Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (26)

Search Parameters:
Keywords = SOM transport

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 14947 KiB  
Article
Elevated Concentrations of Carbon Dioxide (CO2) on the Harbechy Plateau (Moravian Karst) Reveal a Gas-Rich Soil Layer (GRSL)
by Jiří Faimon, Vít Baldík, Jiří Rez, Roman Hadacz, Roman Novotný, Daniela Ocásková, Martin Dostalík, Dalibor Všianský, Jiří Nečas, Jindřich Štelcl, František Kuda, Iva Křenovská and Filip Chalupka
Appl. Sci. 2025, 15(16), 8907; https://doi.org/10.3390/app15168907 - 13 Aug 2025
Viewed by 247
Abstract
Precipitation leaches soil organic matter (SOM), transporting it downward where it accumulates at the soil–bedrock interface. Intensive agriculture, particularly tillage, accelerates this process. Microbial decomposition of SOM generates CO2, forming a gas-rich soil layer (GRSL)—a phenomenon long hypothesized but never directly [...] Read more.
Precipitation leaches soil organic matter (SOM), transporting it downward where it accumulates at the soil–bedrock interface. Intensive agriculture, particularly tillage, accelerates this process. Microbial decomposition of SOM generates CO2, forming a gas-rich soil layer (GRSL)—a phenomenon long hypothesized but never directly confirmed until now. Drilling on the Harbechy Plateau (Moravian Karst) revealed a GRSL with a thickness of ~0.8 m, CO2 concentrations averaging 1.5–3 vol. % (peaks of 4–6 vol. %), and isotopic signatures (δ13C) indicating a mix of biogenic (−25‰) and atmospheric (−8‰) CO2. These findings necessitate re-evaluation of carbon cycling models in karst agroecosystems. Full article
(This article belongs to the Section Ecology Science and Engineering)
Show Figures

Figure 1

33 pages, 42384 KiB  
Article
Simulated Biogeochemical Effects of Seawater Restoration on Diked Salt Marshes, Cape Cod National Seashore, Massachusetts, U.S.
by Craig J. Brown
Soil Syst. 2025, 9(3), 89; https://doi.org/10.3390/soilsystems9030089 - 8 Aug 2025
Viewed by 394
Abstract
Efforts have been underway worldwide to reintroduce seawater to many historically diked salt marshes for restoration of tidal flow and associated estuarine habitat. Seawater restoration to a diked Cape Cod marsh was simulated using the computer program PHREEQC based on previously conducted microcosm [...] Read more.
Efforts have been underway worldwide to reintroduce seawater to many historically diked salt marshes for restoration of tidal flow and associated estuarine habitat. Seawater restoration to a diked Cape Cod marsh was simulated using the computer program PHREEQC based on previously conducted microcosm experiments to better understand the associated timing and sequence of multiple biogeochemical reactions and their implications to aquatic health. Model simulations show that acidic, reducing waters with high concentrations of sorbed ferrous iron (Fe[II]), aluminum (Al), sulfide (S2−), ammonia (NH4+ + NH3), and phosphate (PO43−) are released through desorption and sediment weathering following salination that can disrupt aquatic habitat. Models were developed for one-dimensional reactive transport of solutes in diked, flooded (DF) marsh sediments and subaerially exposed, diked, drained (DD) sediments by curve matching porewater solute concentrations and adjusting the sedimentary organic matter (SOM) degradation rates based on the timing and magnitude of Fe(II) and S2− concentrations. Simulated salination of the DD sediments, in particular, showed a large release of Al, Fe(II), NH4+, and PO43−; the redox shift to reductive dissolution provided higher rates of SOM oxidation. The sediment type, iron source, and seasonal timing associated with seawater restoration can affect the chemical speciation and toxicity of constituents to aquatic habitat. The constituents of concern and their associated complex biogeochemical reactions simulated in this study are directly relevant to the increasingly common coastal marsh salination, either through tidal restoration or rising sea level. Full article
(This article belongs to the Special Issue Adsorption Processes in Soils and Sediments)
Show Figures

