Journal Description
Textiles
Textiles
is an international, peer-reviewed, open access journal on textile science and engineering published quarterly online by MDPI.
- Open Access— free for readers, with article processing charges (APC) paid by authors or their institutions.
- Rapid Publication: manuscripts are peer-reviewed and a first decision is provided to authors approximately 18.5 days after submission; acceptance to publication is undertaken in 2.8 days (median values for papers published in this journal in the first half of 2023).
- Recognition of Reviewers: APC discount vouchers, optional signed peer review, and reviewer names published annually in the journal.
Latest Articles
Effect of Post-Drawing Thermal Treatment on the Mechanical Behavior of Solid-State Drawn Poly(lactic acid) (PLA) Filaments
Textiles 2023, 3(3), 339-352; https://doi.org/10.3390/textiles3030023 - 18 Sep 2023
Abstract
In this work, two commercial extruded filaments for 3D printing obtained from different NatureWorks PLA resins (Ingeo™ Biopolymer 3D850 and Ingeo™ Biopolymer 4043D) were solid-state drawn at varying temperatures and subsequently heat treated by annealing. The aim was to analyze the effect of
[...] Read more.
In this work, two commercial extruded filaments for 3D printing obtained from different NatureWorks PLA resins (Ingeo™ Biopolymer 3D850 and Ingeo™ Biopolymer 4043D) were solid-state drawn at varying temperatures and subsequently heat treated by annealing. The aim was to analyze the effect of post-processing of industrial fibers (solid-state drawing and annealing treatment) with varied composition (PLA grades with different contents of D-isomer) on the mechanical performance and thermal stability of the obtained PLA fibers. Morphological, thermal, and mechanical characterizations were performed for the undrawn filaments and drawn fibers, both before and after heat treatment. Drawn fibers presented a fibrillar core–shell structure, and their mechanical properties were greatly improved with respect to undrawn filaments in accordance with their higher crystallinity. The resin with the higher content of D-isomer (4043D) resulted in lower crystallinities with a subsequent decrease in mechanical properties. After heat treatment, drawn fibers exhibited completely different behaviors depending on the PLA resin, with 3D850 fibers being much more stable than 4043D fibers, which underwent molecular orientation upon drawing rather than crystallization. The solid-state drawn fibers obtained herein are comparable to commercial fibers in terms of mechanical properties.
Full article
(This article belongs to the Special Issue Textile Materials: Structure–Property Relationship)
►
Show Figures
Open AccessReview
Factors Affecting the Sweat-Drying Performance of Active Sportswear—A Review
by
, , , , and
Textiles 2023, 3(3), 319-338; https://doi.org/10.3390/textiles3030022 - 14 Aug 2023
Abstract
Quick drying is one of the most crucial factors in the comfort and performance of active sportswear clothing. It helps to keep the wearer dry and comfortable by effectively wicking away sweat and moisture from the body. In the light of this, a
[...] Read more.
Quick drying is one of the most crucial factors in the comfort and performance of active sportswear clothing. It helps to keep the wearer dry and comfortable by effectively wicking away sweat and moisture from the body. In the light of this, a substantial number of previous researchers have identified fabric properties and types that have a significant impact on fabric drying performance. Studies have also been conducted to examine the impact of fabric drying on human physiology during sports-related activities. However, there are still some technical knowledge gaps in the existing literature related to the drying performance of active sportswear fabrics. This review article provides a critical analysis of the literature on the impact of various fabric attributes as well as the physiological and environmental factors on moisture management and drying performance. The key issues in this field are determined so that future research can be directed and this scientific field can advance in order to improve the overall performance of active sportswear fabrics.
Full article
Open AccessArticle
Characterization of the Viscoelastic Properties of Yarn Materials: Dynamic Mechanical Analysis in Longitudinal Direction
Textiles 2023, 3(3), 307-318; https://doi.org/10.3390/textiles3030021 - 11 Aug 2023
Abstract
Warp knitting is a highly productive textile manufacturing process and method of choice for many products. With the current generation of machines running up to 4400 min−1, dynamics become a limit for the production. Resonance effects of yarn-guiding elements and oscillations
[...] Read more.
Warp knitting is a highly productive textile manufacturing process and method of choice for many products. With the current generation of machines running up to 4400 min−1, dynamics become a limit for the production. Resonance effects of yarn-guiding elements and oscillations of the yarn lead to load peaks, resulting in breakage or mismatches. This limits material choice to highly elastic materials for high speeds, which compensate for these effects through their intrinsic properties. To allow the processing of high-performance fibers, a better understanding of the viscoelastic yarn behavior is necessary. The present paper shows a method to achieve this in longitudinal yarn direction using a dynamic mechanical analysis approach. Samples of high tenacity polyester and aramid are investigated. The test setup resembles the warp knitting process in terms of similar geometrical conditions, pre-loads, and occurring frequencies. By recording the mechanical load resulting from an applied strain, it is possible to calculate the phase shift and the dissipation factor, which is a key indicator for the damping behavior. It shows that the dissipation factor rises with rising frequency. The results allow for a simulation of the warp knitting process, including a detailed yarn model and representation of stitch-formation process.
Full article
(This article belongs to the Special Issue Advances in Technical Textiles)
►▼
Show Figures

