Dynamic and Thermodynamic Factors Associated with Different Precipitation Regimes over South China during Pre-Monsoon Season
Abstract
:1. Introduction
2. Data and Methods
2.1. Data
2.2. Self-Organizing Map
2.3. Dynamic and Thermodynamic Factors
3. Results
3.1. Identification of Precipitation Regimes
3.1.1. Validation of the ERA-Interim Precipitation Data
3.1.2. The Optimal Number of Regimes
3.1.3. Precipitation Regimes over South China
3.2. Dynamic Factors Associated with Different Precipitation Regimes
3.2.1. Large-Scale Divergence (Convergence)
3.2.2. Water Vapor Flux
3.2.3. Low-Level Jet
3.3. Thermodynamic Factors Associated with Different Precipitation Regimes
3.3.1. Precipitable Water
3.3.2. Convective Available Potential Energy
3.3.3. K Index
3.3.4. A Further Comparison between CAPE and K Index
3.4. Persistence and Transformations of the Precipitation Regimes
3.5. Heavy Precipitation Events
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
SOM | Self-Organizing Map |
CAPE | convective available potential energy |
AMJ | April to June (April, May and June) |
ECMWF | European Center for Medium-Range Weather Forecasts |
ERA-Interim | European Center for Medium-Range Weather Forecasts ReAnalysis Interim |
GPCC | Global Precipitation Climatology Centre |
PCA | principal component analysis |
BMU | best-matching unit |
PW | precipitable water |
WGD | within-group distance |
BGD | between-group distance |
RI | relative improvement |
area-averaged precipitation over South China | |
L-group | rainless group |
M-group | moderate rain group |
H-group | heavy rain group |
L1 | precipitation regime in L-group |
M1 | precipitation regime with the most precipitation in M-group |
M2 | precipitation regime with the second most precipitation in M-group |
M3 | precipitation regime with the third most precipitation in M-group |
M4 | precipitation regime with the fourth most precipitation in M-group |
H1 | precipitation regime with the most precipitation in H-group |
H2 | precipitation regime with the second most precipitation in H-group |
H3 | precipitation regime with the third most precipitation in H-group |
H4 | precipitation regime with the fourth most precipitation in H-group |
water vapor transported from the Bay of Bengal | |
water vapor transported from the South China Sea and West Pacific Ocean | |
PR | occurrence frequencies of transformations |
References
- Ding, Y.; Wang, Z. A study of rainy seasons in China. Meteorol. Atmos. Phys. 2008, 100, 121–138. [Google Scholar]
- Gu, W.; Wang, L.; Hu, Z.; Hu, K.; Li, Y. Interannual Variations of the First Rainy Season Precipitation over South China. J. Clim. 2018, 31, 623–640. [Google Scholar] [CrossRef]
- Wu, X.; Mao, J. Interdecadal modulation of ENSO-related spring rainfall over South China by the Pacific Decadal Oscillation. Clim. Dyn. 2016, 47, 3203–3220. [Google Scholar] [CrossRef]
- Yang, F.; Lau, K. Trend and variability of China precipitation in spring and summer: Linkage to sea-surface temperatures. Int. J. Climatol. 2004, 24, 1625–1644. [Google Scholar] [CrossRef]
- Sun, J.; Zhao, S. A diagnosis and simulation study of a strong heavy rainfall in South China. Chin. J. Atmos. Sci. 2000, 24, 381–392. [Google Scholar]
- Chan, J.C.L.; Zhou, W. PDO, ENSO and the early summer monsoon rainfall over south China. Geophys. Res. Lett. 2005, 32, L08810. [Google Scholar] [CrossRef]
- Ding, Y.; Wang, Z.; Sun, Y. Inter-decadal variation of the summer precipitation in East China and its association with decreasing Asian summer monsoon. Part I: Observed evidences. Int. J. Climatol. 2008, 28, 1139–1161. [Google Scholar] [CrossRef]
