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Abstract: Barrier machines are a key component of automatic level crossing systems ensuring
safety on railroad crossings. Their failure results not only in delayed railway transportation, but
also puts human life at risk. To prevent faults in this critical safety element of automatic level
crossing systems, it is recommended that fault and anomaly detection algorithms be implemented.
Both algorithms are important in terms of safety (information on whether a barrier boom has been
lifted/lowered as required) and predictive maintenance (information about the condition of the
mechanical components). Here, the authors propose fault models for barrier machine fault and
anomaly detection procedures based on current waveform observation. Several algorithms were
applied and then assessed such as self-organising maps (SOM), autoencoder artificial neural network,
local outlier factor (LOF) and isolation forest. The advantage of the proposed solution is there is no
change of hardware, which is already homologated, and the use of the existing sensors (in a current
measurement module). The methods under evaluation demonstrated acceptable rates of detection
accuracy of the simulated faults, thereby enabling a practical application at the test stage.

Keywords: crossing barrier machines; supply current; anomaly detection; neural networks; autoencoders;
outlier detection

1. Introduction

The main task of automatic level crossing systems is to ensure the safety of road
users and approaching trains [1–3]. They must comply with the requirements of Safety
Integrity Level 4 [4] as the consequences of the majority of incidents are usually very severe.
According to the official statistical data for 2019 [5], there were 185 safety incidents related
to level crossing systems in Poland and as a result 55 people were killed and 19 were
severely wounded.

A barrier machine is one of the most important and widely used warning devices—a
sample barrier machine is shown in Figure 1. It is required that barrier booms are lowered
within a defined time interval after the pre-warning sequence is successfully completed.
When the barrier booms are lowered, it is assumed that the road users are well protected
against irresponsible entry to the level crossing area. This may appear an easy task,
but it is very difficult to ensure near 100% reliability of barrier machines considering
obstacle detection, fault diagnosis and predictive maintenance [6]. The idea of increasing
the reliability of railway systems with the use of current waveform analysis and outlier
detection algorithms is presented in the paper.

Predictive maintenance, classification of patterns of machine health and fault detection
are significant aspects involved in developing innovative Industry 4.0 solutions [6,7].
Researchers from all over the world have put a strong emphasis on improving the reliability
of manufacturing process. The common approach to estimating the reliability of systems

Energies 2021, 14, 3206. https://doi.org/10.3390/en14113206 https://www.mdpi.com/journal/energies

https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0000-0003-1391-8809
https://www.mdpi.com/article/10.3390/en14113206?type=check_update&version=1
https://doi.org/10.3390/en14113206
https://doi.org/10.3390/en14113206
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/en14113206
https://www.mdpi.com/journal/energies


Energies 2021, 14, 3206 2 of 14

based on DC motors is to analyse their input current and any readings that deviate from
standard waveforms may indicate stall, overload, damage, or failure [8,9]. Scientists have
developed numerous solutions for examining the health of machines or classifying faults
detected in such systems. For example, current signature analysis is used in induction
motors to provide valuable information on bottle capping failures [10]. Supply current
analysis is also used in the automotive industry for examining the reliability of advanced
driver-assistance systems (ADAS) modules [11].
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Figure 1. Barrier machine of an automatic level crossing system.

Barrier machine design and functional requirements differ depending on the country
of application. For the purpose of this research, requirements valid for two countries, i.e.,
Poland [9,10] and the United Kingdom [11] were taken into consideration. One of the
important factors that has an impact on the testing scenario is the range of the angular
movement of the boom. To ensure a stable upper position and provide self-falling capa-
bilities, the barrier boom when lifted does not reach a fully vertical position. Similarly, in
the case of the lower position, the boom cannot reach a fully horizontal position to enable
adaptation to the road profile and ensure reliable operation. Considering these constraints,
the movement range of the test stand was adjusted to be 80◦ in total.