Figure 1
Open AccessArticle
Electromechanical Characterization of Commercial Conductive Yarns for E-Textiles
Textiles 2023, 3(3), 294-306; https://doi.org/10.3390/textiles3030020 - 09 Aug 2023
Abstract
With the development of smart and multi-functional textiles, conductive yarns are widely used in textiles. Conductive yarns can be incorporated into fabrics with traditional textile techniques, such as weaving, knitting and sewing. The electromechanical properties of conductive yarns are very different from conventional
[...] Read more.
With the development of smart and multi-functional textiles, conductive yarns are widely used in textiles. Conductive yarns can be incorporated into fabrics with traditional textile techniques, such as weaving, knitting and sewing. The electromechanical properties of conductive yarns are very different from conventional yarns, and they also affect the processability during end-product manufacturing processes. However, systematic evaluation of the electromechanical properties of commercial conductive yarns is still elusive. Different conductive materials and production methods for making conductive yarns lead to diverse electromechanical properties. In this work, three types of conductive yarn with different conductive materials and yarn structures were selected for electromechanical characterization. A total of 15 different yarns were analyzed. In addition, the change of resistance with strain was tested to simulate and predict the possible changes in electrical properties of the yarn during weaving, knitting, sewing and other end uses. It was found that Metal-based yarns have good electrical properties but poor mechanical properties. The mechanical properties of Metal-coated yarns are similar to conventional yarns, but their electrical properties are relatively poor. The data shown in this research is instructive for the subsequent processing (weaving, knitting, sewing, etc.) of yarns.
Full article
(This article belongs to the Special Issue Fibrous Materials (Textiles) for Functional Applications II)
►▼
Show Figures

Figure 1
Open AccessCommunication
Applying UV Hyperspectral Imaging for the Quantification of Honeydew Content on Raw Cotton via PCA and PLS-R Models
Textiles 2023, 3(3), 287-293; https://doi.org/10.3390/textiles3030019 - 04 Jul 2023
Abstract
►▼
Show Figures
Cotton contamination by honeydew is considered one of the significant problems for quality in textiles as it causes stickiness during manufacturing. Therefore, millions of dollars in losses are attributed to honeydew contamination each year. This work presents the use of UV hyperspectral imaging
[...] Read more.
Cotton contamination by honeydew is considered one of the significant problems for quality in textiles as it causes stickiness during manufacturing. Therefore, millions of dollars in losses are attributed to honeydew contamination each year. This work presents the use of UV hyperspectral imaging (225–300 nm) to characterize honeydew contamination on raw cotton samples. As reference samples, cotton samples were soaked in solutions containing sugar and proteins at different concentrations to mimic honeydew. Multivariate techniques such as a principal component analysis (PCA) and partial least squares regression (PLS-R) were used to predict and classify the amount of honeydew at each pixel of a hyperspectral image of raw cotton samples. The results show that the PCA model was able to differentiate cotton samples based on their sugar concentrations. The first two principal components (PCs) explain nearly 91.0% of the total variance. A PLS-R model was built, showing a performance with a coefficient of determination for the validation (R2cv) = 0.91 and root mean square error of cross-validation (RMSECV) = 0.036 g. This PLS-R model was able to predict the honeydew content in grams on raw cotton samples for each pixel. In conclusion, UV hyperspectral imaging, in combination with multivariate data analysis, shows high potential for quality control in textiles.
Full article

