Organic Fertilizers Promote Accumulation of Mineral Nutrients in Citrus Leaves by Affecting Soil Biochemical Properties and Bacteria
Abstract
1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Experimental Design
2.3. Data Processing and Analysis
2.3.1. Biomass, Leaf and Soil Chemical Index Determination
2.3.2. The Quantification of 16S rRNA Genes
2.3.3. Illumina MiSeq Sequence Processing and Function Analysis
2.3.4. Statistical Analysis
3. Results
3.1. Influence of Different Organic Fertilizer Treatments on Citrus Growth and Leaf Nutrients
3.1.1. Influence of Different Organic Fertilizer Treatments on Citrus Seedling Growth
3.1.2. Effects of Different Organic Fertilizer Treatments on Mineral Elements in Citrus Leaves
3.2. Variations in Chemical and Biological Properties of Orchard Soils Following the Application of Different Organic Fertilizers
3.2.1. Effects of Different Organic Fertilizer on Soil Enzyme Activities
3.2.2. Effect of Different Organic Fertilizers on Soil Mineral Elements
3.3. Impact of Different Organic Fertilizer Applications on the Composition and Structure of Soil Bacterial Communities in Citrus Orchards
3.3.1. Effect of Different Organic Fertilizer Applications on Soil Bacterial Community Composition
3.3.2. Effect of Different Organic Fertilizer Applications on Soil Bacterial Community Structure
3.4. Analysis of the Direct Relationships Between Soil Bacteria and Soil Chemical and Biological Indicators
3.4.1. Relationships Between Bacterial Community and Soil Chemical Components
3.4.2. Relationships Between Bacterial Community and Soil Enzymes
3.5. Functional Prediction of Bacteria Communities Following the Application of Different Types of Organic Fertilizer
4. Discussion
4.1. Effects of Different Organic Fertilizers on Growth and Leaf Elements of Citrus
4.2. Effects of Different Organic Fertilizers on Soil Physical and Chemical Properties
4.3. Effects of Different Organic Fertilizers on Soil Bacterial Composition and Abundance
4.4. The Function of Different Microorganisms in Different Organic Fertilizer Treatments
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ding, Y.; Chang, J.; Ma, Q.; Chen, L.; Liu, S.; Jin, S.; Han, J.; Xu, R.; Zhu, A.; Guo, J.; et al. Network analysis of postharvest senescence process in citrus fruits revealed by transcriptomic and metabolomic profiling. Plant Physiol. 2015, 168, 357–376. [Google Scholar] [CrossRef]
- Adewole, E.; Adewumi, F.; Jonathan, J. Phytochemical constituents and proximate analysis of orange peel (citrus Fruit). J. Adv. Bot. Zool. 2014, 1, 1–2. [Google Scholar] [CrossRef]
- Yang, M.; Long, Q.; Li, W.L.; Wang, Z.C. Mapping the environmental cost of a typical citrus-producing county in China: Hotspot and optimization. Sustainability 2020, 12, 1827. [Google Scholar] [CrossRef]
- Xu, Q.X.; Wang, T.W.; Cai, C.F.; Li, Z.X.; Shi, Z.H. Effects of soil conservation on soil properties of citrus orchards in the Three-Gorges Area, China. Land Degrad. Dev. 2012, 23, 34–42. [Google Scholar] [CrossRef]
- Zhang, S.; Chen, X.; Ji, Z.; Yan, X.; Kong, K.; Cai, Y.; Zhu, Q.; Muneer, M.; Zhang, F.; Wu, L.M. Reducing aluminum is the key nutrient management strategy for ameliorating soil acidification and improving root growth in an acidic citrus orchard. Land Degrad. Dev. 2023, 34, 1681–1693. [Google Scholar] [CrossRef]
- Zhang, S.; Jiang, Q.; Liu, X.; Liu, L.; Ding, W. Plant growth promoting rhizobacteria alleviate aluminum toxicity and ginger bacterial wilt in acidic continuous cropping soil. Front. Microbiol. 2020, 11, 569512. [Google Scholar] [CrossRef]
- Zhang, S.; Yang, W.; Muneer, M.; Ji, Z.; Tong, L.; Zhang, X.; Li, X.; Wang, W.; Zhang, F.; Wu, L. Integrated use of lime with Mg fertilizer significantly improves the pomelo yield, quality, economic returns and soil physicochemical properties under acidic soil of southern China. Sci. Hortic. 2021, 290, 110502. [Google Scholar] [CrossRef]