In this paper, however, we put the emphasis on detecting anomalies of any kind,
which either leads to estimating the degree of barrier machine wear or detecting their
sudden damage [12]. Among all of the outlier detection algorithms, there are simple ones
such as scalar comparison (e.g., aggregate of the whole waveform—a mean, a standard
deviation, etc.), but there are also more sophisticated ones such as analysing feature vectors
compared to the whole dataset. The vast majority of methods used for anomaly analysis
are based on unsupervised learning, e.g., local outlier factor [13], isolation forest [14], one
class support vector machine [15], robust covariance and autoencoder neural network [16].
These methods are trained using the whole population of data, and the models that are
generated are capable of distinguishing between correct vectors and anomalies.

2. Fault Models

A barrier machine has a significant impact on overall safety and special attention must
be paid to its reliability analysis. Therefore, based on experience and acquired data, a set of
the most common faults was introduced. Four representative barrier machine faults were
taken into consideration: (a) a boom hits a solid obstacle, (b) a boom hits a flexible obstacle,
(c) a gear fault, and (d) white noise. All of the relevant representative current waveforms
are shown in Figure 2. All these faults seriously disrupt barrier machine performance as
the lowering of the barrier booms is delayed at the level crossing area. Consequently, train
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traffic is impacted by a faulty level crossing subsystem. The accumulated duration of the
delay increases, thereby resulting in significant losses to the rail operator.
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Figure 2. (a) Current waveforms when a barrier boom is moving down. Correct readings are marked
in grey; anomalies in pink (boom has hit a solid obstacle), green (white noise), blue (gear fault), red
(boom has hit a flexible obstacle); (b) Current waveforms when a barrier boom is going up. Correct
readings are marked in grey; anomalies in pink (a serious damage), green (white noise), blue (gear
fault), red (obstacle has been hit).

The exemplary vector of undistorted current waveform can be written as follows:

I = [i1, i2, . . . , i80] (1)

The whole dataset consists of N current waveforms, which is denoted by J:

J = [I1; I2; . . . ; IN ] (2)

From (1) and (2), J can be written as follows:

J =

 i1,1 · · · i1,80
...

. . .
...

iN,1 · · · iN,80

 (3)

2.1. Boom Hits a Solid Obstacle

In this fault model it is assumed that the movement of the boom is stopped suddenly,
for example, by hitting the roof of a car, (a fault model for a solid obstacle, FSO). The
current in the barrier machine motor circuit increases following the growing tension of
the boom, see the pink trace in Figure 2. Depending on the interface circuit structure,
the overcurrent activates an overcurrent-circuit breaker or an electronic protection circuit.
In the first case, the level crossing requires intervention by maintenance personnel. The
resulting delay caused by a faulty barrier machine is significant. In the other case, a fully
autonomous resolution of the problem is still possible. When an overcurrent occurs, the
barrier machine is stopped and the boom can be raised again. After a defined period of
time another attempt to lower it may be made.

iFSO,x =


irand_int(1,N),x i f x < kFSO

min
(

irand_int(1,N),x + irise ∗ (x− kFSO), istall

)
i f x ≥ kFSO and x ≤ nFSO

0 i f x ≥ nFSO

(4)

where: iFSO,x is a motor current for FSO, rand_int(1, N) holds the same integer value for
the whole IFSO vector, kFSO denotes an angle when a boom hits the obstacle, nFSO denotes
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an angle when the overcurrent protection is activated, istall = 9 is a stall of a DC motor and
irise = 0.75 is the previously determined slope for a solid obstacle.

2.2. Boom Hits a Flexible Obstacle

This fault model is to some extent similar to the previous one. The mechanical
characteristics of the obstacle are the main difference. A typical example would be the
overhanging branches of a tree or hitting an animal. It may be any other object that impacts
the operation of the boom in a way that is hard to detect with a standard diagnostic
system. Therefore, a fault model for a flexible obstacle (FFO) has to be applied. The motor’s
characteristic supply current is locally distorted when the boom hits the obstacle. The
barrier machine movement times are extended but might be still within an acceptable
range. In this scenario, the mechanical condition of the boom might deteriorate rapidly.
This situation is depicted by the red trace in Figure 2.

iFFO,x =

{
irand_int(1,N),x i f x ≤ kFFO or x > kFFO + 5

irand_int(1,N),x ∗ F(x− kFFO) i f kFFO < x ≤ kFFO + 5
(5)

where: iFFO,x is a FFO motor current, rand_int(1, N) holds the same integer value for the
whole IFFO vector, kFFO denotes an angle (indices) when a boom hits the obstacle, and
F = {1.1, 1.3, 1.4, 1.3, 1.1} is an assumed FFO fault model.