Graphical abstract
Open AccessArticle
Efficient Poisson’s Ratio Evaluation of Weft-Knitted Auxetic Metamaterials
Textiles 2023, 3(3), 275-286; https://doi.org/10.3390/textiles3030018 - 04 Jul 2023
Abstract
Auxetic metamaterials expand transversely when stretched longitudinally or contract transversely when compressed, resulting in a negative Poisson’s ratio (NPR). Auxetic fabrics are 3D textile metamaterials possessing a unique geometry that can generate an auxetic response with respect to tension. In weft-knitted auxetic fabrics,
[...] Read more.
Auxetic metamaterials expand transversely when stretched longitudinally or contract transversely when compressed, resulting in a negative Poisson’s ratio (NPR). Auxetic fabrics are 3D textile metamaterials possessing a unique geometry that can generate an auxetic response with respect to tension. In weft-knitted auxetic fabrics, the NPR property is achieved due to the inherent curling effect of the face and back stitches of the knit loops; they contract in an organized knitting pattern. The traditional method used to evaluate NPR is to measure the lateral fabric deformation during axial tensile testing on a mechanical testing machine, which is time-consuming and inaccurate in measuring uneven deformations. In this study, an efficient method was developed to evaluate the NPR of weft-knitted fabric that can also estimate deformation directionality. The elasticity and extension properties of the weft-knitted fabric can be analyzed immediately following removal from the knitting bed. Five fabrics, all with the same stitch densities (including four auxetic patterns and one single jersey pattern), were designed and produced to validate the proposed method. The use of our estimation method to evaluate the Poisson’s ratio of such fabrics showed higher values compared with the traditional method. In conclusion, the deformation directionality, elasticity, and extensionality were examined. It is anticipated that the proposed method could assist in the innovative development and deployment of auxetic knitted metamaterials.
Full article
(This article belongs to the Special Issue Advances in Technical Textiles)
►▼
Show Figures

Graphical abstract
Open AccessReview
Temperature-Dependent Shape-Memory Textiles: Physical Principles and Applications
Textiles 2023, 3(2), 257-274; https://doi.org/10.3390/textiles3020017 - 13 Jun 2023
Abstract
Textiles have been pivotal to economies and social relationships throughout history. In today’s world, there is an unprecedented demand for smart materials. The advent of smart textile fabrics, crafted from high-quality, high-performance fibers, has enabled the incorporation of specific functions into clothing and
[...] Read more.
Textiles have been pivotal to economies and social relationships throughout history. In today’s world, there is an unprecedented demand for smart materials. The advent of smart textile fabrics, crafted from high-quality, high-performance fibers, has enabled the incorporation of specific functions into clothing and apparel brands. Notably, the rise of smart fabrics is evident in astronaut suits designed to regulate temperature and control muscle vibrations. Moreover, the scope of these products has expanded beyond everyday wear, encompassing fields such as medicine and healthcare, ecology/environmental protection, and military and aerospace. This review explores the recent advancements and challenges associated with intelligent fabrics, particularly temperature-dependent shape-memory metamaterials. The potential for innovative smart textile materials to enhance traditional fabrics’ overall functionality and utility is immense, especially in domains such as medical devices, fashion, entertainment, and defense. Crucially, ensuring user comfort is a primary consideration in these applications for promoting the widespread adoption of wearable devices. Developing smart textile devices necessitates a multidisciplinary approach that combines circuit design expertise, knowledge of smart materials, proficiency in microelectronics, and a deep understanding of chemistry and textile production. The synergy across these diverse fields is vital to unlocking the full potential of smart fabrics and enabling their broad implementation. By embracing this comprehensive approach, we can pave the way for groundbreaking advances in smart textile technology, driving innovation and progress in the field.
Full article
(This article belongs to the Special Issue Advances of Medical Textiles)
►▼
Show Figures