- Zhang, S.; Yang, X.; Hsu, L.C.; Liu, Y.T.; Wang, S.L.; White, J.R.; Shaheen, S.M.; Chen, Q.; Rinklebe, J. Soil acidification enhances the mobilization of phosphorus under anoxic conditions in an agricultural soil: Investigating the potential for loss of phosphorus to water and the associated environmental risk. Sci. Total Environ. 2021, 793, 148531. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhu, J.; Wang, Q.; Xu, L.; Li, M.; Dai, G.; Mulder, J.; Xi, Y.; He, N.P. Soil acidification in China’s forests due to atmospheric acid deposition from 1980 to 2050. Sci. Bull. 2022, 67, 914–917. [Google Scholar] [CrossRef]
- Guo, J.H.; Liu, X.J.; Zhang, Y.; Shen, J.L.; Han, W.X.; Zhang, W.F.; Christie, P.; Goulding, K.W.T.; Vitousek, P.M.; Zhang, F.S. Significant acidification in major Chinese croplands. Science 2010, 327, 1008–1010. [Google Scholar] [CrossRef]
- Jiang, J.; Xu, R.; Zhao, A. Surface chemical properties and pedogenesis of tropical soils derived from basalts with different ages in Hainan, China. Catena 2011, 87, 334–340. [Google Scholar] [CrossRef]
- Zhang, X.; Long, Y.; Huang, J.J.; Xia, J.X. Molecular mechanisms for coping with Al toxicity in plants. Int. J. Mol. Sci. 2019, 20, 1551. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Wu, L.H.; Christie, P.; Luo, Y.M.; Fornara, D.A. Root-induced soil acidification and cadmium mobilization in the rhizosphere of Sedum plumbizincicola: Evidence from a high-resolution imaging study. Plant Soil. 2019, 436, 267–282. [Google Scholar] [CrossRef]
- Bezemer, T.M.; van Dam, N.M. Linking aboveground and belowground interactions via induced plant defenses. Trends Ecol. Evol. 2005, 20, 617–624. [Google Scholar] [CrossRef] [PubMed]
- Hayat, R.; Ali, S.; Amara, U.; Khalid, R.; Ahmed, I. Soil beneficial bacteria and their role in plant growth promotion: A review. Ann. Microbiol. 2010, 60, 579–598. [Google Scholar] [CrossRef]
- Miransari, M. Soil microbes and the availability of soil nutrients. Acta Physiol. Plant. 2013, 35, 3075–3084. [Google Scholar] [CrossRef]
- Lang, J.; Hu, J.; Ran, W.; Xu, Y.C.; Shen, Q.R. Control of cotton Verticillium wilt and fungal diversity of rhizosphere soils by bio-organic fertilizer. Biol. Fert. Soils. 2012, 48, 191–203. [Google Scholar] [CrossRef]
- Ansari, R.A.; Mahmood, I. Optimization of organic and bio-organic fertilizers on soil properties and growth of pigeon pea. Sci. Hortic. 2017, 226, 1–9. [Google Scholar] [CrossRef]
- Kumar, R.; Deta, B.C.; Kumar, M.; Ngachan, S.V. Productivity, quality and soil health as influenced by organic, inorganic and biofertilizer on field pea in Eastern Himalaya. J. Plant Nutr. 2015, 38, 2006–2027. [Google Scholar] [CrossRef]
- Luo, J.; Ran, W.; Hu, J.; Yang, X.; Xu, Y.; Shen, Q. Application of Bio-Organic Fertilizer Significantly Affected Fungal Diversity of Soils. Soil Sci. Soc. Am. J. 2010, 74, 2039–2048. [Google Scholar] [CrossRef]
- Yuan, J.; Ruan, Y.; Wang, B.; Zhang, J.; Waseem, R.; Huang, Q.; Shen, Q. Plant growth-promoting rhizobacteria strain Bacillus amyloliquefaciens NJN-6-enriched bio-organic fertilizer suppressed Fusarium wilt and promoted the growth of banana plants. J. Agric. Food Chem. 2013, 61, 3774–3780. [Google Scholar] [CrossRef]
- Whalen, J.K.; Hu, Q.; Liu, A. Compost applications increase water-stable aggregates in conventional and no-tillage systems. Soil Sci. Soc. Am. J. 2003, 67, 1842–1847. [Google Scholar] [CrossRef]
- Srivastava, A.K.; Singh, S.; Marathe, R.A. Organic citrus: Soil fertility and plant nutrition. J. Sustain. Agric. 2002, 19, 5–29. [Google Scholar] [CrossRef]
- Hazarika, T.K. Influence of organic manures and bio-dynamic preparations on growth, yield and quality of Khasi Mandarin (Citrus reticulata Blanco) in Mizoram, North-East India. Indian J. Agric. Res. 2018, 52, 576–580. [Google Scholar] [CrossRef]