2.3. Gear Fault

In this case the fault model reflects the situation where the enclosure of the barrier
machine is not tight enough. This might be due to damage or negligence by the maintenance
staff, resulting in bent or incorrectly installed covers. Flooding may be another typical
reason. As a result, friction losses within the mechanical gearbox increase as the dirt
builds up. The levels of motor supply current are higher throughout the full barrier boom
movement, see the blue trace in Figure 2. This situation is also detected by the conventional
diagnostic system, but only when the operation times of the barrier machine exceed the
allowed range. The fault model for gear failure (FGF) is defined as

iFGF,x = kFGF ∗ irand_int(1,N),x (6)

where: iFGF,x is a motor current with distorted waveform, rand_int(1, N) holds the same
integer value for the whole IFGF vector, and kFGF is a degradation coefficient that varies
based on contamination level (typically kFGF ∈ 〈1.1, 1.2〉).

2.4. White Noise

White noise represents a general fault model of a situation where the characteristic
motor supply current is distorted by some external or internal factor, see the green trace in
Figure 2. This usually happens due to weak wire connections or the corrosion process. The
following fault model is simulated as a white noise (FN):

iFN,x = irand_int(1,N),x + kFN ·rand(−1, 1), (7)

where: iFN,x is a motor current with distorted waveform, rand_int(1, N) holds the same
integer value for the whole IFN vector, and kFN is a noise coefficient that varies based on
noise level (maximum amplitude for kFN is 0.15, 0.30, 0.45, 0.60, 0.75).

3. Data Pre-Processing

In order to develop a successful model, certain input data operations have to be
performed. The training dataset contains 4974 current waveforms (2394 for the barrier
boom going up and 2580 for the barrier boom going down) and the test dataset contains
96 waveforms, which are artificially generated to simulate numerous real-life faults. Each of
the waveforms consists of 80 data points (features) that indicate the instantaneous current
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level for a specific angular position of a barrier boom. Each point corresponds to an angular
movement of the boom by one degree. Next, the following steps were proposed, as shown
in Figure 3:

• Data cleaning—removal of the damaged waveforms from the training dataset. The
data may be corrupted due to unexpected power outages, installation works, equip-
ment failures, etc.

• Data scaling—the use of a min-max scaler (mostly for autoencoder performance boosting).
• Data labelling—either with the use of prior knowledge or clustering methods
• Clustering model (optional).
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3.1. Dataset Preparation

The first operation to be performed was to divide input data into two subgroups, that
is, readouts indicating downward boom movement (lowering of the barrier boom) and
readouts indicating upward boom movement (lifting of the barrier boom). Additionally,
outliers also must be labelled based on expert knowledge. The dataset preparation process
is depicted in Figure 4.
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3.2. Data Scaling and Labelling

The second step was data scaling so that algorithms such as neural networks will not
favour larger values over smaller ones (where both are equally significant). The scaler used
in the application is a MinMax scaler (8) and its formula is as follows

iS
a,b =

ia,b −min(i1,b, i2,b, . . . , iN,b)

max(i1,b, i2,b, . . . , iN,b)−min(i1,b, i2,b, . . . , iN,b)
(8)

where:

• iS
a,b is an output scaled feature vector

• ia,b is an input feature vector.

3.3. Clustering Method

The vast majority of current waveforms (with regard to barrier machine systems)
come with labelled data, each reading is marked with a flag denoting whether the boom is
going up or down. Unfortunately, there are systems that do not provide such handy data;
in these cases, the waveforms need to be labelled in order to apply the correct classifier
in further analysis. To do so, there are numerous algorithms that can be applied such as
k-nearest neighbours, Gaussian mixture models, DBSCAN or others (one of the clustering
method, a self-organizing map is described further on in the paper). When the waveform
is correctly labelled, anomalies can be analysed.