Graphical abstract
Open AccessArticle
Qualitative Assessment of Off-Gassing of Compounds from Field-Contaminated Firefighter Jackets with Varied Air Exposure Time Intervals Using Headspace GC-MS
Textiles 2023, 3(2), 246-256; https://doi.org/10.3390/textiles3020016 - 07 Jun 2023
Abstract
►▼
Show Figures
Firefighters are exposed to a complex mix of volatile and semi-volatile compounds from burning construction materials, consumer products, and other elements during fire suppression and rescue. These compounds can be absorbed onto the gear worn by firefighters and, depending on their volatility, can
[...] Read more.
Firefighters are exposed to a complex mix of volatile and semi-volatile compounds from burning construction materials, consumer products, and other elements during fire suppression and rescue. These compounds can be absorbed onto the gear worn by firefighters and, depending on their volatility, can be released from the gear under different conditions. Few studies have focused on the off-gassing of toxic compounds from firefighters’ gear, particularly in terms of qualitative analysis methods. This study introduces a novel qualitative analysis method using headspace gas chromatography–mass spectrometry (HS-GC-MS) to assess off-gassing from field-contaminated jackets at regular intervals. Our findings show that certain compounds, such as acetic acid and di-ethyl-hexyl-phthalate (DEHP), remained present even after the gear were allowed to air out for 48 h. The persistent off-gassing of chemicals, even under ambient conditions, raises concerns about potential hazards that could pose risks for personnel in the vicinity of contaminated gear, including inside fire stations. The implications of these findings extend beyond fire stations and may have significant public health implications for firefighters who are repeatedly exposed to these compounds over time.
Full article

Figure 1
Open AccessReview
Highly Specialized Textiles with Antimicrobial Functionality—Advances and Challenges
by
, , , , and
Textiles 2023, 3(2), 219-245; https://doi.org/10.3390/textiles3020015 - 18 May 2023
Abstract
Textiles with antimicrobial functionality have been intensively and extensively investigated in the recent decades, mostly because they are present in everyday life in various applications: medicine and healthcare, sportswear, clothing and footwear, furniture and upholstery, air and water purification systems, food packaging etc.
[...] Read more.
Textiles with antimicrobial functionality have been intensively and extensively investigated in the recent decades, mostly because they are present in everyday life in various applications: medicine and healthcare, sportswear, clothing and footwear, furniture and upholstery, air and water purification systems, food packaging etc. Their ability to kill or limit the growth of the microbial population in a certain context defines their activity against bacteria, fungi, and viruses, and even against the initial formation of the biofilm prior to microorganisms’ proliferation. Various classes of antimicrobials have been employed for these highly specialized textiles, namely, organic synthetic reagents and polymers, metals and metal oxides (micro- and nanoparticles), and natural and naturally derived compounds, and their activity and range of applications are critically assessed. At the same time, different modern processing techniques are reviewed in relation to their applications. This paper focuses on some advances and challenges in the field of antimicrobial textiles given their practical importance as it appears from the most recent reports in the literature.
Full article
(This article belongs to the Special Issue New Research Trends for Textiles, a Bright Future)
►▼
Show Figures

Graphical abstract
Open AccessArticle
Bench-Scale and Full-Scale Level Evaluation of the Effect of Parameters on Cleaning Efficacy of the Firefighters’ PPE
Textiles 2023, 3(2), 201-218; https://doi.org/10.3390/textiles3020014 - 04 May 2023
Cited by 1
Abstract
►▼
Show Figures
The National Fire Protection Association (NFPA) 1851 document provides guidelines for firefighters on the care and maintenance of their PPE, including decontamination practices. Firefighters are exposed to various toxic chemicals during fire suppression activities, making effective decontamination crucial for their safety. This study
[...] Read more.
The National Fire Protection Association (NFPA) 1851 document provides guidelines for firefighters on the care and maintenance of their PPE, including decontamination practices. Firefighters are exposed to various toxic chemicals during fire suppression activities, making effective decontamination crucial for their safety. This study evaluated the efficacy of different washing parameters, including temperature, time, and surfactants, on cleaning outer-shell material contaminated with nine targeted compounds from three different functional groups: phenols, polycyclic aromatic hydrocarbons (PAHs), and phthalates. The study was conducted on both bench-scale and full-scale levels, with contaminated swatches washed in a water shaker bath in the bench-scale evaluation and full-sized washer extractors used in the full-scale evaluation. The results showed that bench-scale washing demonstrated similar trends in contaminant removal to full-scale washing. Importantly, the study highlighted the complexity of removing fireground contaminants from the personal protective ensemble (PPE). The findings of this study have practical implications for the firefighting industry as they provide insight into the effectiveness of different washing parameters for PPE decontamination. Future studies could explore the impact of repeated washing on PPE and investigate the potential for developing more efficient decontamination strategies. Ultimately, the study underscores the importance of ongoing efforts to ensure the safety of firefighters, who face significant occupational hazards.
Full article