- Wang, L.; Yang, X.L.; Rachel, K.; Wang, Y.; Tong, D.L.; Ye, M. Combined use of alkaline slag and rapeseed cake to ameliorate soil acidity in an acid tea garden soil. Pedosphere 2013, 23, 177–184. [Google Scholar] [CrossRef]
- Bronson, K.; Schepers, J.S.; Raun, W.R. Forms of Inorganic Nitrogen in Soil. In Nitrogen in Agricultural Systems; American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America: Madison, WI, USA, 2008; Volume 2, pp. 31–55. [Google Scholar] [CrossRef]
- Costa, L.; Kunwar, S.; Ampatzidis, Y.; Albrecht, U. Determining leaf nutrient concentrations in citrus trees using UAV imagery and machine learning. Precis. Agric. 2022, 23, 854–875. [Google Scholar] [CrossRef]
- Cordero, I.; Snell, H.; Bardgett, R.D. High throughput method for measuring urease activity in soil. Soil Biol. Biochem. 2019, 134, 72–77. [Google Scholar] [CrossRef] [PubMed]
- Dick, R.P. Methods of Soil Enzymology; Soil Science Society of America: Madison, WI, USA, 2011; Print ISBN: 9780891188544, Online ISBN: 9780891188582. [Google Scholar] [CrossRef]
- Huang, S.; Rui, W.; Peng, X.; Huang, Q.; Zhang, W. Organic carbon fractions affected by long-term fertilization in a subtropical paddy soil. Nutr. Cycl. Agroecosystems 2010, 86, 153–160. [Google Scholar] [CrossRef]
- Kautz, T.; López-Fando, C.; Ellmer, F. Abundance and biodiversity of soil microarthropods as influenced by different types of organic manure in a long-term field experiment in Central Spain. Appl. Soil Ecol. 2006, 33, 278–285. [Google Scholar] [CrossRef]
- Chang, E.H.; Chung, R.S.; Tsai, Y.H. Effect of different application rates of organic fertilizer on soil enzyme activity and microbial population (Soil Biology). Soil Sci. Plant Nutr. 2007, 53, 132–140. [Google Scholar] [CrossRef]
- Rayne, N.; Aula, L. Livestock manure and the impacts on soil health: A review. Soil Syst. 2020, 4, 64. [Google Scholar] [CrossRef]
- Fang, P.; Abler, D.; Lin, G.; Sher, A.; Quan, Q. Substituting organic fertilizer for chemical fertilizer: Evidence from apple growers in China. Land 2021, 10, 858. [Google Scholar] [CrossRef]
- Gao, J.; Zhang, X.; Luo, J.; Zhu, P.; Lindsey, S.; Gao, H.; Li, Q.; Peng, C.; Zhang, L.; Xu, L.; et al. Changes in soil fertility under partial organic substitution of chemical fertilizer: A 33-year trial. J. Sci. Food Agric. 2023, 103, 7424–7433. [Google Scholar] [CrossRef]
- Antosovsky, J.; Ryant, P.; Prudil, M.; Gruber, M.; Hammerová, A. The effect of different organic fertilizers and different localities on crop yield in conditions of organic farming. Acta Univ. Agric. Silvic. Mendel. Brun. 2018, 66, 843–851. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, H.; Liu, X.; Chen, Y.; Lu, Y.; Shen, M.; Dang, K.; Zhao, Y.; Dong, Y.; Li, Q.; et al. Organic fertilizer enhances rice growth in severe saline–alkali soil by increasing soil bacterial diversity. Soil Use Manag. 2022, 38, 964–977. [Google Scholar] [CrossRef]
- Zeller, V.; Bardgett, R.D.; Tappeiner, U. Site and management effects on soil microbial properties of subalpine meadows: A study of land abandonment along a north-south gradient in the european alps. Soil Biol. Biochem. 2001, 33, 639–649. [Google Scholar] [CrossRef]
- Matichenkov, V.; Bocharnikova, E. Soil fertility restoration, theory and practice. In Handbook of Ecological and Ecosystem Engineering; Wiley: Hoboken, NJ, USA, 2021; pp. 147–157. [Google Scholar] [CrossRef]
- Zhao, J.; Zhang, R.; Xue, C.; Xun, W.; Sun, L.; Xu, Y.; Shen, Q. Pyrosequencing reveals contrasting soil bacterial diversity and community structure of two main winter wheat cropping systems in China. Microb. Ecol. 2014, 67, 443. [Google Scholar] [CrossRef]
- Hua, L.; Yang, S.; Xia, Z.; Zeng, H. Application of Sophora alopecuroides organic fertilizer changes the rhizosphere microbial community structure of melon plants and increases the fruit sugar content. J. Sci. Food Agric. 2023, 103, 164–175. [Google Scholar] [CrossRef] [PubMed]
