fiber-reinforced thermoplastic tapes as feedstock, is described and used to fabricate 12.7 mm nominal diameter thermoplastic composite rebars. Simple bend tests on FRTP rebar that rely on basic equipment are performed to verify its ability to be field-formed. The manual bending technique demonstrated here is practical and straightforward, although it does result in some fiber misalignment. Subsequently, surface deformations are introduced to the rebar to promote mechanical bonding with concrete, and tensile tests of the bars are conducted to determine their mechanical properties. Finally, flexural tests of simply-supported, 6 m long beams reinforced with FRTP rebar are performed to assess their strength and stiffness as well as the practicality of using FRTP rebar. The beam tests demonstrated the prototype FRTP rebar’s potential for reinforcing concrete beams, and the beam load–deformation response and capacity agree well with predictions developed using conventional structural analysis principles. Overall, the results of the research reported indicate that thermoplastic rebars manufactured via the Continuous Forming Machine are a promising alternative to both steel and conventional thermoset composite rebar. However, both the beam and tension test results indicate that improvements in material properties, especially elastic modulus, are necessary to meet the requirements of current FRP rebar specifications. Full article
(This article belongs to the Section Fiber Composites)
Show Figures

Figure 1

18 pages, 3830 KiB  
Article
Enhancing the Yield of Pleurotus ostreatus Through the Addition of Nucleotides and Nucleosides
by Chenmin Tang, Yixuan Gao, Zhiguo An, Abdul Qadeer Sajid, Hanjie Ying, Zhenyu Wang and Dong Liu
J. Fungi 2025, 11(7), 537; https://doi.org/10.3390/jof11070537 - 18 Jul 2025
Viewed by 378
Abstract
Pleurotus ostreatus is a mushroom species renowned for its abundant nutritional and medicinal properties. Nevertheless, the yield of its fruiting bodies has long remained at a standstill, making it arduous to achieve substantial improvements. Because the traditional composting approach for enhancing the yield [...] Read more.
Pleurotus ostreatus is a mushroom species renowned for its abundant nutritional and medicinal properties. Nevertheless, the yield of its fruiting bodies has long remained at a standstill, making it arduous to achieve substantial improvements. Because the traditional composting approach for enhancing the yield of Pleurotus ostreatus has drawbacks such as a long duration and a high susceptibility to mold contamination, incorporating nutritional supplements into the culture medium of P. ostreatus has emerged as a relatively straightforward yet effective approach to enhancing its yield. This study was predicated on the roles of nucleotides and nucleosides in cellular metabolism and signal transduction. These substances were applied during the cultivation process of P. ostreatus to investigate their impact on the growth and nutritional composition of this mushroom. The findings of this study demonstrate that the supplementation of nucleotides and nucleosides not only improved the yield and biological efficiency of P. ostreatus but also increased its dietary fiber content and amino acids. Furthermore, this research has disclosed that nucleotides and nucleosides exert a notable influence on the lignocellulolytic enzyme system. This investigation provides a scientific foundation for the development of novel yields—enhancing agents for P. ostreatus and offering new insights into cultivation techniques for the progress of P. ostreatus cultivation techniques in both academic and practical arenas. Full article
(This article belongs to the Special Issue Fungal Biotechnology and Bioprocesses)
Show Figures

