Topical Collection "Bioactive Compounds from Marine Invertebrates"

Editor

Dr. Kirsten Benkendorff
E-Mail Website
Collection Editor
Marine Ecology Research Centre, Southern Cross University, PO Box 157, Military Road, Lismore NSW 2480, Australia
Interests: bioactive compounds from marine molluscs; marine pigments and dyes; molluscan immune systems

Topical Collection Information

Dear Colleagues,

All major lineages of invertebrates evolved in the oceans, and as such, the marine environment harbors the largest diversity of invertebrate phyla and species. As part of the struggle for survival, all extant marine invertebrate species occupy a unique niche within the marine environment, with specific adaptations to withstand a wide range of abiotic and biotic pressures. Many of these marine invertebrates are sessile or slow moving, and lack physical defense structures to protect against potential predators and competitors. They all also lack adaptive immunity against pathogens and parasites, despite being constantly bathed in microorganisms, and thus rely entirely on effective innate immune systems to keep themselves free of infection. To compensate for these apparent deficiencies, marine invertebrates have developed an arsenal of bioactive secondary metabolites. In addition to these chemically mediated defense interactions, some marine invertebrates use water soluble secondary metabolites for chemical communication (pheromones, settlement cues) and neurotoxins (in venoms) to paralyze or kill their prey.

Many of these intrinsically biologically active compounds produced by marine invertebrates provide useful leads for pharmaceutical, nutraceutical, and other industrial (e.g., anti-fouling) development. However, sustainable production is often limited by molecular complexity, which can limit economical chemical synthesis. Further insight into the ecology of the source species is required, including knowledge of the biosynthetic origin of the bioactive compounds, so as to distinguish innately synthesized, dietary derived or symbiotic microbial sources for sustainable culture. Investigation into the diversity and function of marine invertebrate secondary metabolites is also a vital step towards developing a comprehensive understanding of how chemicals might help structure marine populations, communities, and ecosystems.

In this collection, we hope to explore all aspects of bioactive secondary metabolism in marine invertebrates, including the chemical diversity within certain invertebrate taxa, chemical ecology research aimed at elucidating the natural function of bioactive secondary metabolites, and the neuroecology of marine natural products, as well as bioactivity profiles, biosynthesis, and/or biodistributional studies on specific marine invertebrate natural products. We would also be interested in highlighting recent innovative research on the sustainable production, biomedical or industrial, of marine invertebrate natural products, or research into the traditional use of marine invertebrates that produce bioactive compounds. We welcome the submission of comprehensive/mini reviews, original research articles, and communications.

As guest editor, I invite you to contribute to the Marine Drugs collection on “Bioactive Compounds from Marine Invertebrates”.

Dr. Kirsten Benkendorff
Collection Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the collection website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Marine Drugs is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • ascidian secondary metabolites
  • sponge secondary metabolites
  • cnidarian secondary metabolites
  • mollusc secondary metabolites
  • echinoderm secondary metabolites
  • chemical defense
  • marine chemical ecology
  • antimicrobial activity
  • antiviral activity
  • anti-inflammatory activity
  • anticancer activity
  • neurotoxin
  • pheromone
  • sustainable supply

Published Papers (84 papers)

2021

Jump to: 2020, 2019, 2018, 2017, 2016, 2014, 2013

Article
Anti-Inflammatory and Analgesic Effects of TRPV1 Polypeptide Modulator APHC3 in Models of Osteo- and Rheumatoid Arthritis
Mar. Drugs 2021, 19(1), 39; https://doi.org/10.3390/md19010039 - 17 Jan 2021
Viewed by 738
Abstract
Arthritis is a widespread inflammatory disease associated with progressive articular surface degradation, ongoing pain, and hyperalgesia causing the development of functional limitations and disability. TRPV1 channel is one of the high-potential targets for the treatment of inflammatory diseases. Polypeptide APHC3 from sea anemone [...] Read more.
Arthritis is a widespread inflammatory disease associated with progressive articular surface degradation, ongoing pain, and hyperalgesia causing the development of functional limitations and disability. TRPV1 channel is one of the high-potential targets for the treatment of inflammatory diseases. Polypeptide APHC3 from sea anemone Heteractis crispa is a mode-selective TRPV1 antagonist that causes mild hypothermia and shows significant anti-inflammatory and analgesic activity in different models of pain. We evaluated the anti-inflammatory properties of APHC3 in models of monosodium iodoacetate (MIA)-induced osteoarthritis and complete Freund’s adjuvant (CFA)-induced rheumatoid monoarthritis in comparison with commonly used non-steroidal anti-inflammatory drugs (NSAIDs) such as diclofenac, ibuprofen, and meloxicam. Subcutaneous administration of APHC3 (0.1 mg/kg) significantly reversed joint swelling, disability, grip strength impairment, and thermal and mechanical hypersensitivity. The effect of APHC3 was equal to or better than that of reference NSAIDs. Protracted treatment with APHC3 decreased IL-1b concentration in synovial fluid, reduced inflammatory changes in joints, and prevented the progression of cartilage degradation. Therefore, polypeptide APHC3 has the potential to be an analgesic and anti-inflammatory substance for the alleviation of arthritis symptoms. Full article
Show Figures