4. Outlier Detection

Anomalies were divided into two major subgroups—outliers [17] and novelties [18].
The first is based on the fact that there is a certain number of deviations among all the
readouts in the training dataset. These algorithms find more populated regions and
separate them from distant samples, which indicate anomalies. The other approach, novelty
detection, takes only the unpolluted subset of data into account (for the sake of training)
and focuses on detecting anomalies as samples not belonging to a pre-trained group. In
the sub-sections below, we compare four highly different anomaly detection algorithms:
local outlier factor, isolation forest, self-organizing map and autoencoder neural network.

Having prepared the data, the anomaly detection algorithms can be applied. The
remaining steps to be taken include training the model and feeding unknown data into it
to obtain a continuous probability score or a binary classification score. The whole data
flow is shown in Figure 5.
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4.1. Local Outlier Factor (LOF)

One of the most popular approaches for outlier searching is LOF. The main idea
behind this algorithm is to compare a sample’s local density with local densities of its
k-nearest neighbours. The idea of reachability distance (RD) and local reachability density
(LRD) derived from local density is represented by the Formulas (9, 10), presented below,
and is directly used to calculate the LOF score (11).

RDk(IA, IB) = max(NDk(IB), d(IA, IB)) (9)

LRDk(IA) =
1

∑j∈Nk(IA) RDk(IA ,j)
|Nk(IA)|

(10)

LOFk(IA) =
∑j∈Nk(IA)

LRDk(j)
|Nk(IA)|LRDk(IA)

(11)

where:

• k-distance NDk(IB) is defined as a distance between object IB to its k-th neighbour
• Nk(IA) denotes the set of k nearest neighbors for object IA.

The bigger the local density, the more likely the sample is an outlier. Figure 6 shows
the outcome of outlier detection for the three most anomalous readings with the number of
neighbours equalling k = 20.
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The local outlier factor algorithm managed to successfully classify two of the most
anomalous waveforms, but incorrectly classified the remaining one (see Figure 4 for expert-
chosen outliers).

4.2. Isolation Forest (iForest)

Isolation forest is widely known for its low computational complexity and its effective-
ness on high-dimensional data. Unlike the majority of anomaly detection methods, iForests
is based on actually isolating anomalies instead of profiling correct readings. Its operation
is based on binary search trees and can be described as dividing hyperplane n-times for
each sample (until a sufficient number of slices for distinguishing one particular object is
achieved) and building forests on those sets of divisions. The less divisions each sample
requires for its homogenous classification, the more likely it is an anomaly. The anomaly
score for iForest is described by Formula (12) below.

IF(IA, n) = 2−
E(h(IA))

c(n) , (12)
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where:

• h(IA) is the level of the branch for classifying observation IA
• c(n) is the average branch level
• n denotes the number of external nodes
• E(h(IA)) denotes the average value of h(IA) for all the isolation trees.

The first glance of this approach (training dataset) on the current waveforms of barrier
machines (boom going down) is presented in Figure 7 below.
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Isolation forest correctly classified the most outlying waveform, but incorrectly classi-
fied the other two.

4.3. Self-Organizing Map (SOM)

Self-organizing maps are a great tool when it comes to computing two-dimensional
(commonly) representations of input spaces and preserving their topology. As the algo-
rithm progresses, the map becomes more and more like the population; the neurons start
to cover the whole dataset in terms of (e.g., Euclidean) distance. As the algorithm pro-
gresses, the random n by m vector map is updated so that for each randomly picked input
vector Irand_int(1,N) from the J population of all current samples vectors [I1 , I1 , . . . , IN ],
its best matching unit (BMU) is found in the Korhonen map. This W unit and their clos-
est neighbours are updated (Formula 13) with the learning rate η until all the iterations
are finished.