Graphical abstract
Open AccessArticle
Nonwoven Fabrics from Agricultural and Industrial Waste for Acoustic and Thermal Insulation Applications
Textiles 2023, 3(2), 182-200; https://doi.org/10.3390/textiles3020013 - 30 Apr 2023
Abstract
Natural fibers are increasingly being used to make nonwoven fabrics, substituting synthetic materials for environmental and economic reasons. In this study, a series of needle-punched nonwoven fabrics were made by extracting fibers from coffee husks and blending them with a proportion of spinning
[...] Read more.
Natural fibers are increasingly being used to make nonwoven fabrics, substituting synthetic materials for environmental and economic reasons. In this study, a series of needle-punched nonwoven fabrics were made by extracting fibers from coffee husks and blending them with a proportion of spinning waste consisting of cotton fibers and another five different natural fibers. This work investigates the coefficient of sound absorption, thermal conductivity, areal density, thickness, and air permeability. Overall, the sound absorption properties of the produced nonwoven fabric depend on the blend proportion and the number of layers. The results from the fabric containing nettle and banana fibers demonstrate a much-improved sound absorption coefficient. These results have been compared with those of commercially available nonwoven fabrics that are manufactured from polyester and polyurethane foam. The thermal conductivities of the fabrics made with nettle and coir were the highest and lowest, respectively. This is because of the fiber linear density, but all in all, fibers extracted from coffee husks show significantly promising potential for scaling up to replace existing synthetic fibers.
Full article
(This article belongs to the Special Issue Fibrous Materials (Textiles) for Functional Applications II)
►▼
Show Figures

Graphical abstract
Open AccessArticle
Turkey Red Oil as a Renewable Leveling and Dispersant Option for Polyester Dyeing with Dispersed Dyes
by
, , , , and
Textiles 2023, 3(2), 163-181; https://doi.org/10.3390/textiles3020012 - 22 Apr 2023
Abstract
The objective of this work was to evaluate Turkey red oil as a renewable dispersant and leveling option for dyeing polyester knitted fabric with disperse dyes. The dyeing results were evaluated by measuring the color at several positions of the dyed samples to
[...] Read more.
The objective of this work was to evaluate Turkey red oil as a renewable dispersant and leveling option for dyeing polyester knitted fabric with disperse dyes. The dyeing results were evaluated by measuring the color at several positions of the dyed samples to verify the levelness. In addition, the amount of residual dye was evaluated. Migration tests were also carried out to evaluate the leveling effectiveness of Turkey red oil. Wet rubbing and washing fastness analysis, hydrophilicity, thermogravimetric analysis (TGA), surface analysis with scanning electron microscopy (SEM) and modification of functional groups by FTIR were also carried out. The results obtained in the analyses show that Turkey red oil is efficient as a dispersant and leveling agent when compared to the well-known sodium naphthalene sulfonate. It is concluded that Turkey red oil reduces the time of the dyeing process and consequently its energy consumption, and reduces the amount of effluent generated while improving hydrophilicity and fastness, thus being a renewable and sustainable option for current products based on petroleum.
Full article
(This article belongs to the Special Issue New Research Trends for Textiles, a Bright Future)
►▼
Show Figures