Figure 1

20 pages, 11814 KiB  
Article
Self-Organizing Map-Based Classification for Fire Weather Index in the Beijing–Tianjin–Hebei Region and Their Potential Causes
by Maowei Wu, Chengpeng Zhang, Meijiao Li, Wupeng Du, Jianming Chen and Caishan Zhao
Atmosphere 2025, 16(4), 403; https://doi.org/10.3390/atmos16040403 - 30 Mar 2025
Viewed by 495
Abstract
Understanding the characteristics of wildfires in the Beijing–Tianjin–Hebei (BTH) region is crucial for improving the monitoring of local wildfire danger. Our investigation first establishes the spatial distributions of fire weather index (FWI) distributions and satellite-observed wildfire occurrences. The FWI provides a reasonably accurate [...] Read more.
Understanding the characteristics of wildfires in the Beijing–Tianjin–Hebei (BTH) region is crucial for improving the monitoring of local wildfire danger. Our investigation first establishes the spatial distributions of fire weather index (FWI) distributions and satellite-observed wildfire occurrences. The FWI provides a reasonably accurate representation of wildfire danger in the BTH region. Through Self-Organizing Maps (SOM) clustering analysis, we identify nine distinct spatial patterns in FWI composites. Notably, the annual frequency of SOM modes 2 and 7 has shown a significant increasing trend over the past 40 years. The spatial distribution of the highest FWI values in these two modes is in the southern and central BTH regions, respectively. Subsequently, we examine the relationship between FWI variations and atmospheric circulation patterns. A synoptic analysis indicates that the increased fuel availability index observed in SOM modes 2 and 7 can be primarily attributed to two key factors. One is a post-trough system, which is marked by a decrease in water vapor transport. The other is a high-pressure system, which is associated with higher temperatures and drought conditions. Finally, the relative contributions of the fuel available index and the wildfire spread rate index to the FWI are quantified using a partial differential approach. The variations in the fuel available index are the primary drivers of the high FWI values in these two SOM patterns. This study underscores the importance of analyzing the synergistic effects of multiple atmospheric circulation patterns on the fuel availability index, which is critical for improving wildfire danger prediction at different timescales in the BTH region. Full article
(This article belongs to the Special Issue Fire Weather and Drought: Recent Developments and Future Perspectives)
Show Figures

Figure 1

21 pages, 13744 KiB  
Article
Spatiotemporal Characteristics, Causes, and Prediction of Wildfires in North China: A Study Using Satellite, Reanalysis, and Climate Model Datasets
by Mengxin Bai, Peng Zhang, Pei Xing, Wupeng Du, Zhixin Hao, Hui Zhang, Yifan Shi and Lulu Liu
Remote Sens. 2025, 17(6), 1038; https://doi.org/10.3390/rs17061038 - 15 Mar 2025
Viewed by 1015
Abstract
Understanding the characteristics of wildfires in North China is critical for advancing regional fire danger prediction and management strategies. This study employed satellite-based burned area products of the Global Fire Emissions Database (GFED) and reanalysis of climate datasets to investigate the spatiotemporal characteristics [...] Read more.
Understanding the characteristics of wildfires in North China is critical for advancing regional fire danger prediction and management strategies. This study employed satellite-based burned area products of the Global Fire Emissions Database (GFED) and reanalysis of climate datasets to investigate the spatiotemporal characteristics of wildfires, as well as their relationships with fire danger indices and climatic drivers. The results revealed distinct seasonal variability, with the maximum burned area extent and intensity occurring during the March–April period. Notably, the fine fuel moisture code (FFMC) demonstrated a stronger correlation with burned areas compared to other fire danger or climate indices, both in temporal series and spatial patterns. Further analysis through the self-organizing map (SOM) clustering of FFMC composites then revealed six distinct modes, with the SOM1 mode closely matching the spatial distribution of burned areas in North China. A trend analysis indicated a 7.75% 10a−1 (p < 0.05) increase in SOM1 occurrence frequency, associated with persistent high-pressure systems that suppress convective activity through (1) inhibited meridional water vapor transport and (2) reduced cloud condensation nuclei formation. These synoptic conditions created favorable conditions for the occurrence of wildfires. Finally, we developed a prediction model for burned areas, leveraging the strong correlation between the FFMC and burned areas. Both the SSP245 and SSP585 scenarios suggest an accelerated, increasing trend of burned areas in the future. These findings emphasize the importance of understanding the spatiotemporal characteristics and underlying causes of wildfires, providing critical insights for developing adaptive wildfire management frameworks in North China. Full article
Show Figures