Figure 1

23 pages, 7773 KiB  
Article
Strengthening-Effect Assessment of Smart CFRP-Reinforced Steel Beams Based on Optical Fiber Sensing Technology
by Bao-Rui Peng, Fu-Kang Shen, Zi-Yi Luo, Chao Zhang, Yung William Sasy Chan, Hua-Ping Wang and Ping Xiang
Photonics 2025, 12(7), 735; https://doi.org/10.3390/photonics12070735 - 18 Jul 2025
Viewed by 251
Abstract
Carbon fiber-reinforced polymer (CFRP) laminates have been widely coated on aged and damaged structures for recovering or enhancing their structural performance. The health conditions of the coated composite structures have been given high attention, as they are critically important for assessing operational safety [...] Read more.
Carbon fiber-reinforced polymer (CFRP) laminates have been widely coated on aged and damaged structures for recovering or enhancing their structural performance. The health conditions of the coated composite structures have been given high attention, as they are critically important for assessing operational safety and residual service life. However, the current problem is the lack of an efficient, long-term, and stable monitoring technique to characterize the structural behavior of coated composite structures in the whole life cycle. For this reason, bare and packaged fiber Bragg grating (FBG) sensors have been specially developed and designed in sensing networks to monitor the structural performance of CFRP-coated composite beams under different loads. Some optical fibers have also been inserted in the CFRP laminates to configure the smart CFRP component. Detailed data interpretation has been conducted to declare the strengthening process and effect. Finite element simulation and simplified theoretical analysis have been conducted to validate the experimental testing results and the deformation profiles of steel beams before and after the CFRP coating has been carefully checked. Results indicate that the proposed FBG sensors and sensing layout can accurately reflect the structural performance of the composite beam structure, and the CFRP coating can share partial loads, which finally leads to the downward shift in the centroidal axis, with a value of about 10 mm. The externally bonded sensors generally show good stability and high sensitivity to the applied load and temperature-induced inner stress variation. The study provides a straightforward instruction for the establishment of a structural health monitoring system for CFRP-coated composite structures in the whole life cycle. Full article
Show Figures

Figure 1

44 pages, 10756 KiB  
Review
The Road to Re-Use of Spice By-Products: Exploring Their Bioactive Compounds and Significance in Active Packaging
by Di Zhang, Efakor Beloved Ahlivia, Benjamin Bonsu Bruce, Xiaobo Zou, Maurizio Battino, Dragiša Savić, Jaroslav Katona and Lingqin Shen
Foods 2025, 14(14), 2445; https://doi.org/10.3390/foods14142445 - 11 Jul 2025
Viewed by 563
Abstract
Spice by-products, often discarded as waste, represent an untapped resource for sustainable packaging solutions due to their unique, multifunctional, and bioactive profiles. Unlike typical plant residues, these materials retain diverse phytochemicals—including phenolics, polysaccharides, and other compounds, such as essential oils and vitamins—that exhibit [...] Read more.
Spice by-products, often discarded as waste, represent an untapped resource for sustainable packaging solutions due to their unique, multifunctional, and bioactive profiles. Unlike typical plant residues, these materials retain diverse phytochemicals—including phenolics, polysaccharides, and other compounds, such as essential oils and vitamins—that exhibit controlled release antimicrobial and antioxidant effects with environmental responsiveness to pH, humidity, and temperature changes. Their distinctive advantage is in preserving volatile bioactives, demonstrating enzyme-inhibiting properties, and maintaining thermal stability during processing. This review encompasses a comprehensive characterization of phytochemicals, an assessment of the re-utilization pathway from waste to active materials, and an investigation of processing methods for transforming by-products into films, coatings, and nanoemulsions through green extraction and packaging film development technologies. It also involves the evaluation of their mechanical strength, barrier performance, controlled release mechanism behavior, and effectiveness of food preservation. Key findings demonstrate that ginger and onion residues significantly enhance antioxidant and antimicrobial properties due to high phenolic acid and sulfur-containing compound concentrations, while cinnamon and garlic waste effectively improve mechanical strength and barrier attributes owing to their dense fiber matrix and bioactive aldehyde content. However, re-using these residues faces challenges, including the long-term storage stability of certain bioactive compounds, mechanical durability during scale-up, natural variability that affects standardization, and cost competitiveness with conventional packaging. Innovative solutions, including encapsulation, nano-reinforcement strategies, intelligent polymeric systems, and agro-biorefinery approaches, show promise for overcoming these barriers. By utilizing these spice by-products, the packaging industry can advance toward a circular bio-economy, depending less on traditional plastics and promoting environmental sustainability in light of growing global population and urbanization trends. Full article
Show Figures