Graphical abstract
Open AccessReview
A Critical Review on Reusable Face Coverings: Mechanism, Development, Factors, and Challenges
Textiles 2023, 3(1), 142-162; https://doi.org/10.3390/textiles3010011 - 09 Mar 2023
Cited by 2
Abstract
Textile supply chain challenges due to the COVID-19 pandemic and the Russia–Ukraine war give unique insights into how health crises and geopolitical instability could dry up supplies of vital materials for the smooth functioning of human societies in calamitous times. Coinciding adverse global
[...] Read more.
Textile supply chain challenges due to the COVID-19 pandemic and the Russia–Ukraine war give unique insights into how health crises and geopolitical instability could dry up supplies of vital materials for the smooth functioning of human societies in calamitous times. Coinciding adverse global events or future pandemics could create shortages of traditional face coverings among other vital materials. Reusable face coverings could be a viable relief option in such situations. This review identifies the lack of studies in the existing literature on reusable fabric face coverings available in the market. It focuses on the development, filtration mechanisms, and factors associated with the filtration efficiency of reusable knitted and woven fabric face coverings. The authors identified relevant papers through the Summon database. Keeping the focus on readily available fabrics, this paper encompasses the key aspects of reusable face coverings made of knitted and woven fabrics outlining filtration mechanisms and requirements, development, factors affecting filtration performance, challenges, and outcomes of clinical trials. Filtration mechanisms for reusable face coverings include interception and impaction, diffusion, and electrostatic attraction. Face covering development includes the identification of appropriate constituent fibers, yarn characteristics, and base fabric construction. Factors significantly affecting the filtration performance were electrostatic charge, particle size, porosity, layers, and finishes. Reusable face coverings offer several challenges including moisture management, breathing resistance factors, and balancing filtration with breathability. Efficacy of reusable face coverings in comparison to specialized non reusable masks in clinical trials has also been reviewed and discussed. Finally, the authors identified the use of certain finishes on fabrics as a major challenge to making reusable face coverings more effective and accessible to the public. This paper is expected to provide communities and research stakeholders with access to critical knowledge on the reusability of face coverings and their management during periods of global crisis.
Full article
(This article belongs to the Special Issue Textile Materials: Structure–Property Relationship)
►▼
Show Figures

Figure 1
Open AccessArticle
Numerical and Experimental Investigation on Bending Behavior for High-Performance Fiber Yarns Considering Probability Distribution of Fiber Strength
Textiles 2023, 3(1), 129-141; https://doi.org/10.3390/textiles3010010 - 18 Feb 2023
Cited by 1
Abstract
The performance of fiber-reinforced composite materials is significantly influenced by the mechanical properties of the yarns. Predictive simulations of the mechanical response of yarns are, thus, necessary for fiber-reinforced composite materials. This paper developed a novel experiment equipment and approach to characterize the
[...] Read more.
The performance of fiber-reinforced composite materials is significantly influenced by the mechanical properties of the yarns. Predictive simulations of the mechanical response of yarns are, thus, necessary for fiber-reinforced composite materials. This paper developed a novel experiment equipment and approach to characterize the bending behavior of yarns, which was also analyzed by characterization parameters, bending load, bending stiffness, and realistic contact area. Inspired by the digital element approach, an improved modeling methodology with the probability distribution was employed to establish the geometry model of yarns and simulated bending behavior of yarns by defining the crimp strain of fibers in the yarn and the effective elastic modulus of yarns as random variables. The accuracy of the developed model was confirmed by the experimental approach. More bending behavior of yarns, including the twisted and plied yarns, was predicted by numerical simulation. Additionally, models revealed that twist level and number of plies affect yarn bending properties, which need to be adopted as sufficient conditions for the mechanical analysis of fiber-reinforced composite materials. This efficient experiment and modeling method is meaningful to be developed in further virtual weaving research.
Full article
(This article belongs to the Special Issue New Research Trends for Textiles, a Bright Future)
►▼
Show Figures