Figure 1

26 pages, 1615 KiB  
Review
Behavior of Silver Species in Soil: Ag Nanoparticles vs. Ionic Ag
by Joanna Kyziol-Komosinska, Agnieszka Dzieniszewska and Justyna Czupioł
Molecules 2024, 29(23), 5531; https://doi.org/10.3390/molecules29235531 - 22 Nov 2024
Cited by 3 | Viewed by 1464
Abstract
Silver nanoparticles are one of the most commonly used forms of silver (Ag) in nanotechnology applications due to their antibacterial properties and electrical and thermal resistance. The increasing production and use of products containing nanoparticles has led to their release into and contamination [...] Read more.
Silver nanoparticles are one of the most commonly used forms of silver (Ag) in nanotechnology applications due to their antibacterial properties and electrical and thermal resistance. The increasing production and use of products containing nanoparticles has led to their release into and contamination of soil and water. This review summarizes the literature on the fate, behavior (adsorption/desorption, precipitation/oxidative dissolution, transformation), and transport/mobility of Ag forms in soils (Ag+ ions and Ag nanoparticles—AgNPs). The behavior of Ag+/AgNPs in soil is a complex process. It depends on many factors, including the characteristics of the Ag forms (ions, nanoparticle size, ligand type used for coating, surface charge, initial Ag concentration), the soil properties (organic matter and clay mineral content, textural properties, point of zero charge, cation exchange capacity, surface functional groups), and the solute properties (pH–Eh, ionic strength, cation type, oxygen content). The binding of Ag+ and AgNPs is significantly positively correlated with Al/Fe/Mn oxide and SOM content and depends on the surface charge of the minerals and CEC, which controls adsorption processes. Very important parameters to consider are the pH and Eh of the solution, which determine the durability of the ligands, the aggregation rate and the oxidation process of AgNPs, as well as the presence of sulfide and chloride and the Cl/Ag ratio, which determine the stability/mobility of Ag. Since AgNPs can be oxidized to Ag+ ions during their life cycle, it is necessary to consider the behavior of both forms of Ag in soils. Understanding the transport and behavior of Ag in soil is essential for the environmental risk assessment and management of wastes containing Ag. Full article
Show Figures

Figure 1

21 pages, 2517 KiB  
Article
Strategic Formation of Agricultural Market Clusters in Ukraine: Emerging as a Global Player
by Maksym W. Sitnicki, Dmytro Kurinskyi, Olena Pimenowa, Mirosław Wasilewski and Natalia Wasilewska
Sustainability 2024, 16(21), 9430; https://doi.org/10.3390/su16219430 - 30 Oct 2024
Cited by 3 | Viewed by 2416
Abstract
This study investigates the cluster approach to optimize strategies for agricultural enterprises in Ukraine, emphasizing geographical proximity as a key factor in cluster formation. The research applies Kohonen Self-Organizing Maps (SOMs) and Ward’s hierarchical clustering to classify enterprises based on storage capabilities, transport [...] Read more.
This study investigates the cluster approach to optimize strategies for agricultural enterprises in Ukraine, emphasizing geographical proximity as a key factor in cluster formation. The research applies Kohonen Self-Organizing Maps (SOMs) and Ward’s hierarchical clustering to classify enterprises based on storage capabilities, transport logistics, crop yields, and military risk exposure. By analyzing these factors, this study identifies distinct patterns of innovation adoption, strategic management, and economic resilience among the clusters. The findings highlight variations in competitiveness and resource efficiency, providing a detailed understanding of regional economic performance. Unlike previous research, this study offers a novel integration of conflict-related risks into the clustering methodology, revealing new insights into how military factors influence cluster dynamics. Comprehensive maps and diagrams illustrate the spatial and economic distribution of clusters, aiding in visual interpretation. The results propose strategic measures tailored to enhance agricultural productivity and competitiveness, particularly in Ukraine’s current military context. This approach offers a more adaptive framework for managing agricultural enterprises, promoting resilience and long-term sustainability in global markets. Full article
(This article belongs to the Special Issue Economics Perspectives on Sustainable Food Security—2nd Edition)
Show Figures