- Ding, Y.; Sun, Y.; Wang, Z.; Zhu, Y.; Song, Y. Inter-decadal variation of the summer precipitation in China and its association with decreasing Asian summer monsoon Part II: Possible causes. Int. J. Climatol. 2009, 29, 1926–1944. [Google Scholar] [CrossRef] [Green Version]
- Yuan, W.; Yu, R.; Chen, H.; Li, J.; Zhang, M. Subseasonal Characteristics of Diurnal Variation in Summer Monsoon Rainfall over Central Eastern China. J. Clim. 2010, 23, 6684–6695. [Google Scholar] [CrossRef]
- Hu, K.; Huang, G. The Formation of Precipitation Anomaly Patterns during the Developing and Decaying Phases of ENSO. Atmos. Ocean. Sci. Lett. 2010, 3, 25–30. [Google Scholar]
- Mao, J.; Chan, J.C.L.; Wu, G. Interannual variations of early summer monsoon rainfall over South China under different PDO backgrounds. Int. J. Climatol. 2011, 31, 847–862. [Google Scholar] [CrossRef] [Green Version]
- Mao, J.; Wu, G. Diurnal variations of summer precipitation over the Asian monsoon region as revealed by TRMM satellite data. Sci. China Earth Sci. 2012, 55, 554–566. [Google Scholar] [CrossRef]
- Yuan, W.; Yu, R.; Zhang, M.; Lin, W.; Li, J.; Fu, Y. Diurnal Cycle of Summer Precipitation over Subtropical East Asia in CAM5. J. Clim. 2013, 26, 3159–3172. [Google Scholar] [CrossRef]
- Wang, L.; Gu, W. The Eastern China flood of June 2015 and its causes. Sci. Bull. 2016, 61, 178–184. [Google Scholar] [CrossRef]
- Ao, J.; Sun, J. Decadal change in factors affecting winter precipitation over eastern China. Clim. Dyn. 2016, 46, 111–121. [Google Scholar] [CrossRef]
- Ao, J.; Sun, J. The impact of boreal autumn SST anomalies over the South Pacific on boreal winter precipitation over East Asia. Adv. Atmos. Sci. 2016, 33, 644–655. [Google Scholar] [CrossRef]
- Ge, J.; Jia, X.; Lin, H. The interdecadal change of the leading mode of the winter precipitation over China. Clim. Dyn. 2016, 47, 2397–2411. [Google Scholar] [CrossRef]
- Jia, X.; Ge, J. Interdecadal Changes in the Relationship between ENSO, EAWM, and the Wintertime Precipitation over China at the End of the Twentieth Century. J. Clim. 2017, 30, 1923–1937. [Google Scholar] [CrossRef]
- Zhao, S.; Bei, N.; Sun, J. Mesoscale analysis of a heavy rainfall event over Hong Kong during a pre-rainy season in South China. Adv. Atmos. Sci. 2007, 24, 555–572. [Google Scholar] [CrossRef]
- Chen, C.; Lin, K.; Wang, P. Relation between Pre-flood Season Precipitation Anomalies in South China and Water Vapor Transportation. J. Nanjing Inst. Meteorol. 2004, 27, 721–727. [Google Scholar]
- Trenberth, K.E.; Dai, A.; Rasmussen, R.M.; Parsons, D.B. The Changing Character of Precipitation. Bull. Am. Meteorol. Soc. 2003, 84, 1205–1217. [Google Scholar] [CrossRef]
- Birk, K.; Lupo, A.R.; Guinan, P.; Barbieri, C.E. The interannual variability of midwestern temperatures and precipitation as related to the ENSO and PDO. Atmósfera 2010, 23, 95–128. [Google Scholar]
- Nunes, M.J.; Lupo, A.R.; Lebedeva, M.G.; Chendev, Y.G.; Solovyov, A.B. The Occurrence of Extreme Monthly Temperatures and Precipitation in Two Global Regions. Pap. Appl. Geogr. 2017, 3, 143–156. [Google Scholar] [CrossRef]
- Rabinowitz, J.L.; Lupo, A.R.; Guinan, P.E. Evaluating Linkages between Atmospheric Blocking Patterns and Heavy Rainfall Events across the North-Central Mississippi River Valley for Different ENSO Phases. Adv. Meteorol. 2018, 2018, 1217830. [Google Scholar] [CrossRef]
- Kohonen, T. Self-organized formation of topologically correct feature maps. Biol. Cybern. 1982, 43, 59–69. [Google Scholar] [CrossRef]
- Cavazos, T. Using Self-Organizing Maps to Investigate Extreme Climate Events: An Application to Wintertime Precipitation in the Balkans. J. Clim. 2000, 13, 1718–1732. [Google Scholar] [CrossRef]