Figure 1

21 pages, 2028 KiB  
Article
AI-Driven Analysis of Tuff and Lime Effects on Basalt Fiber-Reinforced Clay Strength
by Yasemin Aslan Topçuoğlu, Zeynep Bala Duranay, Zülfü Gürocak and Hanifi Güldemir
Buildings 2025, 15(14), 2433; https://doi.org/10.3390/buildings15142433 - 11 Jul 2025
Viewed by 300
Abstract
In this study, free compression tests were conducted to examine the changes in the strength of soil after adding 24 mm long basalt fiber (1%), lime (3%, 6%, 9% by dry weight), and tuff (10%, 20%, 30% by dry weight) before curing and [...] Read more.
In this study, free compression tests were conducted to examine the changes in the strength of soil after adding 24 mm long basalt fiber (1%), lime (3%, 6%, 9% by dry weight), and tuff (10%, 20%, 30% by dry weight) before curing and after 28, 42, and 56 days of curing. Instead of the K + BF 1% + SL 9% mixture, where the SL ratio is high, it has been revealed that T, which has a lower SL content and is environmentally friendly (as in the K + BF 1% + SL 6% + T 10% mixture), can be used considering environmental factors and costs. However, due to the length and cost of experimental studies, the use of artificial intelligence to reduce the need for physical tests/experiments and to accelerate processes will provide savings in terms of labor, time, and cost. Unconfined compressive strength (qu) prediction was performed using the artificial neural network (ANN) technique. The accuracy of the ANN model was proven using the R and MSE metrics. In addition, a qu prediction of the mixture with 30% water content was performed according to the curing times. The experimental and predicted qu values for the curing times were compared and presented. Full article
Show Figures

Figure 1

37 pages, 5136 KiB  
Review
Advancements in Optical Fiber Sensors for pH Measurement: Technologies and Applications
by Alaa N. D. Alhussein, Mohammed R. T. M. Qaid, Timur Agliullin, Bulat Valeev, Oleg Morozov, Airat Sakhabutdinov and Yuri A. Konstantinov
Sensors 2025, 25(14), 4275; https://doi.org/10.3390/s25144275 - 9 Jul 2025
Viewed by 388
Abstract
Measuring pH is a critical parameter in environmental monitoring, biomedical diagnostics, food safety, and industrial processes. Optical fiber sensors have proven highly effective for pH detection due to their exceptional sensitivity, rapid response, and resistance to electromagnetic interference, making them well suited for [...] Read more.
Measuring pH is a critical parameter in environmental monitoring, biomedical diagnostics, food safety, and industrial processes. Optical fiber sensors have proven highly effective for pH detection due to their exceptional sensitivity, rapid response, and resistance to electromagnetic interference, making them well suited for real-time monitoring. This review offers a comprehensive analysis of recent advances in optical fiber-based pH sensors, covering key techniques such as fluorescence-based, absorbance-based, evanescent wave, and interferometric methods. Innovations in Fiber Bragg Grating and Surface Plasmon Resonance technologies are also examined. The discussion extends to the impact of pH-sensitive coatings—ranging from nanomaterials and polymeric films to graphene-based compounds—on enhancing sensor performance. Recent advancements have also enabled automation in data analysis and improvements in remote sensing capabilities. The review further compares the economic viability of optical fiber sensors with traditional electrochemical methods, while acknowledging persistent issues such as temperature cross-sensitivity, long-term stability, and fabrication costs. Overall, recent developments have broadened the functionality and application scope of these sensors by improving efficiency, accuracy, and scalability. Future research directions are outlined, including advanced optical interrogation techniques, such as Addressed Fiber Bragg Structures (AFBSs), microwave photonic integration, and optimized material selection. These approaches aim to enhance performance, reduce costs, and enable the broader adoption of optical fiber pH sensors. Full article
(This article belongs to the Special Issue Feature Review Papers in Optical Sensors)
Show Figures

Figure 1

13 pages, 3086 KiB  
Article
Single-Polarization Single-Mode Hollow-Core Anti-Resonant Fiber with Low Loss and Wide Bandwidth
by Yong You, Wei Liu, Shuo Zhang, Jianxiong Wu, Yuanjiang Li, Huimin Shi and Haokun Yang
Photonics 2025, 12(7), 686; https://doi.org/10.3390/photonics12070686 - 7 Jul 2025
Viewed by 336
Abstract
Stable generation and propagation of single-polarization single-mode (SPSM) beams in hollow-core fiber (HCF) has become an important research direction. However, their routine use is yet to become a reality, a major obstacle is to maintain the polarization state of light at a sufficiently [...] Read more.
Stable generation and propagation of single-polarization single-mode (SPSM) beams in hollow-core fiber (HCF) has become an important research direction. However, their routine use is yet to become a reality, a major obstacle is to maintain the polarization state of light at a sufficiently long transmission distance in a wide spectral range. In the paper, a hollow-core anti-resonant fiber (HC-ARF) that can support SPSM beam transmission with an average loss of 15 dB/km in wavelengths beyond 1000 nm is proposed. SPSM guidance is achieved by setting the cladding tubes in the orthogonal direction to have different structures and material properties. Different cladding tube structures break the degeneracy of polarization modes, and different cladding tube materials make the polarization modes experience enough loss difference. In the range of more than 600 nm, the y-polarization loss ≈ 9.3 dB/km, while the x-polarization is > 500 dB/km, and the birefringence is > 1.7 × 10−5. In addition, the SPSM optimization process and bending losses in different directions are also discussed in detail. Full article
(This article belongs to the Special Issue Applications and Development of Optical Fiber Sensors)
Show Figures