Figure 1

2020

Jump to: 2021, 2019, 2018, 2017, 2016, 2014, 2013

Article
Improved Stability and Activity of a Marine Peptide-N6NH2 against Edwardsiella tarda and Its Preliminary Application in Fish
Mar. Drugs 2020, 18(12), 650; https://doi.org/10.3390/md18120650 - 17 Dec 2020
Viewed by 522
Abstract
Edwardsiella tarda can cause fatal gastro-/extraintestinal diseases in fish and humans. Overuse of antibiotics has led to antibiotic resistance and contamination in the environment, which highlights the need to find new antimicrobial agents. In this study, the marine peptide-N6 was amidated at its [...] Read more.
Edwardsiella tarda can cause fatal gastro-/extraintestinal diseases in fish and humans. Overuse of antibiotics has led to antibiotic resistance and contamination in the environment, which highlights the need to find new antimicrobial agents. In this study, the marine peptide-N6 was amidated at its C-terminus to generate N6NH2. The antibacterial activity of N6 and N6NH2 against E. tarda was evaluated in vitro and in vivo; their stability, toxicity and mode of action were also determined. Minimal inhibitory concentrations (MICs) of N6 and N6NH2 against E. tarda were 1.29–3.2 μM. Both N6 and N6NH2 killed bacteria by destroying the cell membrane of E. tarda and binding to lipopolysaccharide (LPS) and genomic DNA. In contrast with N6, N6NH2 improved the stability toward trypsin, reduced hemolysis (by 0.19% at a concentration of 256 μg/mL) and enhanced the ability to penetrate the bacterial outer and inner membrane. In the model of fish peritonitis caused by E. tarda, superior to norfloxacin, N6NH2 improved the survival rate of fish, reduced the bacterial load on the organs, alleviated the organ injury and regulated the immunity of the liver and kidney. These data suggest that the marine peptide N6NH2 may be a candidate for novel antimicrobial agents against E. tarda infections. Full article
Show Figures

Figure 1

Review
Molluscan Compounds Provide Drug Leads for the Treatment and Prevention of Respiratory Disease
Mar. Drugs 2020, 18(11), 570; https://doi.org/10.3390/md18110570 - 19 Nov 2020
Viewed by 1407
Abstract
Respiratory diseases place an immense burden on global health and there is a compelling need for the discovery of new compounds for therapeutic development. Here, we identify research priorities by critically reviewing pre-clinical and clinical studies using extracts and compounds derived from molluscs, [...] Read more.
Respiratory diseases place an immense burden on global health and there is a compelling need for the discovery of new compounds for therapeutic development. Here, we identify research priorities by critically reviewing pre-clinical and clinical studies using extracts and compounds derived from molluscs, as well as traditional molluscan medicines, used in the treatment of respiratory diseases. We reviewed 97 biomedical articles demonstrating the anti-inflammatory, antimicrobial, anticancer, and immunomodulatory properties of >320 molluscan extracts/compounds with direct relevance to respiratory disease, in addition to others with promising bioactivities yet to be tested in the respiratory context. Of pertinent interest are compounds demonstrating biofilm inhibition/disruption and antiviral activity, as well as synergism with approved antimicrobial and chemotherapeutic agents. At least 100 traditional medicines, incorporating over 300 different mollusc species, have been used to treat respiratory-related illness in cultures worldwide for thousands of years. These medicines provide useful clues for the discovery of bioactive components that likely underpin their continued use. There is particular incentive for investigations into anti-inflammatory compounds, given the extensive application of molluscan traditional medicines for symptoms of inflammation, and shells, which are the principal molluscan product used in these preparations. Overall, there is a need to target research toward specific respiratory disease-related hypotheses, purify bioactive compounds and elucidate their chemical structures, and develop an evidence base for the integration of quality-controlled traditional medicines. Full article
Show Figures

