# Mechanically-Induced Long-Period Fiber Gratings Using Laminated Plates

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

_{2}, femtosecond irradiation, electric arc, and mechanically-induced between other methods [1,5,6,7,8]. Today, most of these techniques have been improved to achieve LPFGs with specific physical properties for different applications [9,10,11,12]. Recently, other methods have been proposed using the attractive LPFGs inscription process [13,14,15].

## 2. Materials and Methods

#### 2.1. Laminated Plates Construction

#### 2.2. Refractive Index Modulation by the Laminated Plate

^{2}], respectively, when a uniaxial pressure P

_{0}[g/mm] is applied in the vertical axis of the optical fiber, which are defined by [32],

#### 2.3. Experimental Setup

## 3. Results

## 4. Analysis of Results

## 5. Conclusions

## Author Contributions

## Funding

## Conflicts of Interest

## References

- Vengsarkar, A.M.; Lemaire, P.J.; Judkins, J.B.; Bhatia, V.; Erdogan, T.; Sipe, J.E. Long-period fiber gratings as band-rejection filters. J. Lightware Technol.
**1996**, 14, 58–65. [Google Scholar] [CrossRef] - Chiang, K.S.; Liu, Q. Long-period grating devices for application in optical communications. In Proceedings of the 5th ICOCN, Chengdu, China, 23–27 September 2006; pp. 128–133. [Google Scholar]
- Zhao, X.W.; Wang, Q. Mini review: Recent advances in long period fiber grating biological and chemical sensors. Instrum. Sci. Technol.
**2019**, 47, 40–169. [Google Scholar] [CrossRef] - Krčmařík, D.; Kulishov, M.; Slavík, R. Long-period fiber gratings in active fibers. In Current Trends in Short- and Long-Period Fiber Gratings; Cuadrado-Laborde, C., Ed.; InTech: Rijeka, Croatia, 2013; pp. 87–104. [Google Scholar]
- Davis, D.D.; Gaylord, T.K.; Glytsis, E.N.; Kosinski, S.G.; Mettler, S.C.; Vengsarkar, A.M. Long-period fibre grating fabrication with focused CO
_{2}laser pulses. Electron. Lett.**1998**, 34, 302–303. [Google Scholar] [CrossRef] - Kondo, Y.; Nouchi, K.; Mitsuyu, T.; Watanabe, M.; Kazansky, P.G.; Hirao, K. Fabrication of long-period fiber gratings by focused irradiation of infrared femtosecond laser pulses. Opt. Lett.
**1999**, 24, 646–648. [Google Scholar] [CrossRef] [PubMed] - Enomoto, T.; Shigehara, M.; Ishikawa, S.; Danzuka, T.; Kanamori, H. Long-period fiber grating in a pure-silica-core fiber written by residual stress relaxation. OFC ‘98 Tech. Digest.
**1998**, 2, 277–278. [Google Scholar] - Savin, S.; Digonnet, M.J.F.; Kino, G.S.; Shaw, H.J. Tunable mechanically induced long-period fiber gratings. Opt. Lett.
**2000**, 25, 710–712. [Google Scholar] [CrossRef] - Dong, X.R.; Sun, X.Y.; Li, H.T.; Hu, Y.W.; Duan, J.A.; Zhou, J.Y.; Wang, C. Femtosecond laser fabrication of long period fiber gratings by a transversal-scanning inscription method and the research of its orientational bending characteristics. Opt. Laser Technol.
**2015**, 71, 68–72. [Google Scholar] [CrossRef] - Yin, G.; Wang, Y.; Liao, C.; Zhou, J.; Zhong, X.; Liu, S.; Wang, Q.; Li, Z.; Sun, B.; He, J.; et al. Improved arc discharge technique for inscribing compact long period fiber gratings. In Proceedings of the 23rd International Conference on Optical Fiber Sensors, Santander, Spain, 2–6 June 2014; p. 91577X. [Google Scholar]
- Zhong, X.; Wang, Y.; Liao, C.; Yin, G.; Zhou, J.; Wang, G.; Sun, B.; Tang, J. Long period fiber gratings inscribed with an improved two-dimensional scanning technique. IEEE Photon. J.
**2014**, 6, 1–8. [Google Scholar] [CrossRef] - Fu, C.; Wang, Y.; Liu, S.; Bai, Z.; Liao, C.; He, J.; Wang, Y. Recent progress in fabrications and applications of heating-induced long period fiber gratings. Sensors
**2019**, 19, 4473. [Google Scholar] [CrossRef] [Green Version] - Heck, M.; Krämer, R.G.; Ullsperger, T.; Goebel, T.A.; Richter, D.; Ünnermann, A.; Nolte, S. Efficient long period fiber gratings inscribed with femtosecond pulses and an amplitude mask. Opt. Lett.
**2019**, 44, 3980–3983. [Google Scholar] [CrossRef] - Min, R.; Marques, C.; Nielsen, K.; Bang, O.; Ortega, B. Fast inscription of long period gratings in microstructured polymer optical fibers. IEEE Sens. J.
**2018**, 18, 1919–1923. [Google Scholar] [CrossRef] - Liu, W.; Duan, S.; Du, H.; Jiang, H.; Sun, C.; Jin, X.; Zhao, L.; Geng, T.; Tong, C.; Yuan, L. A new ultra long-period fiber grating for measuring torsional characteristics. J. Mod. Opt.
**2019**, 66, 1215–1218. [Google Scholar] [CrossRef] - Anzueto-Sánchez, G.; Martínez-Rios, A.; Torres-Gómez, I. Tunable ytterbium-doped fiber laser based on a mechanically induced long period holey fiber grating. Opt. Rev.
**2007**, 14, 75–77. [Google Scholar] [CrossRef] - Nair, A.S.; Sudeep Kumar, V.P.; Joe, H. Widely tunable LP
_{11}cladding-mode resonance in a twisted mechanically induced long-period fiber grating. Appl. Opt.**2015**, 54, 2007–2010. [Google Scholar] [CrossRef] [PubMed] - Israelsen, S.M.; Rottwitt, K. Broadband higher order mode conversion using chirped microbend long period gratings. Opt. Express.