Figure 1

18 pages, 5009 KiB  
Article
Preparation of Glass Fiber Reinforced Polypropylene Bending Plate and Its Long-Term Performance Exposed in Alkaline Solution Environment
by Zhan Peng, Anji Wang, Chen Wang and Chenggao Li
Polymers 2025, 17(13), 1844; https://doi.org/10.3390/polym17131844 - 30 Jun 2025
Viewed by 278
Abstract
Glass fiber reinforced polypropylene composite plates have gradually attracted more attention because of their repeated molding, higher toughness, higher durability, and fatigue resistance compared to glass fiber reinforced thermosetting composites. In practical engineering applications, composite plates have to undergo bending effect at different [...] Read more.
Glass fiber reinforced polypropylene composite plates have gradually attracted more attention because of their repeated molding, higher toughness, higher durability, and fatigue resistance compared to glass fiber reinforced thermosetting composites. In practical engineering applications, composite plates have to undergo bending effect at different angles in corrosive environment of concrete, including bending bars from 0~90°, and stirrups of 90°, which may lead to long-term performance degradation. Therefore, it is important to evaluate the long-term performance of glass fiber reinforced polypropylene composite bending plates in an alkali environment. In the current paper, a new bending device is developed to prepare glass fiber reinforced polypropylene bending plates with the bending angles of 60° and 90°. It should be pointed out that the above two bending angles are simulated typical bending bars and stirrups, respectively. The plate is immersed in the alkali solution environment for up to 90 days for long-term exposure. Mechanical properties (tensile properties and shear properties), thermal properties (dynamic mechanical properties and thermogravimetric analysis) and micro-morphology analysis (surface morphology analysis) were systematically designed to evaluate the influence mechanism of bending angle and alkali solution immersion on the long-term mechanical properties. The results show the bending effect leads to the continuous failure of fibers, and the outer fibers break under tension, and the inner fibers buckle under compression, resulting in debonding of the fiber–matrix interface. Alkali solution (OH ions) corrode the surface of glass fiber to form soluble silicate, which is proved by the mass fraction of glass fiber decreased obviously from 79.9% to 73.65% from thermogravimetric analysis. This contributes to the highest degradation ratio of tensile strength was 71.6% (60° bending) and 65.6% (90° bending), respectively, compared to the plate with bending angles of 0°. A high curvature bending angle (such as 90°) leads to local buckling of fibers and plastic deformation of the matrix, forming microcracks and fiber–resin interface bonding at the bending area, which accelerates the chemical erosion and debonding process in the interface area, bringing about an additional maximum 10.56% degradation rate of the shear strength. In addition, the alkali immersion leads to the obvious degradation of storage modulus and thermal decomposition temperature of composite plate. Compared with the other works on the long-term mechanical properties of glass fiber reinforced polypropylene, it can be found that the long-term performance of glass fiber reinforced polypropylene composites is controlled by the corrosive media type, bending angle and immersion time. The research results will provide durability data for glass fiber reinforced polypropylene composites used in concrete as stirrups. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Figure 1