Figure 1

19 pages, 2442 KiB  
Article
Rice Under Dry Cultivation–Maize Intercropping Improves Soil Environment and Increases Total Yield by Regulating Belowground Root Growth
by Zhihai Wu, Bei Xue, Shiwen Wang, Xu Xing, Min Nuo, Xin Meng, Meikang Wu, Hao Jiang, Huimin Ma, Meiying Yang, Xiaoshuang Wei, Guangxin Zhao and Ping Tian
Plants 2024, 13(21), 2957; https://doi.org/10.3390/plants13212957 - 23 Oct 2024
Cited by 1 | Viewed by 2069
Abstract
Under the one-season-a-year cropping pattern in Northeast China, continuous cropping is one of the main factors contributing to the degradation of black soil. Previous studies (on maize–soybean, maize–peanut, and maize–wheat intercropping) have shown that intercropping can alleviate this problem. However, it is not [...] Read more.
Under the one-season-a-year cropping pattern in Northeast China, continuous cropping is one of the main factors contributing to the degradation of black soil. Previous studies (on maize–soybean, maize–peanut, and maize–wheat intercropping) have shown that intercropping can alleviate this problem. However, it is not known whether intercropping is feasible for maize and rice under dry cultivation, and its effects on yield and soil fertility are unknown. A three-year field-orientation experiment was conducted at Jilin Agricultural University in Changchun city, Jilin Province, China, consisting of three cropping regimes, namely rice under dry cultivation–maize intercropping (IRM), sole rice under dry cultivation (SR), and sole maize (SM). All straw was fully returned to the field after mechanical harvesting. Rice under dry cultivation–maize intercropping with a land-equivalent ratio of 1.05 (the average of three years values) increased the total yield by 8.63% compared to the monoculture system. The aggressivity (A), relative crowding coefficient (K), time–area-equivalent ratio (ATER), and competition ratio (CR) value were positive or ≥1, also indicating that the rice under dry cultivation–maize intercropping had a yield advantage of the overall intercropping system. This is because the intercropped maize root length density (RLD) increased by 33.94–102.84% in the 0–40 cm soil layer, which contributed to an increase in the soil porosity (SP) of 5.58–10.10% in the 0–30 cm soil layer, an increase in the mean weight diameter of soil aggregates (MWD) of 3.00–15.69%, an increase in the geometric mean diameter of soil aggregates (GMD) of 8.16–26.42%, a decrease in the soil bulk density (SBD) of 4.02–7.35%, and an increase in the soil organic matter content (SOM) of 0.60–4.35%. This increased the water permeability and aeration of the soil and facilitated the absorption of nutrients and water by the root system and their transportation above ground, and the plant nitrogen, phosphorus, and potassium accumulation in the intercropping system were significantly higher than that in monoculture treatment, further promoting the total yield of intercropping. This suggests that rice under a dry cultivation–maize intercropping system is feasible in Northeast China, mainly because it promotes belowground root growth, improves the soil environment, and increases the total yield of intercropping. Full article
(This article belongs to the Special Issue Advances in Soil Fertility Management for Sustainable Crop Production)
Show Figures