W ′ = W + η
(

Irand_int(1,N) −W
)

(13)

This feature enables the use of SOM as an outlier detection algorithm. The readings
that are placed in less populated regions may be considered anomalies while correct vectors
tend to form larger clusters, as shown in Figure 8.

Although SOM turned out to be a perfect classifier (all the readings were clustered
correctly into two subsets), the hypothesis on finding anomalies in less populated areas
appeared to be incorrect, that is, contrary to expectations, outliers were assigned to bigger
clusters. To get around this problem, the SOM algorithm was fed with clustered data (both
subsets) and the outcome of this approach is presented in Figure 9.
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Figure 9. (a) SOM representation of barrier machine opening current waveforms; (b) SOM representation of barrier machine
closing current waveforms.

Such a division of datasets caused another problem, as vectors in the same subgroup
did not significantly differ from one another, the maps were almost equally covered by the
samples, thereby disabling any further cauterization or outlier detection.

4.4. Autoencoder Neural Network

Neural networks are becoming increasingly popular as the computational capabil-
ities of computers develop. They are widely used for image recognition, classification,
regression and much more. Among all the back propagation neural network structures
there are several subgroups, such as artificial neural networks [19], convolutional neural
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networks [20], recurrent neural networks [21], and others. For the purpose of anomaly
detection, one network architecture, i.e., autoencoder [22,23] is widely used. It is based
on the idea of compressing information into lower dimensionality and then decoding it.
The network generalizes to the most common samples so the coding–decoding process
is burdened with the most minor sample error, while outliers respectively cause a larger
mismatch between input and output. The network shown in Figure 10 was created for the
purpose of finding outliers in the delivered dataset.
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Figure 10. (a) Visual representation of the autoencoder’s architecture; (b) Visualization of encoding neurons for the
training dataset.

Figure 11 shows the outcome of outlier detection for the autoencoder shown above in
Figure 10, with an input layer size of 80, two encoding neurons, a decoding layer size of
80, rectified linear unit (ReLU) encoding activation function, sigmoid decoding activation
function, 3000 training epochs and a batch size equal to 1.
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Figure 11. (a) Average mean squared error of autoencoder’s decoding for each waveform in the population; (b) Three most
anomalous waveforms (red) selected with autoencoder from the population (grey).
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5. Comparison of the Methods

For assessing the accuracy of each method, we used 50 supply current waveforms
gathered from a real barrier machine and 43 waveform models from Section 2. The simu-
lated faults included: boom hits a solid obstacle, e.g., a car (FSOsim = 13 waveforms), gear
wear at certain levels (FGFsim = 10 waveforms), boom hits a flexible obstacle, e.g., a branch
or an animal (FFOsim = 10 waveforms), and supply current noises of different amplitude
(FNsim = 10 waveforms).

All of the proposed anomaly detection algorithms (LOF, iForest and autoencoder)
were tested on these values. Table 1 shows the confusion matrices which include the
numerical values for true positive (TP), true negative (TN), false positive (FP) and false
negative (FN) classifier hits.

Table 1. Confusion matrices for LOF, iForest and autoencoder.

LOF Positive Negative

Predicted Positive TP: 315 FP: 61
Predicted Negative FN: 85 TN: 339

iForest Positive Negative

Predicted Positive 291 42
Predicted Negative 109 358

Autoencoder Positive Negative

Predicted Positive 330 57
Predicted Negative 70 343

Additionally, sensitivity, specificity and accuracy scores (14) are presented in Table 2.

sensitivity =
TP

TP + FN
,speci f icity =

TN
TN + FP

,accuracy =
TN + TP

TN + TP + FN + FP
(14)

Table 2. Sensitivity and specificity scores for LOF, iForest, and Autoencoder.