19 pages, 12177 KiB  
Article
Comparison of Microstructure and Hardening Ability of DCI with Different Pearlite Contents by Laser Surface Treatment
by Zile Wang, Xianmin Zhou, Daxin Zeng, Wei Yang, Jianyong Liu and Qiuyue Shi
Metals 2025, 15(7), 734; https://doi.org/10.3390/met15070734 - 30 Jun 2025
Viewed by 223
Abstract
Laser surface treatment (LST) has been employed on ductile cast iron (DCI) parts to obtain a good performance and a long service life. There is a need to understand the laser surface-treated microstructure and hardening ability of DCIs with different matrix structures to [...] Read more.
Laser surface treatment (LST) has been employed on ductile cast iron (DCI) parts to obtain a good performance and a long service life. There is a need to understand the laser surface-treated microstructure and hardening ability of DCIs with different matrix structures to facilitate the scientific selection of DCI for specific applications. In this study, a Laserline-LDF3000 fiber-coupled semiconductor laser with a rectangular spot was used to harden the surface of ductile cast irons (DCIs) with different pearlite contents. The hardened surface layer having been solid state transformed (SST) and with or without being melted–solidified (MS) was obtained under various process parameters. The microstructure, hardened layer depth, hardness and hardening ability were analyzed and compared as functions of pearlite contents and laser processing parameters. The results show that the MS layers on the DCIs with varied pearlite contents have similar microstructures consisting of fine transformed ledeburite, martensite and residual austenite. The microstructure of the SST layer includes martensite, residual austenite and ferrite, whose contents vary with the pearlite content of DCI. In the pearlite DCI, martensite and residual austenite are found, while in ferrite DCI, there is only a small amount of martensite around the graphite nodule, with a large amount of unaltered ferrite remaining. There exists no significant difference in the hardness of MS layers among DCIs with different pearlite contents. Within the SST layer, the variation in the hardness value in the pearlite DCI is relatively small, but it gradually decreases along the depth in the ferrite DCI. In the transition region between the SST layer and the base metal (BM), there is a steep decrease in hardness in the pearlite DCI, but it decreases gently in the ferrite DCI. The depth of the hardened layer increases slightly with the increase in the pearlite content in the DCI; however, the effective hardened depth and the hardening ability increase significantly. When the pearlite content of DCI increases from 10% to 95%, its hardening ability increases by 1.1 times. Full article
Show Figures

Figure 1

23 pages, 1821 KiB  
Review
Beyond Peat: Wood Fiber and Two Novel Organic Byproducts as Growing Media—A Systematic Review
by Anna Elisa Sdao, Nazim S. Gruda and Barbara De Lucia
Plants 2025, 14(13), 1945; https://doi.org/10.3390/plants14131945 - 25 Jun 2025
Viewed by 702
Abstract
Environmental concerns drive the search for sustainable organic alternatives in horticultural substrates. This review critically examines three agro-industry renewable byproducts—wood fiber, coffee silverskin, and brewer’s spent grain—as partial peat substitutes. We aimed to comprehensively analyze their origin, processing methods, current applications, and key [...] Read more.
Environmental concerns drive the search for sustainable organic alternatives in horticultural substrates. This review critically examines three agro-industry renewable byproducts—wood fiber, coffee silverskin, and brewer’s spent grain—as partial peat substitutes. We aimed to comprehensively analyze their origin, processing methods, current applications, and key physical, hydrological, and chemical properties relevant to horticultural use. In soilless culture, wood fiber can be used as a stand-alone substrate. When incorporated at 30–50% (v/v) in peat mixtures, it supports plant growth comparable to peat; however, higher proportions may restrict water and nutrient availability. Coffee silverskin demonstrates high water retention and nutrient content, but its inherent phytotoxicity requires pre-treatment (e.g., co-composting); at concentrations up to 20%, it shows promise for potted ornamental crops. Brewer’s spent grain is nutrient-rich but demands careful management due to its rapid decomposition and potential salinity issues; inclusion rates around 10% have shown beneficial effects. In conclusion, when used appropriately in blends, these bio-based byproducts represent viable alternatives to reduce peat dependence in vegetable and ornamental cultivation, contributing to more sustainable horticultural practices. Future research should optimize pre-treatment methods for coffee silverskin and brewer’s spent grain, investigate long-term stability in diverse cropping systems, and explore novel combinations with other organic waste streams to develop circular horticultural substrates. Full article
Show Figures