**2016**, 24, 23969–23976. [Google Scholar] [CrossRef] [Green Version] - Li, S.; Mo, Q.; Hu, X.; Du, C.; Wang, J. Controllable all-fiber orbital angular momentum mode converter. Opt. Lett.
**2015**, 40, 4376–4379. [Google Scholar] [CrossRef] - Pradhan, P.; Sengupta, D.; Wang, L.; Tremblay, C.; LaRochelle, S.; Ung, B. The Brillouin gain of vector modes in a few-mode fiber. Sci. Rep.
**2017**, 7, 1552. [Google Scholar] [CrossRef] [Green Version] - Statkiewicz-Barabach, G.; Olszewski, J.; Mergo, P.; Urbanczyk, W. Higher-order rocking filters induced mechanically in fibers with different birefringence dispersion. Appl. Opt.
**2014**, 53, 1258–1267. [Google Scholar] [CrossRef] - Torres-Gómez, I.; Martínez-Ríos, A.; Ceballos-Herrera, D.E.; Mejía-Beltrán, E.; Selvas-Aguilar, R. Bandpass filter with adjustable bandwidth based on a press-induced long-period twisted holey-fiber grating. Opt. Lett.
**2007**, 32, 3885–3887. [Google Scholar] [CrossRef] - Tsutsumi, Y.; Ohashi, M.; Miyoshi, Y. Temperature sensing using an optical time domain reflectometer and mechanical long-period fiber gratings fabricated from a heat-shrinkable tube. IEICE Commun. Express.
**2017**, 6, 103–108. [Google Scholar] [CrossRef] [Green Version] - Salas-Alcántara, K.M.; Aparicio-Ixta, L.; Torres-Gómez, I.; Rodríguez, M.; Ramos-Ortíz, G.; Espinosa-Luna, R.; Pichardo-Molina, J.L. Modal interferometer based on a single mechanically induced long-period fiber grating and a nanoparticles-coated film section. Opt. Lett.
**2017**, 42, 1780–1783. [Google Scholar] [CrossRef] [PubMed] - Ugale, S.; Mishra, V. Pressure sensor based on mechanically induced LPFG in novel MSM Fiber Structure. Optics Photon. J.
**2013**, 3, 225–228. [Google Scholar] [CrossRef] - Liu, H.; Wen, H.; Huang, B.; Amezcua Correa, R.; Sillard, P.; Chen, H.; Li, Z.; Li, G. Reducing group delay spread using uniform long-period gratings. Sci. Rep.
**2018**, 8, 3882. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Rego, G.; Fernandes, J.R.A.; Santos, J.L.; Salgado, H.M.; Marques, P.V.S. New technique to mechanically induce long-period fibre gratings. Opt. Commun.
**2003**, 220, 111–118. [Google Scholar] [CrossRef] - Yokouchi, T.; Suzaki, Y.; Nakagawa, K.; Yamauchi, M.; Kimura, M.; Mizutani, Y.; Kimura, S.; Ejima, S. Thermal tuning of mechanically induced long-period fiber grating. Appl. Opt.
**2005**, 44, 5024–5028. [Google Scholar] [CrossRef] [PubMed] - Tsutsumia, Y.; Hase, T.; Ohashi, M.; Miyoshi, Y.; Kubota, H. Model for estimating the properties of mechanically induced long-period fiber grating based on polarization and applied pressure. IEICE Commun. Express.
**2017**, 6, 554–559. [Google Scholar] [CrossRef] [Green Version] - Han, M.; Wang, Y.; Wang, Y.; Wang, A. Fiber-optic physical and biochemical sensing based on transient and traveling long-period gratings. Opt. Lett.
**2009**, 34, 100–102. [Google Scholar] [CrossRef] - Chen, C. Foundations for Guided-Wave Optics, 1st ed.; John Wiley & Sons: Danvers, MA, USA, 2007; pp. 285–288. [Google Scholar]
- Okamoto, K.; Hosaka, T.; Edahiro, T. Stress analysis of optical fibers by a finite element Method. IEEE J. Quantum Electron.
**1981**, 17, 2123–2129. [Google Scholar] [CrossRef] - Guyard, R.; Leduc, D.; Lupi, C.; Lecieux, Y. Global overview of the sensitivity of long period gratings to strain. Opt. Laser Technol.
**2016**, 79, 62–73. [Google Scholar] [CrossRef] - Starodubov, D.S.; Grubsky, V.; Feinberg, J. All-fiber bandpass filter with adjustable transmission using cladding-mode coupling. IEEE Photon. Technol. Lett.
**1998**, 10, 1590–1592. [Google Scholar] [CrossRef] - Liu, Z.; Liu, Y.; Mou, C.; Zou, F.; Wang, T. CO
_{2}laser-written long-period fiber grating with a high diffractive order cladding mode near the turning point. Appl. Opt.**2018**, 57, 4756–4760. [Google Scholar] [CrossRef] [PubMed]