Figure 1

26 pages, 25701 KiB  
Article
Key Factors Controlling Cadmium and Lead Contents in Rice Grains of Plants Grown in Soil with Different Cadmium Levels from an Area with Typical Karst Geology
by Long Li, Lijun Ma, Lebin Tang, Fengyan Huang, Naichuan Xiao, Long Zhang and Bo Song
Agronomy 2024, 14(9), 2076; https://doi.org/10.3390/agronomy14092076 - 11 Sep 2024
Cited by 3 | Viewed by 1384
Abstract
Cadmium (Cd) is a naturally occurring element often associated with lead (Pb) in the Earth’s crust, particularly in karst regions, posing significant safety hazards for locally grown rice. Identifying the key factors controlling Cd and Pb content in local rice is essential under [...] Read more.
Cadmium (Cd) is a naturally occurring element often associated with lead (Pb) in the Earth’s crust, particularly in karst regions, posing significant safety hazards for locally grown rice. Identifying the key factors controlling Cd and Pb content in local rice is essential under the natural soil condition, as this will provide a crucial theoretical foundation for implementing security intervention measures within the local rice-growing industry. This study collected three types of paddy field soils with varying Cd concentrations from karst areas for pot experiments. The rice varieties tested included a low-Cd-accumulating variety, a high-Cd-accumulating variety, and a locally cultivated variety. Soil physicochemical properties and plant physiological indices were monitored throughout the rice growth stages. These data were used to construct a segmented regression model of Cd and Pb levels in rice grains based on the plant’s metabolic pathways and the structure of polynomial regression equations. Stepwise regression identified the key factors controlling Cd and Pb accumulation in rice grains. In conclusion, the key factors controlling Cd and Pb levels in rice grains should be classified into two categories: (i) factors influencing accumulation in roots and (ii) factors regulating transport from roots to grains. The aboveground translocation abilities for Cd, Pb, zinc (Zn), iron (Fe), manganese (Mn), calcium (Ca), and magnesium (Mg) in soil among the three rice varieties showed no significant interspecific differences under identical soil conditions. Soil Mg uptake by rice roots may represent a key mechanism for inhibiting soil Cd uptake by rice roots. In karst areas with high background soil Cd, increased soil organic matter (SOM) levels enhance Pb bioavailability. Additionally, the rice YXY may possess a potential for low Cd accumulation. Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Figure 1

15 pages, 3237 KiB  
Article
Influence of Water Erosion on Soil Aggregates and Organic Matter in Arable Chernozems: Case Study
by O. O. Plotnikova, V. V. Demidov, Yu. R. Farkhodov, P. R. Tsymbarovich and I. N. Semenkov
Agronomy 2024, 14(8), 1607; https://doi.org/10.3390/agronomy14081607 - 23 Jul 2024
Cited by 1 | Viewed by 1587
Abstract
Since Chernozems are among the most fertile soils in the world, the study of their degradation is of great interest. However, the microstructure and composition of the soil organic matter (SOM) in eroded Chernozems have not yet been sufficiently studied. We studied the [...] Read more.
Since Chernozems are among the most fertile soils in the world, the study of their degradation is of great interest. However, the microstructure and composition of the soil organic matter (SOM) in eroded Chernozems have not yet been sufficiently studied. We studied the SOM and aggregate states of eroded Chernozems using the example of two catenas with arable Haplic Chernozems in the Kursk region of Russia. In the plow horizons (the part of the soil most susceptible to water erosion), we determined the mean-weighted aggregate diameter (MWD), structure and water stability coefficients (SC and WS; dry and wet sieving, respectively), soil organic carbon (SOC) content, and SOM composition and content (qualitative and quantitative micromorphological analyses, respectively). It was shown that with an increase in the degree of erosion, the content of SOC decreased significantly, according to both chemical and micromorphological methods of evaluation. No significant relationships were found between the degree of erosion and the indicators of the structure (except for WS, which was significantly lower in non-eroded Chernozem than in slightly and moderately eroded soils). With the increasing degree of erosion, the humus state of these soils deteriorates at the microlevel, the intensity of humification decreases, the depth of the appearance of assimilated biogenic aggregates with finely dispersed calcite in the profile increases, the structure is destroyed, lumpy aggregates form, and the proportion of planar voids increases. The downslope transport of the soil solid phase under the impact of erosion is accompanied by the accumulation of the transformation products of carbohydrates in the Chernozems in the lower part of the catena. In the Chernozems located in the transit position of the slope, the composition of SOM is characterized by the predominance of lipids and nitrogen-containing compounds. Our unique results contribute to a deeper understanding of the formation of structure and water resistance in eroded soils. Full article
Show Figures