Graphical abstract

36 pages, 4774 KiB  
Review
Exploring the Role of Advanced Composites and Biocomposites in Agricultural Machinery and Equipment: Insights into Design, Performance, and Sustainability
by Ehsan Fartash Naeimi, Kemal Çağatay Selvi and Nicoleta Ungureanu
Polymers 2025, 17(12), 1691; https://doi.org/10.3390/polym17121691 - 18 Jun 2025
Viewed by 673
Abstract
The agricultural sector faces growing pressure to enhance productivity and sustainability, prompting innovation in machinery design. Traditional materials such as steel still dominate but are a cause of increased weight, soil compaction, increased fuel consumption, and corrosion. Composite materials—and, more specifically, fiber-reinforced polymers [...] Read more.
The agricultural sector faces growing pressure to enhance productivity and sustainability, prompting innovation in machinery design. Traditional materials such as steel still dominate but are a cause of increased weight, soil compaction, increased fuel consumption, and corrosion. Composite materials—and, more specifically, fiber-reinforced polymers (FRPs)—offer appealing alternatives due to their high specific strength and stiffness, corrosion resistance, and design flexibility. Meanwhile, increasing environmental awareness has triggered interest in biocomposites, which contain natural fibers (e.g., flax, hemp, straw) and/or bio-based resins (e.g., PLA, biopolyesters), aligned with circular economy principles. This review offers a comprehensive overview of synthetic composites and biocomposites for agricultural machinery and equipment (AME). It briefly presents their fundamental constituents—fibers, matrices, and fillers—and recapitulates relevant mechanical and environmental properties. Key manufacturing processes such as hand lay-up, compression molding, resin transfer molding (RTM), pultrusion, and injection molding are discussed in terms of their applicability, benefits, and limits for the manufacture of AME. Current applications in tractors, sprayers, harvesters, and planters are covered in the article, with advantages such as lightweighting, corrosion resistance, flexibility and sustainability. Challenges are also reviewed, including the cost, repairability of damage, and end-of-life (EoL) issues for composites and the moisture sensitivity, performance variation, and standardization for biocomposites. Finally, principal research needs are outlined, including material development, long-term performance testing, sustainable and scalable production, recycling, and the development of industry-specific standards. This synthesis is a practical guide for researchers, engineers, and manufacturers who want to introduce innovative material solutions for more efficient, longer lasting, and more sustainable agricultural machinery. Full article
(This article belongs to the Special Issue Biopolymers for Food Packaging and Agricultural Applications)
Show Figures

Figure 1

13 pages, 2360 KiB  
Article
Relation Between Injection Molding Conditions, Fiber Length, and Mechanical Properties of Highly Reinforced Long Fiber Polypropylene: Part II Long-Term Creep Performance
by Jon Haitz Badiola, U. Astobitza, M. Iturrondobeitia, A. Burgoa, J. Ibarretxe and A. Arriaga
Polymers 2025, 17(12), 1630; https://doi.org/10.3390/polym17121630 - 12 Jun 2025
Viewed by 545
Abstract
This study investigates the long-term mechanical performance of highly reinforced long glass fiber thermoplastic polypropylene composites, focusing on the effects of processing parameters, fiber length, and skin–core structures. Dynamic mechanical and creep analyses were conducted to evaluate the impact of injection molding on [...] Read more.
This study investigates the long-term mechanical performance of highly reinforced long glass fiber thermoplastic polypropylene composites, focusing on the effects of processing parameters, fiber length, and skin–core structures. Dynamic mechanical and creep analyses were conducted to evaluate the impact of injection molding on the final microstructure and long-term mechanical properties. The findings confirm that a significant microstructural change occurs at a fiber length of 1000 µm, which strongly influences the material’s mechanical behavior. Samples with fiber lengths above this threshold reveal greater creep resistance due to the reduced flowability that leads to more entangled, three-dimensional fiber networks in the core. This structure limits chain mobility and consequently improves the resistance to long-term deformation under load. Conversely, fiber lengths below 1000 µm promote a planar arrangement of fibers, which enhances chain relaxation, fiber orientation, and creep strain. Specifically, samples with fiber lengths exceeding 1000 µm exhibited up to a 15% lower creep strain compared to shorter fiber samples. Additionally, a direct relationship is observed between the findings in the viscoelastic response and quasi-static tensile properties from previous studies. Finally, the impact of the microstructure is more pronounced at low temperatures and becomes nearly negligible at high temperatures, indicating that beyond the glass transition temperature, the microstructural effect diminishes gradually until it becomes almost non-existent. Full article
(This article belongs to the Special Issue Advances in Polymer Molding and Processing)
Show Figures

Graphical abstract

Back to TopTop