Figure 1
Open AccessArticle
Tactile Perception of Woven Fabrics by a Sliding Index Finger with Emphasis on Individual Differences
Textiles 2023, 3(1), 115-128; https://doi.org/10.3390/textiles3010009 - 16 Feb 2023
Abstract
Haptic sensing by sliding fingers over a fabric is a common behavior in consumers when wearing garments. Prior studies have found important characteristics that shape the evaluation criteria and influence the preference of consumers regarding fabrics. This study analyzed the tactile perception of
[...] Read more.
Haptic sensing by sliding fingers over a fabric is a common behavior in consumers when wearing garments. Prior studies have found important characteristics that shape the evaluation criteria and influence the preference of consumers regarding fabrics. This study analyzed the tactile perception of selected woven fabrics, with an emphasis on the participants’ individual differences. Individual differences generally are discarded in sensory experiments by averaging them. Small differences among consumers can be important for understanding the factors driving consumer preferences. For this study, 28 participants assessed fabrics with very distinct surface, compression, and heat transferring properties by sliding their index fingers along the surface of the fabric. The participants also engaged in a descriptive sensory analysis. The physical properties of the fabric were measured using the Kawabata Evaluation System for Fabrics (KES-F) system. Moreover, parameters at the finger–fabric interface, such as the contact force, finger speed, and skin vibration, were measured during the assessment. This study used analysis of variance to eliminate nonsignificant attributes. Consonance analysis was performed using principal component analysis (PCA) on the unfolded sensory and interface data matrices. Finally, the physical and interface data were regressed onto sensory data. The results showed that the contact force and finger speed were nonsignificant, while skin vibration was a possible replacement for surface physical properties measured by the Kawabata Evaluation System for Fabrics (KES-F) system with an equal or slightly improved explainability.
Full article
(This article belongs to the Special Issue New Research Trends for Textiles, a Bright Future)
►▼
Show Figures

Figure 1
Open AccessArticle
PCM-Impregnated Textile-Reinforced Cementitious Composite for Thermal Energy Storage
by
, , , , , , , , , , and
Textiles 2023, 3(1), 98-114; https://doi.org/10.3390/textiles3010008 - 09 Feb 2023
Cited by 1
Abstract
The growing global energy demand requires solutions that improve energy efficiency in all sectors. The civil construction sector is responsible for a large part of global energy consumption. In this context, phase change materials (PCMs) can be incorporated into construction materials to improve
[...] Read more.
The growing global energy demand requires solutions that improve energy efficiency in all sectors. The civil construction sector is responsible for a large part of global energy consumption. In this context, phase change materials (PCMs) can be incorporated into construction materials to improve the energy efficiency of buildings. The purpose of this study was to incorporate a PCM to jute fabric, applying it in civil construction as a reinforcement for cement matrices. In order to do that, a method of immersing jute fabric in liquid phase change material, and then coating it with a polymer, was proposed. Treated jute fabric was then used to produce a laminated composite with a cementitious matrix. Morphological, mechanical and chemical characterization of jute textiles was performed, as well as an analysis of the composites’ mechanical and thermal behavior. The results verified that jute textiles absorbed 102% PCM in weight, which was successfully contained in the capillary porosity of jute. The PCM was able to delay the composite’s temperature increase by up to 24 °C. It was concluded that this method can be used to incorporate PCM to natural textiles, producing composites with thermal energy storage properties.
Full article
(This article belongs to the Special Issue Fibrous Materials (Textiles) for Functional Applications II)
►▼
Show Figures

Figure 1
Open AccessArticle
Prediction of Shrinkage Behavior of Stretch Fabrics Using Machine-Learning Based Artificial Neural Network
by
and
Textiles 2023, 3(1), 88-97; https://doi.org/10.3390/textiles3010007 - 02 Feb 2023
Abstract
Stretch fabric provides good formability and does not restrict the movement of the body for increased tension levels. The major expectations of a wearer in an apparel fabric are a high level of mechanical comfort and good aesthetics. The prediction of shrinkage in
[...] Read more.
Stretch fabric provides good formability and does not restrict the movement of the body for increased tension levels. The major expectations of a wearer in an apparel fabric are a high level of mechanical comfort and good aesthetics. The prediction of shrinkage in stretch fabric is a very complex and unexplored topic. There are no existing formulas that can effectively predict the shrinkage of stretch fabrics. The purpose of this paper is to develop a novel model based on an artificial neural network to predict the shrinkage of stretch fabrics. Different stretch fabrics (core-spun lycra yarn) with stretch in the weft direction were manufactured in the industry using a miniature weaving machine. A model was built using an artificial neural network method, including training of the data set, followed by testing of the model on the test data set. The correlation of factors, such as warp count, weft count, greige PPI, greige EPI, and greige width, was established with respect to boil-off width.
Full article
(This article belongs to the Special Issue New Research Trends for Textiles, a Bright Future)
►▼
Show Figures