Score LOF iForest Autoencoder

Sensitivity 79% 73% 83%
Specificity 85% 90% 86%
Accuracy 82% 81% 84%

The data presented in Tables 1 and 2 show the sensitivity and specificity scores
of various classifiers optimized for reaching maximum accuracy. As can be seen, the
autoencoder achieved the best result for accuracy of 84%. Nonetheless, local outlier factor
performs surprisingly well for a method that uses only neighbourhood similarity metrics,
obtaining a slightly worse score for both sensitivity and specificity. Isolation forest did far
worse in regard to sensitivity compared to both autoencoder and LOF, but on the other
hand it showed the best specificity (90%). Detailed information on the specific anomaly
detection rate can be found in Table 3 (scores obtained for the same models as used for
creating Tables 1 and 2).



Energies 2021, 14, 3206 12 of 14

Table 3. Anomaly detection rate for the proposed approaches.

Anomaly
Detection Rate

LOF iForest Autoencoder

Severe gear damage 100% 93% 100%
Obstacle hit 47% 30% 68%
White noise 86% 92% 92%
Gear wear 82% 76% 82%

Non-anomalous waveforms
classified correctly 85% 90% 86%

When it comes to detecting anomalies using SOM (using the same data as for evaluat-
ing all the models listed above), 97.5% of total anomalies concerning closing the barrier
machine were placed in the most populated cluster (the one that contains around 8% of
all non-anomalous waveforms). For the barrier boom going up 97.6% of total anomalies
concerning closing the barrier machine were grouped in the fourth most populated cluster
(the one containing about 6% of all non-anomalous waveforms). Such an output completely
disqualifies Kohonen maps from further use as the vast majority of anomalies are classified
in the same manner as the most representative inliers.

The sensitivity and specificity scores can both be increased at the expense of lowering
the other (using the cut-off value settings). Such a feature plays an important role when
taking into account, e.g., the cost of unnecessary relocations of service personnel—in this
case the specificity score should be boosted (by raising the cut-off). On the other hand,
when the barrier machine is placed in a dense traffic area, it is better to react to even
false-positive alarms than to disregard even one real alarm indication (this is where the
sensitivity score becomes important). However, we must remember to tune these settings
with great caution. The ROC curve accurately represents the model’s performance in terms
of tuning the cut-off values (Figure 12). The curve is defined as a function of the true
positive rate vs. false positive rate values, the higher the area under the curve, the better a
particular model performs. A comparison of the models proposed in this paper in terms of
ROC curve visualization is presented below.
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What needs to be kept in mind is the nature of a particular approach, e.g., autoencoders
are the best when it comes to performance, but they are also the most computationally com-
plex; it takes several times longer to train such a model than the LOF or forest. Moreover,
heuristic methods such as autoencoder and iForest may provide different models for the
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same training dataset, so performing several experiments (besides optimizing hyperpa-
rameters) may be a good way to obtain a proper output. Such a step is not applicable to
deterministic algorithms such as LOF, as the model will always remain constant if training
is run on the same data.

6. Conclusions

This paper discusses a very important aspect of the automatic level crossing sys-
tems. Faultless performance of barrier machines has a significant impact on the safety and
availability of railway systems. We introduced four fault models for the barrier machine
and proposed a fault and anomaly detection procedure based on the current waveform
measurements. All of the barrier machine models were based on real observations ac-
quired at the test bench. Artificial intelligence-based algorithms were proposed to detect
a predefined set of faults. Among the various methods, the autoencoder method seems
to be the most suitable because it had the highest sensitivity score. This enables correct
detection of the defined faults, i.e., a barrier machine boom hits a flexible obstacle (FFO),
and the mechanical gearbox of the barrier machine is degraded. Repeated detection of such
events should trigger earlier intervention by maintenance staff. All the presented methods
proved to be effective in terms of detecting serious fault states when a barrier boom hits a
solid obstacle (FSO) while rising or falling. The applied procedures with predefined faults
provide new insights into a specific application—a barrier machine equipped with a boom.