Figure 1

23 pages, 3447 KiB  
Article
A Multi-Layered Defence Strategy against DDoS Attacks in SDN/NFV-Based 5G Mobile Networks
by Morteza Sheibani, Savas Konur, Irfan Awan and Amna Qureshi
Electronics 2024, 13(8), 1515; https://doi.org/10.3390/electronics13081515 - 16 Apr 2024
Cited by 6 | Viewed by 2269
Abstract
Software-defined networking (SDN) and network functions virtualisation (NFV) are crucial technologies for integration in the fifth generation of cellular networks (5G). However, they also pose new security challenges, and a timely research subject is working on intrusion detection systems (IDSs) for 5G networks. [...] Read more.
Software-defined networking (SDN) and network functions virtualisation (NFV) are crucial technologies for integration in the fifth generation of cellular networks (5G). However, they also pose new security challenges, and a timely research subject is working on intrusion detection systems (IDSs) for 5G networks. Current IDSs suffer from several limitations, resulting in a waste of resources and some security threats. This work proposes a new three-layered solution that includes forwarding and data transport, management and control, and virtualisation layers, emphasising distributed controllers in the management and control layer. The proposed solution uses entropy detection to classify arriving packets as normal or suspicious and then forwards the suspicious packets to a centralised controller for further processing using a self-organising map (SOM). A dynamic OpenFlow switch relocation method is introduced based on deep reinforcement learning to address the unbalanced burden among controllers and the static allocation of OpenFlow switches. The proposed system is analysed using the Markov decision process, and a Double Deep Q-Network (DDQN) is used to train the system. The experimental results demonstrate the effectiveness of the proposed approach in mitigating DDoS attacks, efficiently balancing controller workloads, and reducing the duration of the balancing process in 5G networks. Full article
(This article belongs to the Special Issue Network Protocols and Cybersecurity)
Show Figures

Figure 1

26 pages, 3945 KiB  
Article
Preventing Catastrophic Cyber–Physical Attacks on the Global Maritime Transportation System: A Case Study of Hybrid Maritime Security in the Straits of Malacca and Singapore
by Adam James Fenton
J. Mar. Sci. Eng. 2024, 12(3), 510; https://doi.org/10.3390/jmse12030510 - 19 Mar 2024
Cited by 9 | Viewed by 7285
Abstract
This paper examines hybrid threats to maritime transportation systems and their governance responses; focusing on the congested Straits of Malacca and Singapore (SOMS) as an illustrative case study. The methodology combines secondary sources with primary data from 42 expert interviews, a 28 respondent [...] Read more.
This paper examines hybrid threats to maritime transportation systems and their governance responses; focusing on the congested Straits of Malacca and Singapore (SOMS) as an illustrative case study. The methodology combines secondary sources with primary data from 42 expert interviews, a 28 respondent survey, and two maritime security roundtables. Key findings were that ships’ critical systems are increasingly interconnected, yet aging IT infrastructure and minimal cybersecurity awareness among crews heighten risks. Meanwhile, regional terrorist groups have previously targeted shipping and shown considerable skill in exploiting online tools, aligning with broader calls for jihadist violence. Furthermore, opportunistic piracy persists in the SOMS with the potential to disrupt shipping. Experts confirmed that maritime cybersecurity lags behind other critical infrastructure sectors and needs updated governance. Initial International Maritime Organization (IMO) guidelines lack specificity but revisions and updated IMO guidance are in process, while Port state implementation of maritime cybersecurity standards varies. Crucially, information sharing remains inadequate, even as recorded attacks increase. Findings underscore that although major hybrid incidents have not occurred, simulations and threat actors’ capabilities demonstrate potential for catastrophic collisions or cascading disruption in congested waterways. Mitigating factors like redundancy and crew training are deficient currently. Some alignment between SOMS states on maritime security cooperation exists, but not on cyber threats specifically. Key recommendations include an anonymous cyber attack reporting system, reinforced training and shipboard systems, and consolidated regional frameworks. Until these priorities are addressed, the analysis concludes that hybrid vulnerabilities in this vital global chokepoint remain a serious concern. Full article
Show Figures