- Crimmins, M.A. Synoptic climatology of extreme fire-weather conditions across the southwest United States. Int. J. Climatol. 2006, 26, 1001–1016. [Google Scholar] [CrossRef] [Green Version]
- Nishiyama, K.; Endo, S.; Jinno, K.; Uvo, C.B.; Olsson, J.; Berndtsson, R. Identification of typical synoptic patterns causing heavy rainfall in the rainy season in Japan by a Self-Organizing Map. Atmos. Res. 2007, 83, 185–200. [Google Scholar] [CrossRef]
- Brown, J.R.; Jakob, C.; Haynes, J.M. An Evaluation of Rainfall Frequency and Intensity over the Australian Region in a Global Climate Model. J. Clim. 2010, 23, 6504–6525. [Google Scholar] [CrossRef] [Green Version]
- Cassano, E.N.; Cassano, J.J. Synoptic forcing of precipitation in the Mackenzie and Yukon River basins. Int. J. Climatol. 2010, 30, 658–674. [Google Scholar] [CrossRef]
- Sheridan, S.C.; Lee, C.C. The self-organizing map in synoptic climatological research. Prog. Phys. Geogr. 2011, 35, 109–119. [Google Scholar] [CrossRef]
- Huang, W.; Chen, R.; Yang, Z.; Wang, B.; Ma, W. Exploring the combined effects of the Arctic Oscillation and ENSO on the wintertime climate over East Asia using self-organizing maps. J. Geophys. Res. Atmos. 2017, 122, 9107–9129. [Google Scholar] [CrossRef]
- Chen, R.; Huang, W.; Wang, B.; Yang, Z.; Wright, J.S.; Ma, W. On the cooccurrence of wintertime temperature anomalies over eastern Asia and eastern North America. J. Geophys. Res. Atmos. 2017, 122, 6844–6867. [Google Scholar] [CrossRef]
- Schuenemann, K.C.; Cassano, J.J.; Finnis, J. Synoptic Forcing of Precipitation over Greenland: Climatology for 1961–99. J. Hydrometeorol. 2009, 10, 60–78. [Google Scholar] [CrossRef]
- Polo, I.; Ullmann, A.; Roucou, P.; Fontaine, B. Weather Regimes in the Euro-Atlantic and Mediterranean Sector, and Relationship with West African Rainfall over the 1989–2008 Period from a Self-Organizing Maps Approach. J. Clim. 2011, 24, 3423–3432. [Google Scholar] [CrossRef] [Green Version]
- Huang, W.; Chen, R.; Wang, B.; Wright, J.S.; Yang, Z.; Ma, W. Potential vorticity regimes over East Asia during winter. J. Geophys. Res. Atmos. 2017, 122, 1524–1544. [Google Scholar] [CrossRef]
- Li, R.C.Y.; Zhou, W. Multiscale control of summertime persistent heavy precipitation events over South China in association with synoptic, intraseasonal, and low-frequency background. Clim. Dyn. 2015, 45, 1043–1057. [Google Scholar] [CrossRef]
- Hong, W.; Ren, X. Persistent heavy rainfall over South China during May–August: Subseasonal anomalies of circulation and sea surface temperature. Acta Meteorol. Sin. 2013, 27, 769–787. [Google Scholar] [CrossRef]
- Chen, Y.; Zhai, P. Persistent extreme precipitation events in China during 1951-2010. Clim. Res. 2013, 57, 143–155. [Google Scholar] [CrossRef]
- Dee, D.P.; Uppala, S.M.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.A.; Balsamo, G.; Bauer, P.; et al. The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 2011, 137, 553–597. [Google Scholar] [CrossRef] [Green Version]
- Becker, A.; Finger, P.; Meyer-Christoffer, A.; Rudolf, B.; Schamm, K.; Schneider, U.; Ziese, M. A description of the global land-surface precipitation data products of the Global Precipitation Climatology Centre with sample applications including centennial (trend) analysis from 1901-present. Earth Syst. Sci. Data 2013, 5, 71–99. [Google Scholar] [CrossRef]
- Ohba, M.; Kadokura, S.; Yoshida, Y.; Nohara, D.; Toyoda, Y. Anomalous Weather Patterns in Relation to Heavy Precipitation Events in Japan during the Baiu Season. J. Hydrometeorol. 2015, 16, 688–701. [Google Scholar] [CrossRef]
- Reusch, D.B.; Alley, R.B.; Hewitson, B.C. North Atlantic climate variability from a self-organizing map perspective. J. Geophys. Res. Atmos. 2007, 112, D02104. [Google Scholar] [CrossRef]