**Figure 5.**Spectrum transmission evolution for (

**a**) L10, (

**b**) L20, and (

**c**) L30 under the increase of applied static weight. (

**d**) Attenuation depth of the leading rejection bands versus applied static weight.

**Figure 6.**(

**a**) Static weights grow for attenuation depth of 5, 10, and 15 dB in the leading rejection band as a function of average duty cycle (ADC). (

**b**) Transmission spectrum evolution of the leading rejection band with 15 dB for different values of ADC.

Laminated Plate | L [mm] | $\overline{\mathsf{\Lambda}}$ | $\overline{\mathbf{A}}$ | ${\mathbf{\sigma}}_{\mathsf{\Lambda}}[\mu \mathbf{m}]$ | ${\mathbf{\sigma}}_{\mathbf{A}}[\mu \mathbf{m}]$ | ADC [%] |
---|---|---|---|---|---|---|

L10 | 10 | 460 | 94 | 20 | 15 | 20.4 |

L20 | 20 | 470 | 92 | 18 | 7 | 19.6 |

L30 | 30 | 490 | 98 | 24 | 16 | 20.0 |

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Torres-Gómez, I.; Ceballos-Herrera, D.E.; Salas-Alcantara, K.M.
Mechanically-Induced Long-Period Fiber Gratings Using Laminated Plates. *Sensors* **2020**, *20*, 2582.
https://doi.org/10.3390/s20092582

**AMA Style**

Torres-Gómez I, Ceballos-Herrera DE, Salas-Alcantara KM.
Mechanically-Induced Long-Period Fiber Gratings Using Laminated Plates. *Sensors*. 2020; 20(9):2582.
https://doi.org/10.3390/s20092582

**Chicago/Turabian Style**

Torres-Gómez, Ismael, Daniel E. Ceballos-Herrera, and Karla M. Salas-Alcantara.
2020. "Mechanically-Induced Long-Period Fiber Gratings Using Laminated Plates" *Sensors* 20, no. 9: 2582.
https://doi.org/10.3390/s20092582