Figure 1

12 pages, 2972 KiB  
Article
Differentiating Potential Suspended Sediment Sources Using Radionuclide Tracers and Soil Organic Matter Analysis in a Headwater Catchment in Chuncheon, South Korea
by Sooyoun Nam, Kidae Kim, Sujin Jang, Jaeuk Lee, Shinwoo Gi, Minseok Kim, Jin Kwan Kim and Sukwoo Kim
Water 2024, 16(1), 182; https://doi.org/10.3390/w16010182 - 4 Jan 2024
Cited by 1 | Viewed by 2280
Abstract
Identifying potential sources of suspended sediment (SS) in headwater catchments is crucial for water quality management. To differentiate these potential SS sources, we investigated the distribution of two fallout radionuclides (FRNs), 137Cs and 210Pbex, using gamma spectrometry along with [...] Read more.
Identifying potential sources of suspended sediment (SS) in headwater catchments is crucial for water quality management. To differentiate these potential SS sources, we investigated the distribution of two fallout radionuclides (FRNs), 137Cs and 210Pbex, using gamma spectrometry along with soil organic matter (SOM) analysis in a headwater catchment with five potential SS sources: cultivated land, non-harvested forest floor, eroded hillslope, harvested forest floor, and stream bank. The 137Cs and 210Pbex concentrations and the SOM content were considerably higher in the harvested forest floor materials than in the other four potential SS source materials. FRN concentrations revealed distinct properties according to the type of potential SS sources. Specifically, the combination of FRNs (with the effect of SOM content removed) associated with the mineral fraction and SOM showed distinguishable differences among the potential SS sources, except for no difference between cultivated land and eroded hillslope. Therefore, SOM and FRNs, or their combination, can be effective indices to differentiate or trace potential SS sources on various land use/land cover types within a catchment. Further field tests will allow the tracing techniques that bind FRNs with SOM to contribute to understanding SS transport from non-point sources within a catchment. Full article
Show Figures

Figure 1

22 pages, 3285 KiB  
Article
A Novel RUL Prognosis Model Based on Counterpropagating Learning Approach
by Mohammed Baz
Aerospace 2023, 10(11), 972; https://doi.org/10.3390/aerospace10110972 - 20 Nov 2023
Viewed by 2084
Abstract
The aviation industry is one of the fastest-growing sectors and is crucial for both passenger transport and logistics. However, the high costs associated with maintenance, refurbishment, and overhaul (MRO) constitute one of the biggest challenges facing this industry. Motivated by the significant role [...] Read more.
The aviation industry is one of the fastest-growing sectors and is crucial for both passenger transport and logistics. However, the high costs associated with maintenance, refurbishment, and overhaul (MRO) constitute one of the biggest challenges facing this industry. Motivated by the significant role that remaining useful life (RUL) prognostics can play in optimising MRO operations and saving lives, this paper proposes a novel data-driven RUL prognosis model based on counter propagation network principles. The proposed model introduces the recursive growing hierarchical self-organisation map (ReGHSOM) as a variant of SOM that can cluster multivariate time series with high correlations and hierarchical dependencies typically found in RUL datasets. Moreover, ReGHSOM is designed to allow this clustering to evolve dynamically at runtime without imposing constraints or prior assumptions on the hypothesis spaces of the architectures. The output of ReGHSOM is fed into the supervised learning layers of Grossberg to make the RUL prediction. The performance of the proposed model is comprehensively evaluated by measuring its learnability, evolution, and comparison with related work using standard statistical metrics. The results of this evaluation show that the model can achieve an average mean square error of 5.24 and an average score of 293 for the C-MPASS dataset, which are better results than most of the comparable works. Full article
Show Figures