- Leloup, J.A.; Lachkar, Z.; Boulanger, J.P.; Thiria, S. Detecting decadal changes in ENSO using neural networks. Clim. Dyn. 2007, 28, 147–162. [Google Scholar] [CrossRef]
- Herbst, M.; Casper, M.C. Towards model evaluation and identification using Self-Organizing Maps. Hydrol. Earth Syst. Sci. 2008, 12, 657–667. [Google Scholar] [CrossRef] [Green Version]
- Ciampi, A.; Lechevallier, Y. Clustering Large, Multi-level Data Sets: An Approach Based on Kohonen Self Organizing Maps. In Principles of Data Mining and Knowledge Discovery; Zighed, D.A., Komorowski, J., Żytkow, J., Eds.; Springer: Berlin, Heidelberg, 2000; pp. 353–358. [Google Scholar]
- Zhang, R. Relations of Water Vapor Transport from Indian Monsoon with that over East Asia and the Summer Rainfall in China. Adv. Atmos. Sci. 2001, 18, 1005–1017. [Google Scholar]
- Feng, L.; Zhou, T. Water vapor transport for summer precipitation over the Tibetan Plateau: Multidata set analysis. J. Geophys. Res. Atmos. 2012, 117, D20114. [Google Scholar] [CrossRef]
- He, M.; Liu, H.; Wang, B.; Zhang, D. A Modeling Study of a Low-Level Jet along the Yun-Gui Plateau in South China. J. Appl. Meteorol. Climatol. 2016, 55, 41–60. [Google Scholar] [CrossRef]
- Qian, J.; Tao, W.; Lau, K.M. Mechanisms for Torrential Rain Associated with the Mei-Yu Development during SCSMEX 1998. Mon. Weather Rev. 2004, 132, 3–27. [Google Scholar] [CrossRef]
- Higgins, R.W.; Yao, Y.; Yarosh, E.S.; Janowiak, J.E.; Mo, K.C. Influence of the Great Plains Low-Level Jet on Summertime Precipitation and Moisture Transport over the Central United States. J. Clim. 1997, 10, 481–507. [Google Scholar] [CrossRef]
- Jiang, J.; Jiang, J.; Bu, Y.; Liu, N. Heavy Rainfall Associated with a Monsoon Depression in South China: Structure Analysis. J. Meteorol. Res. 2008, 22, 53–67. [Google Scholar]
- Bonner, W.D. Climatology of the low level jet. Mon. Weather Rev. 1968, 96, 833–850. [Google Scholar] [CrossRef]
- Liu, H.; Li, L.; Wang, B. Low-Level Jets over Southeast China: The Warm Season Climatology of the Summer of 2003. Atmos. Ocean. Sci. Lett. 2012, 5, 394–400. [Google Scholar]
- Zhang, R.; Sumi, A. Moisture Circulation over East Asia during El Niño Episode in Northern Winter, Spring and Autumn. J. Meteorol. Soc. Jpn. 2002, 80, 213–227. [Google Scholar] [CrossRef]
- Zhai, P.; Eskridge, R.E. Atmospheric Water Vapor over China. J. Clim. 1997, 10, 2643–2652. [Google Scholar] [CrossRef]
- Kastman, J.S.; Market, P.S.; Fox, N.I.; Foscato, A.L.; Lupo, A.R. Lightning and Rainfall Characteristics in Elevated vs. Surface Based Convection in the Midwest that Produce Heavy Rainfall. Atmosphere 2017, 8, 36. [Google Scholar] [CrossRef]
- Doswell, C.A.; Rasmussen, E.N. The Effect of Neglecting the Virtual Temperature Correction on CAPE Calculations. Weather Forecast. 1994, 9, 625–629. [Google Scholar] [CrossRef] [Green Version]
- Blanchard, D.O. Assessing the Vertical Distribution of Convective Available Potential Energy. Weather Forecast. 1998, 13, 870–877. [Google Scholar] [CrossRef] [Green Version]
- Barkiđija, S.; Fuchs, Ž. Precipitation correlation between convective available potential energy, convective inhibition and saturation fraction in middle latitudes. Atmos. Res. 2013, 124, 170–180. [Google Scholar] [CrossRef]
- Riemann-Campe, K.; Fraedrich, K.; Lunkeit, F. Global climatology of Convective Available Potential Energy (CAPE) and Convective Inhibition (CIN) in ERA-40 reanalysis. Atmos. Res. 2009, 93, 534–545. [Google Scholar] [CrossRef]
- Charba, J.P. Operational System for Predicting Thunderstorms Two to Six Hours in Advance; NOAA Technical Memorandum NWS TDL-64; National Oceanic and Atmospheric Administration: Silver Spring, MD, USA, 1977.