- Acosta-Martínez, V.; Pérez-Guzmán, L.; Veum, K.S.; Nunes, M.R.; Dick, R.P. Metabolic activity–enzymes. In Soil Health Series: Laboratory Methods for Soil Health Analysis; John Wiley & Sons: Hoboken, NJ, USA, 2020; Volume 2, pp. 194–250. [Google Scholar] [CrossRef]
- Sharaf, H.; Thompson, A.A.; Williams, M.A.; Peck, G.M. Compost applications increase bacterial community diversity in the apple rhizosphere. Soil Sci. Soc. Am. J. 2021, 85, 1105–1121. [Google Scholar] [CrossRef]
- Liang, Y.; Xiao, X.; Nuccio, E.E.; Yuan, M.; Zhang, N.; Xue, K.; Cohan, F.M.; Zhou, J.; Sun, B. Differentiation strategies of soil rare and abundant microbial taxa in response to changing climatic regimes. Environ. Microbiol. 2020, 22, 1327–1340. [Google Scholar] [CrossRef] [PubMed]
- Ali, A.; Ghani, M.I.; Li, Y.; Ding, H.; Meng, H.; Cheng, Z. Hiseq base molecular characterization of soil microbial community, diversity structure, and predictive functional profiling in continuous cucumber planted soil affected by diverse cropping systems in an intensive greenhouse region of Northern China. Int. J. Mol. Sci. 2019, 20, 2619. [Google Scholar] [CrossRef]
- Wu, L.; Jiang, Y.; Zhao, F.; He, X.; Liu, H.; Yu, K. Increased organic fertilizer application and reduced chemical fertilizer application affect the soil properties and bacterial communities of grape rhizosphere soil. Sci. Rep. 2020, 10, 9568. [Google Scholar] [CrossRef]
- Cao, J.; Li, Z.; He, F.; Tong, Z.; Wang, Y.; Wang, L.; Zheng, G.; Zhang, Y. Organic fertilizer and hydrothermal conditions change the distribution of Medicago sativa L. productivity and soil bacterial diversity in coastal saline soil. Chem. Biol. Technol. Agric. 2023, 10, 119. [Google Scholar] [CrossRef]
- Xia, H.; Riaz, M.; Liu, B.; Li, Y.; El-Desouki, Z.; Jiang, C. Over two years study: Peanut biochar promoted potassium availability by mediating the relationship between bacterial community and soil properties. Appl. Soil Ecol. 2022, 176, 104485. [Google Scholar] [CrossRef]
- Wu, X.; Wang, R.; Hu, H.; Xiu, W.M.; Li, G.; Zhao, J.N.; Yang, D.L.; Wang, L.L.; Wang, X.Y. Response of bacterial and fungal communities to chemical fertilizer reduction combined with organic fertilizer and straw in Fluvo-aquic Soil. Huan Jing Ke Xue 2020, 41, 4669–4681. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Dong, C.W.; Gao, Y.; Li, Y.J.; Shi, Y. Effects of nanocarbon and nano-calcium carbonate on soil enzyme activities and soil microbial community in wheat (Triticum aestivum L.) rhizosphere soil. J. Plant Nutrit. Soil Sci. 2023, 187, 639–652. [Google Scholar] [CrossRef]
- Sun, P.; Wu, J.Q.; Lin, X.R.; Wang, Y.; Zhu, J.X.; Chen, C.F.; Jia, H.J.; Wang, X.W.; Shen, J.S. Effects of rapeseed cake fertilizer on soil bacterial diversity and community structure in peach orchards. Pak. J. Agric. Sci. 2023, 60, 365–376. [Google Scholar] [CrossRef]
- Song, Y.J.; Sun, L.T.; Wang, H.; Zhang, S.N.; Fan, K.; Mao, Y.L.; Zhang, J.; Han, X.; Chen, H.; Xu, Y.; et al. Enzymatic fermentation of rapeseed cake significantly improved the soil environment of tea rhizosphere. BMC Microbiol. 2023, 23, 250. [Google Scholar] [CrossRef]
- Fu, H.P.; Li, H.; Yin, P.; Mei, H.L.; Li, J.J.; Zhou, P.Q.; Wang, Y.J.; Ma, Q.P.; Jeyaraj, A.; Thangaraj, K.; et al. Integrated application of rapeseed cake and green manure enhances soil nutrients and microbial communities in tea garden soil. Sustainability 2021, 13, 2967. [Google Scholar] [CrossRef]
- Niu, Y.; Zhang, M.Y.; Bai, S.H.; Xu, Z.H.; Liu, Y.Q.; Chen, F.S.; Guo, X.M.; Luo, H.D.; Wang, S.L.; Xie, J.Y.; et al. Successive mineral nitrogen or phosphorus fertilization alone significantly altered bacterial community rather than bacterial biomass in plantation soil. Appl. Microbiol. Biot. 2020, 104, 7213–7224. [Google Scholar] [CrossRef]