Figure 1

23 pages, 3124 KiB  
Review
Toward Climate Neutrality: A Comprehensive Overview of Sustainable Operations Management, Optimization, and Wastewater Treatment Methods
by Vasileios Alevizos, Ilias Georgousis and Annamaria Kapodistria
Pollutants 2023, 3(4), 521-543; https://doi.org/10.3390/pollutants3040036 - 15 Nov 2023
Cited by 11 | Viewed by 2514
Abstract
Various studies have been conducted in the fields of sustainable operations management (SOM), optimization, and wastewater treatment, yielding unsubstantiated recovery. In the context of Europe’s climate neutrality vision, this paper reviews effective decarbonization strategies and proposes sustainable approaches to mitigate carbonization in various [...] Read more.
Various studies have been conducted in the fields of sustainable operations management (SOM), optimization, and wastewater treatment, yielding unsubstantiated recovery. In the context of Europe’s climate neutrality vision, this paper reviews effective decarbonization strategies and proposes sustainable approaches to mitigate carbonization in various sectors such as buildings, energy, industry, and transportation and how these interlink with wastewater management. The study also explores the role of digitalization in decarbonization and reviews policies that can direct governments’ actions towards a climate-neutral society. This paper presents a review of optimization approaches applied in the fields of science and technology, incorporating modern optimization techniques based on various peer-reviewed published research papers. It emphasizes non-conventional energy and distributed power-generating systems along with the deregulated and regulated environment. Additionally, this paper critically reviews the performance and capability of the micellar-enhanced ultrafiltration (MEUF) process in the treatment of dye wastewater. The review presents evidence of the simultaneous removal of co-existing pollutants and explores the feasibility and efficiency of biosurfactants instead of chemical surfactants. Lastly, the paper proposes a novel Firm–Regulator–Consumer-Technology Enablers/Facilitators interaction framework to study operations, decisions and interactive cooperation considering the relationships between the four agents through a comprehensive literature review of SOM. The proposed framework provides support for exploring future research opportunities and holistic sustainability initiatives. Full article
Show Figures

Figure 1

16 pages, 15003 KiB  
Article
Soil Organic Matter Molecular Composition Shifts Driven by Forest Regrowth or Pasture after Slash-and-Burn of Amazon Forest
by Otávio dos Anjos Leal, Nicasio T. Jiménez-Morillo, José A. González-Pérez, Heike Knicker, Falberni de Souza Costa, Pedro N. Jiménez-Morillo, João Andrade de Carvalho Júnior, José Carlos dos Santos and Deborah Pinheiro Dick
Int. J. Environ. Res. Public Health 2023, 20(4), 3485; https://doi.org/10.3390/ijerph20043485 - 16 Feb 2023
Cited by 5 | Viewed by 2859
Abstract
Slash-and-burn of Amazon Forest (AF) for pasture establishment has increased the occurrence of AF wildfires. Recent studies emphasize soil organic matter (SOM) molecular composition as a principal driver of post-fire forest regrowth and restoration of AF anti-wildfire ambience. Nevertheless, SOM chemical shifts caused [...] Read more.
Slash-and-burn of Amazon Forest (AF) for pasture establishment has increased the occurrence of AF wildfires. Recent studies emphasize soil organic matter (SOM) molecular composition as a principal driver of post-fire forest regrowth and restoration of AF anti-wildfire ambience. Nevertheless, SOM chemical shifts caused by AF fires and post-fire vegetation are rarely investigated at a molecular level. We employed pyrolysis–gas chromatography–mass spectrometry to reveal molecular changes in SOM (0–10, 40–50 cm depth) of a slash-burn-and-20-month-regrowth AF (BAF) and a 23-year Brachiaria pasture post-AF fire (BRA) site compared to native AF (NAF). In BAF (0–10 cm), increased abundance of unspecific aromatic compounds (UACs), polycyclic aromatic hydrocarbons (PAHs) and lipids (Lip) coupled with a depletion of polysaccharides (Pol) revealed strong lingering effects of fire on SOM. This occurs despite fresh litter deposition on soil, suggesting SOM minimal recovery and toxicity to microorganisms. Accumulation of recalcitrant compounds and slow decomposition of fresh forest material may explain the higher carbon content in BAF (0–5 cm). In BRA, SOM was dominated by Brachiaria contributions. At 40–50 cm, alkyl and hydroaromatic compounds accumulated in BRA, whereas UACs accumulated in BAF. UACs and PAH compounds were abundant in NAF, possibly air-transported from BAF. Full article
(This article belongs to the Special Issue Sustainable Strategies towards Restoring Soil Health and Fertility)
Show Figures

Figure 1

Back to TopTop