- Duchon, C.E. Lanczos Filtering in One and Two Dimensions. J. Appl. Meteorol. 1979, 18, 1016–1022. [Google Scholar] [CrossRef] [Green Version]
- de Bodt, E.; Cottrell, M.; Verleysen, M. Statistical tools to assess the reliability of self-organizing maps. Neural Netw. 2002, 15, 967–978. [Google Scholar] [CrossRef] [Green Version]
- Kohonen, T.; Nieminen, I.T.; Honkela, T. On the Quantization Error in SOM vs. VQ: A Critical and Systematic Study. In Advances in Self-Organizing Maps; Príncipe, J.C., Miikkulainen, R., Eds.; Springer: Berlin, Heidelberg, 2009; pp. 133–144. [Google Scholar]
- Davies, D.L.; Bouldin, D.W. A Cluster Separation Measure. IEEE Trans. Pattern Anal. Mach. Intell. 1979, PAMI-1, 224–227. [Google Scholar] [CrossRef]
- Solovieff, N.; Hartley, S.W.; Baldwin, C.T.; Perls, T.T.; Steinberg, M.H.; Sebastiani, P. Clustering by genetic ancestry using genome-wide SNP data. BMC Genet. 2010, 11, 108. [Google Scholar] [CrossRef] [PubMed]
- Simmonds, I.; Bi, D.; Hope, P. Atmospheric Water Vapor Flux and Its Association with Rainfall over China in Summer. J. Clim. 1999, 12, 1353–1367. [Google Scholar] [CrossRef]
- Wallace, J.M.; Hobbs, P.V. Atmospheric Science: An Introductory Survey; Academic Press: Cambridge, MA, USA, 2006. [Google Scholar]
- Dalezios, N.R.; Papamanolis, N.K. Objective assessment of instability indices for operational hail forecasting in Greece. Meteorol. Atmos. Phys. 1991, 45, 87–100. [Google Scholar] [CrossRef]
- Espinoza, J.C.; Lengaigne, M.; Ronchail, J.; Janicot, S. Large-scale circulation patterns and related rainfall in the Amazon Basin: A neuronal networks approach. Clim. Dyn. 2012, 38, 121–140. [Google Scholar] [CrossRef]
Current Regime | Subsequent Regimes | ||
---|---|---|---|
L1 | |||
M4 | M3 (M; N) | ||
M3 | M4 (L; S) | H2 (M; S) | |
M2 | H2 (M; S) | H1 (M) | |
M1 | M2 (L; S) | H3 (M; S) | H1 (M; S) |
H4 | M4 (L; S) | ||
H3 | M2 (L; S) | H2 (M; S) | H1 (M; S) |
H2 | M4 (L; S) | H4 (L; S) | |
H1 | M2 (L) | H4 (L; S) | H2 (L; S) |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, W.; Huang, W.; Yang, Z.; Wang, B.; Lin, D.; He, X. Dynamic and Thermodynamic Factors Associated with Different Precipitation Regimes over South China during Pre-Monsoon Season. Atmosphere 2018, 9, 219. https://doi.org/10.3390/atmos9060219
Ma W, Huang W, Yang Z, Wang B, Lin D, He X. Dynamic and Thermodynamic Factors Associated with Different Precipitation Regimes over South China during Pre-Monsoon Season. Atmosphere. 2018; 9(6):219. https://doi.org/10.3390/atmos9060219
Chicago/Turabian StyleMa, Wenqian, Wenyu Huang, Zifan Yang, Bin Wang, Daiyu Lin, and Xinsheng He. 2018. "Dynamic and Thermodynamic Factors Associated with Different Precipitation Regimes over South China during Pre-Monsoon Season" Atmosphere 9, no. 6: 219. https://doi.org/10.3390/atmos9060219
APA StyleMa, W., Huang, W., Yang, Z., Wang, B., Lin, D., & He, X. (2018). Dynamic and Thermodynamic Factors Associated with Different Precipitation Regimes over South China during Pre-Monsoon Season. Atmosphere, 9(6), 219. https://doi.org/10.3390/atmos9060219