- Hu, Y.; Cong, M.F.; Yan, H.; Sun, X.; Yang, Z.L.; Tang, G.M.; Xu, W.L.; Zhu, X.P.; Jia, H.T. Effects of biochar addition on aeolian soil microbial community assembly and structure. Appl. Microbiol. Biot. 2023, 107, 3829–3845. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.H.; Wang, R.; Gao, C.Q.; Gao, S.; Du, L.L.; Asif, K.; Shengli, G. Variations of soil properties effect on microbial community structure and functional structure under land uses. Acta Ecol. Sin. 2021, 41, 7989–8002. [Google Scholar] [CrossRef]
- Douglas, G.M.; Beiko, R.G.; Langille, M.G. Predicting the functional potential of the microbiome from marker genes using PICRUSt. In Microbiome Analysis: Methods and Protocols; Springer: New York, NY, USA, 2018; pp. 169–177. [Google Scholar]
- Zhou, T.; Tang, S.; Cui, J.; Zhang, Y.; Li, X.; Qiao, Q.; Long, X.E. Biochar amendment reassembles microbial community in a long-term phosphorus fertilization paddy soil. Appl. Microbiol. Biotechnol. 2023, 107, 6013–6028. [Google Scholar] [CrossRef]
- Bandopadhyay, S.; Shade, A. Chapter 3—Soil bacteria and archaea. In Soil Microbiology, Ecology and Biochemistry, 5th ed.; Elsevier: Amsterdam, The Netherlands, 2024; pp. 41–74. [Google Scholar] [CrossRef]
- Vijayan, A.; Jayadradhan, R.K.V.; Pillai, D.; Geetha, P.P.; Joseph, V.; Sarojini, B.S.I. Nitrospira as versatile nitrifiers: Taxonomy, ecophysiology, genome characteristics, growth, and metabolic diversity. J. Basic Microbiol. 2021, 61, 88–109. [Google Scholar] [CrossRef] [PubMed]
- Kalam, S.; Das, S.N.; Basu, A.; Podile, A.R. Population densities of indigenous Acidobacteria change in the presence of plant growth promoting rhizobacteria (PGPR) in rhizosphere. J. Basic Microbiol. 2017, 57, 376–385. [Google Scholar] [CrossRef]
- Chee-Sanford, J.; Tian, D.; Sanford, R. Consumption of N2O and other N-cycle intermediates by Gemmatimonas aurantiaca strain T-27. Microbiology 2019, 165, 1345–1354. [Google Scholar] [CrossRef]
- Park, D.; Kim, H.; Yoon, S. Nitrous oxide reduction by an obligate aerobic bacterium Gemmatimonas aurantiaca strain T-27. Appl. Environ. Microbiol. 2017, 83, e00502-17. [Google Scholar] [CrossRef]
- Kalam, S.; Basu, A.; Ahmad, I.; Sayyed, R.Z.; El-Enshasy, H.A.; Dailin, D.J.; Suriani, N.L. Recent understanding of soil Acidobacteria and their ecological significance: A critical review. Front. Microbiol. 2020, 11, 580024. [Google Scholar] [CrossRef] [PubMed]
- Kielak, A.M.; Cipriano, M.A.P.; Kuramae, E.E. Acidobacteria strains from subdivision 1 act as plant growth-promoting bacteria. Arch. Microbiol. 2016, 198, 987–993. [Google Scholar] [CrossRef]
Category | Number | Fertilizer Treatment | Application Rate (g/kg) | Spraying with 5 ‰ Urea (times/month) |
---|---|---|---|---|
Application of organic fertilizer | 1 | Organic–inorganic fertilizer | 10 | 2 |
2 | 50 | 2 | ||
3 | 100 | 2 | ||
4(A1) | Common organic fertilizer | 10 | 2 | |
5(A2) | 50 | 2 | ||
6(A3) | 100 | 2 | ||
7(B1) | Bio-organic fertilizer | 10 | 2 | |
8(B2) | 50 | 2 | ||
9(B3) | 100 | 2 | ||
10(C1) | Sheep manure | 10 | 2 | |
11(C2) | 50 | 2 | ||
12(C3) | 100 | 2 | ||
13(D1) | Rapeseed cake | 10 | 2 | |
14(D2) | 50 | 2 | ||
15(D3) | 100 | 2 | ||
No application of organic fertilizer | 16(CK1) | Compound fertilizer | 25 g/plant/month | 2 |
17(CK2) | Urea | 25 g/plant/month | 2 | |
18(CK3) | - | 0 | 2 | |
19(CK4) | - | 0 | 0 |
Types | SOM (%) | TN (g/kg) | AP (g/kg) | AK (g/kg) | Ca (g/kg) | Mg (g/kg) | Cu (mg/kg) | Zn (mg/kg) | Fe (mg/kg) | Mn (mg/kg) | B (mg/kg) |
---|---|---|---|---|---|---|---|---|---|---|---|
Organic–inorganic fertilizer | 14.41 ± 0.04 | 9.67 ± 0.07 | 0.26 ± 0 | 1.5 ± 0.01 | 0.23 ± 0 | 3.56 ± 0 | 1.52 ± 0.01 | 157.86 ± 0.57 | 147.25 ± 0.14 | 146.55 ± 3.01 | 26.1 ± 0.88 |
Common organic fertilizer | 53.21 ± 0.24 | 8.02 ± 0.07 | 0.22 ± 0 | 1.56 ± 0 | 1.27 ± 0 | 4.58 ± 0.01 | 1.15 ± 0.01 | 34.75 ± 0.51 | 43.81 ± 1.05 | 41.99 ± 1.32 | 17.28 ± 0.59 |
Bio-organic fertilizer | 52.42 ± 0.11 | 8.84 ± 0.08 | 0.22 ± 0.01 | 1.52 ± 0 | 1.15 ± 0.02 | 4.65 ± 0.01 | 0.66 ± 0.01 | 29.79 ± 0.34 | 41.73 ± 0.7 | 38.58 ± 0.88 | 30.78 ± 0.9 |