The proposed approach may be applied for the purpose of dynamically developing
preventive maintenance within the railway industry and may increase safety at level
crossings. It is worth pointing out that this additional diagnostic functionality can be
added to the railway system as an isolated block; the current measurement module and
processing module can easily be galvanically separated from the existing circuits of the
system. The output information can be merged with the existing stream of data observed
and analysed by the maintenance staff. This approach ensures that the diagnostic part of
the system will not have any impact on its safety. The other option is to directly incorporate
the new functionality into existing control algorithms of the level crossing system. The
resulting information indicating a detected anomaly shall be processed according to the
existing or newly defined requirements. Because the broken barrier machine equally affects
railway and road users, a highly reliable and cost-effective solution is needed to prevent
faults, traffic disruption and assure public safety. Considering the impact of failure-free
performance of barrier machines on safety, it is advisable and justifiable to continue the
research on this issue.

The promising results encourage further analysis, which might include examining the
possibility of detecting gusts of winds of a speed close to a defined maximum (especially
in the case of barrier machine applications with long booms and skirts), as well as the
verification and further improvement of the presented methods using real-life data.

Author Contributions: Conceptualization, D.G. and P.R. and R.P.; methodology, D.G. and P.R. and
R.P.; software, P.R., R.P.; validation, D.G. and P.R. and R.P.; formal analysis, D.G., P.R. and R.P.;
investigation, D.G. and P.R. and R.P.; resources, R.P.; data curation, R.P.; writing—original draft
preparation, P.R.; writing—review and editing, D.G., P.R. and R.P.; visualization, P.R.; supervision,
D.G. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author. The data are not publicly available as non-disclosure agreement is required.

Acknowledgments: This work was supported in part by the Polish Ministry of Science and Higher
Education as part of the Implementation Doctorate program at the Silesian University of Technology,
Gliwice, Poland (contract no. 0053/DW/2018), and partially by Statutory Research funds from



Energies 2021, 14, 3206 14 of 14

the Department of Electronics, Electrical Engineering and Microelectronics, Faculty of Automatic
Control, Electronics and Computer Science, Silesian University of Technology, Gliwice, Poland for
Statutory Activity.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Liang, C.; Ghazel, M.; Cazier, O.; Bouillaut, L. Advanced Model-Based Risk Reasoning on Automatic Railway Level Crossings.

Saf. Sci. 2020, 124, 104592. [CrossRef]
2. Freeman, J.; McMaster, M.; Rakotonirainy, A. An Exploration into Younger and Older Pedestrians’ Risky Behaviours at Train

Level Crossings. Safety 2015, 1, 16–27. [CrossRef]
3. Kampczyk, A. An Innovative Approach to Surveying the Geometry of Visibility Triangles at Railway Level Crossings. Sensors

2020, 20, 6623. [CrossRef] [PubMed]
4. PN-EN 50129:2019-01—Wersja Angielska. Available online: https://sklep.pkn.pl/pn-en-50129-2019-01e.html (accessed on 19

January 2021).
5. Statystyki. Available online: https://www.bezpieczny-przejazd.pl/o-kampanii/statystyki/ (accessed on 8 January 2021).
6. Jia, X.; Jin, C.; Buzza, M.; Di, Y.; Siegel, D.; Lee, J. A Deviation Based Assessment Methodology for Multiple Machine Health

Patterns Classification and Fault Detection. Mech. Syst. Signal Process. 2018, 99, 244–261. [CrossRef]
7. Oztemel, E.; Gursev, S. Literature Review of Industry 4.0 and Related Technologies. J. Intell. Manuf. 2020, 31, 127–182. [CrossRef]
8. Ganesan, S.; David, P.W.; Balachandran, P.K.; Samithas, D. Intelligent Starting Current-Based Fault Identification of an Induction

Motor Operating under Various Power Quality Issues. Energies 2021, 14, 304. [CrossRef]
9. Lee, C.-Y.; Cheng, Y.-H. Motor Fault Detection Using Wavelet Transform and Improved PSO-BP Neural Network. Processes 2020,

8, 1322. [CrossRef]
10. Azamfar, M.; Jia, X.; Pandhare, V.; Singh, J.; Davari, H.; Lee, J. Detection and Diagnosis of Bottle Capping Failures Based on Motor

Current Signature Analysis. Procedia Manuf. 2019, 34, 840–846. [CrossRef]
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