Figure 1
Open AccessArticle
Use of Rotary Ultrasonic Plastic Welding as a Continuous Interconnection Technology for Large-Area e-Textiles
Textiles 2023, 3(1), 66-87; https://doi.org/10.3390/textiles3010006 - 28 Jan 2023
Abstract
For textile-based electronic systems with multiple contacts distributed over a large area, it is very complex to create reliable electrical and mechanical interconnections. In this work, we report for the first time on the use of rotating ultrasonic polymer welding for the continuous
[...] Read more.
For textile-based electronic systems with multiple contacts distributed over a large area, it is very complex to create reliable electrical and mechanical interconnections. In this work, we report for the first time on the use of rotating ultrasonic polymer welding for the continuous integration and interconnection of highly conductive ribbons with textile-integrated conductive tracks. For this purpose, the conductive ribbons are prelaminated on the bottom side with a thermoplastic film, which serves as an adhesion agent to the textile carrier, and another thermoplastic film is laminated on the top side, which serves as an electrical insulation layer. Experimental tests are used to investigate the optimum welding process parameters for each material combination. The interconnects are initially electrically measured and then tested by thermal cycling, moisture aging, buckling and washing tests, followed by electrical and optical analyses. The interconnects obtained are very low ohmic across the materials tested, with resulting contact resistances between 1 and 5 mOhm. Material-dependent results were observed in the reliability tests, with climatic and mechanical tests performing better than the wash tests for all materials. In addition, the development of a heated functional prototype demonstrates a first industrial application.
Full article
(This article belongs to the Special Issue New Research Trends for Textiles, a Bright Future)
►▼
Show Figures

Figure 1
Open AccessArticle
Eco-Friendly Anionic Surfactant for the Removal of Methyl Red from Aqueous Matrices
by
, , , and
Textiles 2023, 3(1), 52-65; https://doi.org/10.3390/textiles3010005 - 28 Jan 2023
Cited by 2
Abstract
This study aimed to evaluate the methyl red (MR) removal efficiency from aqueous matrices using an eco-friendly anionic surfactant (a calcium surfactant, or CaSF), obtained from frying oil residue. Data obtained by infrared spectroscopy revealed several functional groups that favor the capture of
[...] Read more.
This study aimed to evaluate the methyl red (MR) removal efficiency from aqueous matrices using an eco-friendly anionic surfactant (a calcium surfactant, or CaSF), obtained from frying oil residue. Data obtained by infrared spectroscopy revealed several functional groups that favor the capture of the dye by chemisorption by forming hydrogen bonds and covalent interactions. The kinetic testing results fit the pseudo-second order model, reaching equilibrium in 30 min. Adsorption was greatly influenced by temperature. The Langmuir isotherm was the one best fitting the process at 20 °C, while the Dubinin–Radushkevich isotherm fitted it better at higher temperatures. Under optimized conditions, the maximal MR adsorption capacity of CaSF reached 53.59 mg·g−1 (a removal rate of 95.15%), proving that the adsorbent at hand can be an excellent alternative for the removal of undesirable levels of MR present in aqueous matrices.
Full article
(This article belongs to the Special Issue Recent Advances in Sustainable Textiles)
►▼
Show Figures

Figure 1
Open AccessEditorial
Acknowledgment to the Reviewers of Textiles in 2022
Textiles 2023, 3(1), 50-51; https://doi.org/10.3390/textiles3010004 - 18 Jan 2023
Abstract
High-quality academic publishing is built on rigorous peer review [...]
Full article
Highly Accessed Articles
Latest Books
E-Mail Alert
News
Topics

Conferences
Special Issues
Special Issue in
Textiles
Nanofunctionalization of Textiles
Guest Editor: Andrea ZilleDeadline: 30 September 2023
Special Issue in
Textiles
Advances in Technical Textiles
Guest Editors: Larisa A. Tsarkova, Thomas Bahners, Xiaomin ZhuDeadline: 31 October 2023
Special Issue in
Textiles
Textile Materials: Structure–Property Relationship
Guest Editor: S M Fijul KabirDeadline: 30 November 2023
Special Issue in
Textiles
Advances of Medical Textiles
Guest Editors: Selestina Gorgieva, Andrea ZilleDeadline: 31 December 2023