Sheep manure | 82.55 ± 0.43 | 8.48 ± 0.07 | 0.17 ± 0 | 1.49 ± 0 | 0.44 ± 0.01 | 4.61 ± 0.01 | 0.21 ± 0.01 | 8.51 ± 0.18 | 2.37 ± 0.86 | 21.19 ± 3.6 | 26.36 ± 0.31 |
Rapeseed cake | 27.46 ± 0.27 | 17.12 ± 0.12 | 0.13 ± 0 | 1.34 ± 0.01 | 1.52 ± 0.01 | 4.62 ± 0.01 | 0.65 ± 0.03 | 13.63 ± 0.11 | 162.26 ± 0.48 | 49.16 ± 0.15 | 3.23 ± 0.13 |
Compound fertilizers | 0 ± 0 | 8.24 ± 0.07 | 0.62 ± 0.01 | 1.21 ± 0.01 | 0.08 ± 0 | 0.02 ± 0 | 0.01 ± 0 | 0 ± 0 | 0 ± 0 | 0 ± 0 | 0 ± 0 |
Urea | 0 ± 0 | 452.36 ± 15.42 | 0 ± 0 | 0 ± 0 | 0 ± 0 | 0 ± 0 | 0 ± 0 | 0 ± 0 | 0 ± 0 | 0 ± 0 | 0 ± 0 |
Citrus orchard soil | 1.42 ± 0.09 | 3.35 ± 0.48 | 0.04 ± 0 | 0.3 ± 0 | 2.04 ± 0.01 | 3 ± 0.01 | 0.69 ± 0.04 | 0.92 ± 0.04 | 40.3 ± 0.15 | 8.11 ± 0.25 | 37.37 ± 0.91 |
Treatment | Stem Diameter (mm) | Height (cm) | Number of Terminal Branches |
---|---|---|---|
A1 | 11.15 ± 1.23 a** | 78.40 ± 10.13 a** | 39.33 ± 10.72 a** |
A2 | 8.02 ± 0.99 de** | 66.12 ± 10.33 bcd** | 19.44 ± 9.68 fg** |
A3 | 9.20 ± 0.74 c** | 66.40 ± 4.83 bcd** | 28.89 ± 10.17 bcdef** |
B1 | 10.36 ± 1.1 ab** | 74.02 ± 6.63 ab** | 37.78 ± 5.04 ab** |
B2 | 9.24 ± 1.42 c** | 68.61 ± 5.19 bc** | 25.44 ± 14.93 cdefg** |
B3 | 9.19 ± 0.86 c** | 62.80 ± 7.79 cd** | 33 ± 10.33 abcd** |
C1 | 10.53 ± 1.27 ab** | 70.09 ± 6.91 bc** | 35.56 ± 9.10 abc** |
C2 | 9.16 ± 1.04 c** | 67.13 ± 4.04 bc** | 26.67 ± 11.57 cdefg** |
C3 | 9.64 ± 0.7 bc** | 70.71 ± 6.14 bc** | 30.22 ± 5.38 abcde** |
D1 | 10.71 ± 1.18 a** | 69.27 ± 9.19 bc** | 39.44 ± 9.80 a** |
D2 | 8.60 ± 1.16 cde** | 64.91 ± 11.97 cd** | 21.22 ± 9.13 efg** |
D3 | 7.80 ± 1.01 e** | 57.97 ± 11.18 d** | 17.56 ± 9.71 g** |
CK1 | 9.33 ± 0.86 c** | 67.29 ± 5.25 bc** | 26.44 ± 13.52 cdefg** |
CK2 | 8.62 ± 0.88 cde** | 65.63 ± 8.90 bcd** | 29.11 ± 6.35 bcdef** |
CK3 | 8.90 ± 1.08 de** | 67.33 ± 5.84 bc** | 24.22 ± 7.05 defg** |
CK4 | 9.16 ± 0.78 c** | 63.71 ± 8.93 cd** | 22.00 ± 3.90 efg** |
Treatment | N g/kg | P g/kg | K g/kg | Ca g/kg | Mg g/kg |
---|---|---|---|---|---|
A1 | 23.55 ± 2.03 | 1.28 ± 0.036 f** | 13.76 ± 1.02 abc** | 23.65 ± 2.34 ab** | 2.10 ± 0.22 ab* |
A2 | 22.69 ± 1.98 | 1.41 ± 0.052 cde** | 13.58 ± 0.99 abcd** | 25.73 ± 2.01 a** | 2.13 ± 0.23 ab* |
A3 | 24.38 ± 2.53 | 1.54 ± 0.048 ab** | 14.28 ± 1.21 ab** | 17.52 ± 1.98 efg** | 2.11 ± 0.19 ab* |
B1 | 24.13 ± 2.14 | 1.41 ± 0.037 cde** | 13.14 ± 0.89 bcde** | 19.79 ± 2.03 cdef** | 2.12 ± 0.24 ab* |
B2 | 25.52 ± 3.01 | 1.40 ± 0.049 cde** | 13.60 ± 0.96 abcd** | 19.124 ± 1.87 cdef** | 2.24 ± 0.19 ab* |
B3 | 22.93 ± 2.36 | 1.46 ± 0.068 bcd** | 15.20 ± 0.87 a** | 18.48 ± 1.96 def** | 2.17 ± 0.2 ab* |
C1 | 22.10 ± 2.14 | 1.32 ± 0.051 ef** | 12.37 ± 0.98 cdef** | 20.60 ± 2.05 bcdef** | 1.94 ± 0.24 bc* |
C2 | 23.40 ± 1.98 | 1.42 ± 0.055 cd** | 11.81 ± 0.88 def** | 20.34 ± 1.88 bcdef** | 1.98 ± 0.19 abc* |
C3 | 25.56 ± 2.58 | 1.43 ± 0.047 cd** | 13.20 ± 0.73 bcde** | 21.59 ± 1.64 bcd** | 2.40 ± 0.21 a* |
D1 | 22.81 ± 2.35 | 1.41 ± 0.061 cde** | 12.25 ± 0.81 cdef** | 22.64 ± 1.92 abc** | 2.40 ± 0.27 a* |
D2 | 26.36 ± 3.33 | 1.40 ± 0.039 cde** | 12.75 ± 0.92 bcdef** | 20.10 ± 2.41 bcdef** | 2.17 ± 0.23 ab* |
D3 | 24.07 ± 2.71 | 1.36 ± 0.047 def** | 12.26 ± 0.84 cdef** | 14.63 ± 2.06 g** | 2.09 ± 0.22 ab* |
CK1 | 26.56 ± 1.69 | 1.49 ± 0.061 abc** | 11.65 ± 1.05 ef** | 22.36 ± 1.87 abc** | 1.90 ± 0.25 bc* |
CK2 | 22.20 ± 3.04 | 1.58 ± 0.075 a** | 11.02 ± 0.96 def** | 21.17 ± 1.88 bcde** | 1.93 ± 0.2 abc* |
CK3 | 23.33 ± 1.88 | 1.56 ± 0.059 a** | 11.81 ± 0.87 f** | 19.81 ± 1.67 cdef** | 2.02 ± 0.19 bc* |
CK4 | 20.93 ± 2.01 | 1.45 ± 0.049 bcd** | 11.27 ± 0.91 f** | 17.14 ± 2.05 fg** | 1.65 ± 0.18 c* |
Treatment | Cu mg/kg | Fe mg/kg | Mn mg/kg | Zn mg/kg | B mg/kg |
A1 | 13.64 ± 2.34 c** | 60.53 ± 7.68 fgh** | 19.79 ± 2.11 e** | 13.29 ± 1.26 cde** | 72.03 ± 6.78 b** |
A2 | 14.69 ± 2.01 bc** | 80.71 ± 7.94 bcd** | 26.10 ± 2.35 c** | 13.26 ± 1.32 cde** | 96.67 ± 8.36 a** |
A3 | 13.27 ± 1.98 c** | 68.29 ± 8.02 def** | 20.00 ± 2.03 e** | 14.30 ± 1.2 bcd** | 61.06 ± 6.12 c** |
B1 | 21.59 ± 2.03 a** | 52.01 ± 6.48 gh** | 23.07 ± 2.16 cde** | 11.71 ± 1.26 e** | 63.49 ± 6.01 bc** |
B2 | 15.39 ± 1.87 b** | 75.90 ± 5.39 bcde** | 24.76 ± 2.58 cd** | 11.46 ± 1.06 e** | 73.56 ± 6.89 b** |
B3 | 8.25 ± 1.96 d** | 71.03 ± 7.06 cdef** | 21.20 ± 2.36 de** | 13.76 ± 1.07 cde** | 63.30 ± 5.87 bc** |
C1 | 7.71 ± 2.05 d** | 85.88 ± 8.02 ab** | 19.37 ± 1.96 e** | 14.66 ± 1.22 bcd** | 49.28 ± 5.02 de** |
C2 | 7.63 ± 1.88 d** | 61.79 ± 7.77 fgh** | 21.42 ± 1.97 de** | 16.35 ± 1.29 ab** | 53.97 ± 5.22 cd** |
C3 | 6.61 ± 1.64 def** | 83.43 ± 9.12 abc** | 35.32 ± 2.06 ab** | 17.61 ± 1.35 a** | 61.25 ± 6.23 c** |
D1 | 7.00 ± 1.92 de** | 71.48 ± 8.23 cdef** | 37.80 ± 3.14 a** | 13.92 ± 1.45 cde** | 57.81 ± 5.78 cd** |
D2 | 5.80 ± 2.41 efg** | 95.17 ± 4.56 a** | 33.26 ± 3.02 b** | 16.59 ± 1.62 ab** | 49.61 ± 4.85 de** |
D3 | 4.39 ± 2.06 g** | 49.78 ± 6.36 h** | 25.12 ± 2.95 cd** | 12.18 ± 1.38 de** | 42.55 ± 4.71 e** |
CK1 | 7.35 ± 1.87 de** | 64.60 ± 5.14 efg** | 33.82 ± 2.55 ab** | 13.35 ± 1.25 cde** | 47.19 ± 5.23 de** |
CK2 | 7.89 ± 1.88 de** | 73.61 ± 6.14 abc** | 26.52 ± 2.47 cd** | 14.41 ± 1.36 bc** | 49.62 ± 4.19 de** |
CK3 | 6.85 ± 1.67 d** | 83.15 ± 6.68 bcdef** | 25.19 ± 2.31 c** | 14.94 ± 1.41 bcd** | 47.33 ± 4.36 de** |
CK4 | 5.15 ± 2.05 fg** | 51.00 ± 7.03 h** | 14.01 ± 2.06 f** | 13.06 ± 1.06 cde** | 41.63 ± 4.01 e** |
Treatment | Urease μg/d/g | Sucrase mg/d/g | Dehydrogenase μg/d/g | Phosphatase nmol/h/g |
---|---|---|---|---|
A1 | 568.54 ± 56.14 cd** | 19.98 ± 1.84 b** | 531.63 ± 49.23 c** | 604.34 ± 55.33 de** |
A2 | 647.46 ± 67.21 c** | 16.46 ± 1.59 cd** | 835.51 ± 65.62 b** | 831.43 ± 67.36 c** |
A3 | 583.42 ± 60.03 cd** | 16.97 ± 1.46 bcd** | 973.92 ± 87.36 a** | 1015.5 ± 84.12 b** |
B1 | 323.97 ± 39.25 fgh** | 17.22 ± 1.62 bcd** | 449.73 ± 39.11 de** | 553.68 ± 48.74 ef** |
B2 | 383.99 ± 31.06 efg** | 17.04 ± 1.58 bcd** | 502.86 ± 47.36 cd** | 681.39 ± 71.23 d** |
B3 | 570.66 ± 58.57 cd** | 17.12 ± 1.62 bcd** | 821.64 ± 62.15 b** | 1284.0 ± 96.27 a** |
C1 | 437.16 ± 42.36 e** | 17.34 ± 1.87 bcd** | 284.93 ± 26.88 ghi** | 306.3 ± 29.14 h** |
C2 | 349.02 ± 40.35 efgh** | 19.35 ± 1.66 bc** | 347.54 ± 31.25 fgh** | 415.88 ± 35.78 g** |
C3 | 534.75 ± 48.67 d** | 17.06 ± 1.55 bcd** | 393.9 ± 34.78 ef** | 450.56 ± 41.03 g** |
D1 | 832.48 ± 68.36 b** | 23.79 ± 1.87 a** | 361.24 ± 30.22 fg** | 477.98 ± 44.28 ef** |
D2 | 409.04 ± 42.31 ef** | 16.02 ± 1.48 d** | 423.85 ± 34.78 ef** | 412.37 ± 39.28 g** |
D3 | 1125.7 ± 89.66 a** | 16.35 ± 1.6 cd** | 789.49 ± 52.36 b** | 661.68 ± 57.92 d** |
CK1 | 360.59 ± 32.12 efgh** | 14.78 ± 1.35 d** | 267.34 ± 22.47 hi** | 161.93 ± 15.23 i** |
CK2 | 321.84 ± 29.56 fgh** | 17.5 ± 1.68 bcd** | 245.17 ± 28.56 i** | 195.48 ± 17.89 i** |
CK3 | 309.32 ± 25.31 gh** | 16.34 ± 1.58 cd** | 271.23 ± 25.99 hi** | 282.28 ± 20.54 h** |
CK4 | 269.15 ± 27.64 h** | 16.13 ± 1.63 d** | 246.36 ± 23.14 i** | 166.47 ± 15.45 i** |
Sample | SOM% | N mg/kg | P mg/kg | K mg/kg | Ca g/kg | Mg g/kg |
---|---|---|---|---|---|---|
A1 | 2.21 ± 0.02 h** | 84.38 ± 7.89 c** | 64.74 ± 6.71 abcde* | 386.65 ± 49.23 de** | 2.11 ± 0.21 abc* | 3.5 ± 0.32 abc* |
A2 | 3.12 ± 0.03 d** | 81.18 ± 8.01 cd** | 63.89 ± 6.23 abcde* | 448.65 ± 46.91 c** | 1.98 ± 0.2 abc* | 3.67 ± 0.35 abc* |
A3 | 3.26 ± 0.03 c** | 75.77 ± 7.91 cde** | 81.27 ± 7.82 abc* | 417.6 ± 38.27 cd** | 1.92 ± 0.24 bc* | 3.27 ± 0.31 bc* |
B1 | 1.93 ± 0.02 j** | 53.73 ± 6.02 gh** | 35.98 ± 4.01 cde* | 272.35 ± 29.12 f** | 2.18 ± 0.19 ab* | 3.3 ± 0.29 bc* |
B2 | 2.64 ± 0.03 e** | 74.49 ± 6.25 cde** | 63.42 ± 6.83 abcde* | 374.95 ± 35.84 de** | 2.17 ± 0.21 ab* | 3.78 ± 0.35 abc* |
B3 | 4.17 ± 0.03 a** | 78.98 ± 7.31 cd** | 73.15 ± 7.24 abcd* | 687.45 ± 59.82 a** | 2.1 ± 0.23 abc* | 4.1 ± 0.33 a* |
C1 | 1.52 ± 0.03 l** | 69.63 ± 6.37 def** | 32.5 ± 3.47 bcde* | 229.15 ± 30.33 f** | 1.79 ± 0.18 c* | 3.15 ± 0.34 c* |
C2 | 2.06 ± 0.03 i** | 48.27 ± 5.23 h** | 44.44 ± 4.29 bcde* | 234.65 ± 27.64 f** | 1.97 ± 0.16 abc* | 3.47 ± 0.32 bc* |
C3 | 2.49 ± 0.02 f** | 69.62 ± 7.12 def** | 38.78 ± 4.81 abcde* | 259.65 ± 32.1 f** | 2.08 ± 0 abc* | 3.53 ± 0.29 abc* |
D1 | 2.09 ± 0.03 h** | 66.26 ± 6.59 ef** | 53.94 ± 4.99 abcde* | 246.6 ± 28.71 f** | 1.89 ± 0.21 bc* | 3.44 ± 0.31 bc* |
D2 | 2.39 ± 0.03 g** | 113.23 ± 6.06 b** | 60.83 ± 4.67 ab* | 346.3 ± 25.47 e** | 1.77 ± 0.18 c* | 3.77 ± 0.36 abc* |
D3 | 3.71 ± 0.03 b** | 148.72 ± 7.12 a** | 51.51 ± 4.65 a* | 513.65 ± 23.64 b** | 1.77 ± 0.15 c* | 3.87 ± 0.33 ab* |
CK1 | 0.99 ± 0.03 n** | 73.82 ± 7.36 cde** | 46.68 ± 3.92 abcde* | 333.2 ± 22.99 e** | 1.85 ± 0.2 bc* | 3.2 ± 0.34 c* |
CK2 | 1.48 ± 0.02 k** | 52.03 ± 5.88 gh** | 27.74 ± 3.87 e* | 211.3 ± 26.49 f** | 1.94 ± 0.19 abc* | 3.33 ± 0.28 bc* |
CK3 | 1.54 ± 0.03 jk** | 59.04 ± 5.91 fgh** | 30.21 ± 3.44 de* | 217.6 ± 23.57 f** | 2 ± 0.18 abc* | 3.2 ± 0.27 c* |
CK4 | 1.24 ± 0.02 m** | 61.39 ± 4.82 fg** | 27.11 ± 2.98 de* | 215 ± 24.71 f** | 2.29 ± 0.17 a* | 3.33 ± 0.31 bc* |
Sample | Cu mg/kg | Fe mg/kg | Mn mg/kg | Zn mg/kg | B mg/kg | |
A1 | 0.8 ± 0.07 g** | 26.68 ± 2.3 g** | 20.24 ± 1.94 fg** | 3.32 ± 0.34 d** | 21.97 ± 2.02 bc** | |
A2 | 0.85 ± 0.07 fg** | 34.6 ± 2.89 fg** | 22.63 ± 2.03 efg** | 5.64 ± 0.29 b** | 24.4 ± 1.97 b** | |
A3 | 1.18 ± 0.09 b** | 39.47 ± 3.52 ef** | 18.28 ± 1.87 fg** | 5.39 ± 0.31 b** | 19.35 ± 2.12 cdef** | |
B1 | 0.99 ± 0.09 cdef** | 39.73 ± 3.74 ef** | 23.56 ± 1.63 ef** | 2.72 ± 0.51 e** | 17.29 ± 2.03 efg** | |
B2 | 0.87 ± 0.07 efg** | 39.9 ± 3.69 ef** | 20.26 ± 2.05 fg** | 3.85 ± 0.30 c** | 17.07 ± 1.84 efg** | |
B3 | 0.92 ± 0.08 defg** | 44.45 ± 4.03 e** | 21.93 ± 1.88 fg** | 6.95 ± 0.42 a** | 17.85 ± 2.03 defg** | |
C1 | 1.02 ± 0.07 cde** | 60.33 ± 5.21 d** | 36.76 ± 2.04 c** | 1.91 ± 0.19 ghi** | 20.56 ± 1.79 bcde** | |
C2 | 0.94 ± 0.08 defg** | 69.62 ± 4.26 c** | 20.64 ± 3.02 fg** | 2.51 ± 0.2 ef** | 14.57 ± 1.84 g** | |
C3 | 1.09 ± 0.09 bcd** | 85.17 ± 6.58 b** | 23.77 ± 2.45 ef** | 2.54 ± 0.18 ef** | 17.66 ± 2.01 defg** | |
D1 | 1.18 ± 0.09 b** | 82.96 ± 8.62 b** | 58.07 ± 3.99 a** | 2.32 ± 0.23 efg** | 21.5 ± 1.51 bcd** | |
D2 | 1.44 ± 0.08 a** | 113.49 ± 8.36 a** | 42.37 ± 4.23 b** | 2.17 ± 0.24 fg** | 17.48 ± 1.68 defg** | |
D3 | 1.37 ± 0.11 a** | 109.23 ± 7.69 a** | 53.6 ± 4.56 a** | 3.49 ± 0.21 cd** | 16.63 ± 1.75 efg** | |
CK1 | 1.21 ± 0.1 b** | 70.03 ± 2.41 c** | 31.12 ± 4.75 d** | 2.09 ± 0.22 fgh** | 29.27 ± 2.36 a** | |
CK2 | 1.14 ± 0.09 bc** | 53.66 ± 2.33 d** | 27.51 ± 3.25 de** | 1.62 ± 0.21 hi** | 17.19 ± 1.44 efg** | |
CK3 | 1.01 ± 0.11 c** | 34.38 ± 2.57 fg** | 17.93 ± 2.06 g** | 1.55 ± 0.2 i** | 15.98 ± 1.51 fg** | |
CK4 | 0.93 ± 0.1 bc** | 26.7 ± 2.48 g** | 12.03 ± 1.09 h** | 1.58 ± 0.18 i** | 17.85 ± 4.66 defg** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, L.; Wang, M.; Yu, J.; Li, S.; Hong, L. Organic Fertilizers Promote Accumulation of Mineral Nutrients in Citrus Leaves by Affecting Soil Biochemical Properties and Bacteria. Plants 2025, 14, 2826. https://doi.org/10.3390/plants14182826
Yang L, Wang M, Yu J, Li S, Hong L. Organic Fertilizers Promote Accumulation of Mineral Nutrients in Citrus Leaves by Affecting Soil Biochemical Properties and Bacteria. Plants. 2025; 14(18):2826. https://doi.org/10.3390/plants14182826
Chicago/Turabian StyleYang, Lei, Min Wang, Jianjun Yu, Shuang Li, and Lin Hong. 2025. "Organic Fertilizers Promote Accumulation of Mineral Nutrients in Citrus Leaves by Affecting Soil Biochemical Properties and Bacteria" Plants 14, no. 18: 2826. https://doi.org/10.3390/plants14182826
APA StyleYang, L., Wang, M., Yu, J., Li, S., & Hong, L. (2025). Organic Fertilizers Promote Accumulation of Mineral Nutrients in Citrus Leaves by Affecting Soil Biochemical Properties and Bacteria. Plants, 14(18), 2826. https://doi.org/10.3390/plants14182826