Figure 1

Article
Molecular and Functional Diversity of Crustin-Like Genes in the Shrimp Litopenaeus vannamei
Mar. Drugs 2020, 18(7), 361; https://doi.org/10.3390/md18070361 - 13 Jul 2020
Cited by 2 | Viewed by 717
Abstract
Crustins are crustacean cationic cysteine-rich antimicrobial peptides that contain one or two whey acidic protein (WAP) domain(s) at the carboxyl terminus and mainly show antimicrobial and/or proteinase inhibitory activities. Here, we performed genome and transcriptome screening and identified 34 full-length crustin-like encoding genes [...] Read more.
Crustins are crustacean cationic cysteine-rich antimicrobial peptides that contain one or two whey acidic protein (WAP) domain(s) at the carboxyl terminus and mainly show antimicrobial and/or proteinase inhibitory activities. Here, we performed genome and transcriptome screening and identified 34 full-length crustin-like encoding genes in Litopenaeus vannamei. Multiple sequence analysis of the deduced mature peptides revealed that these putative crustins included 10 type Ia, two type Ib, one type Ic, 11 type IIa, three type IIb, four type III, one type IV, one type VI, and one type VII. These putative crustins were clustered into different groups. Phylogenetic analysis, considering their domain composition, showed that different types of crustin-like genes in crustaceans might be originated from the WAP core region, along with sequence insertion, duplication, deletion, and amino acid substitution. Tissue distribution analysis suggested that most crustin-like genes were mainly detected in immune-related tissues while several crustin-like genes exhibited tissue-specific expression patterns. Quantitative PCR analysis on 15 selected crustin-like genes showed that most of them were apparently upregulated after Vibrio parahaemolyticus or white spot syndrome virus (WSSV) infection. One type Ib crustin-like gene, mainly expressed in the ovary, showed the highest expression levels before the gastrula stage and was hardly detected after the limb bud stage, suggesting that it was a maternal immune effector. Collectively, the present data revealed the molecular and functional diversity of crustins and their potential evolutionary routes in crustaceans. Full article
Show Figures

Figure 1

Review
Secondary Metabolites of the Genus Didemnum: A Comprehensive Review of Chemical Diversity and Pharmacological Properties
Mar. Drugs 2020, 18(6), 307; https://doi.org/10.3390/md18060307 - 11 Jun 2020
Viewed by 1183
Abstract
Tunicates (ascidians) are common marine invertebrates that are an exceptionally important source of natural products with biomedical and pharmaceutical applications, including compounds that are used clinically in cancers. Among tunicates, the genus Didemnum is important because it includes the most species, and it [...] Read more.
Tunicates (ascidians) are common marine invertebrates that are an exceptionally important source of natural products with biomedical and pharmaceutical applications, including compounds that are used clinically in cancers. Among tunicates, the genus Didemnum is important because it includes the most species, and it belongs to the most speciose family (Didemnidae). The genus Didemnum includes the species D. molle, D. chartaceum, D. albopunctatum, and D. obscurum, as well as others, which are well known for their chemically diverse secondary metabolites. To date, investigators have reported secondary metabolites, usually including bioactivity data, for at least 69 members of the genus Didemnum, leading to isolation of 212 compounds. Many of these compounds exhibit valuable biological activities in assays targeting cancers, bacteria, fungi, viruses, protozoans, and the central nervous system. This review highlights compounds isolated from genus Didemnum through December 2019. Chemical diversity, pharmacological activities, geographical locations, and applied chemical methods are described. Full article
Show Figures

Figure 1

Article
Identification of an LPS-Induced Chemo-Attractive Peptide from Ciona robusta
Mar. Drugs 2020, 18(4), 209; https://doi.org/10.3390/md18040209 - 12 Apr 2020
Viewed by 848
Abstract
Background: Previously published work has demonstrated that the LPS injection of Ciona robusta leads to the overexpression of a truncated form of an immune-related mRNA (C8short) by means of Ciona robusta (CR) alternative polyadenylation (APA) (CR-APA). Methods: The 3D structure of the C8short-derived [...] Read more.
Background: Previously published work has demonstrated that the LPS injection of Ciona robusta leads to the overexpression of a truncated form of an immune-related mRNA (C8short) by means of Ciona robusta (CR) alternative polyadenylation (APA) (CR-APA). Methods: The 3D structure of the C8short-derived Ciona robusta chemo-attractive peptide (CrCP) was evaluated by homology modeling. The biological activity of the CrCP was studied in vitro using a primary human dermal cell line (HuDe). Real-Time PCR was used to investigate the expression levels of genes involved in cell motility. NF-κB signaling was studied by western blotting. Results: In silico modeling showed that CrCP displayed structural characteristics already reported for a short domain of the vertebrate CRK gene, suggesting its possible involvement in cell migration mechanisms. In vitro assays demonstrated that CrCP was capable of inducing the motility of HuDe cells in both wound healing and chemo-attractive experiments. qPCR demonstrated the capability of CrCP to modulate the expression of the matrix metalloproteinase-7 (MMP-7) and E-cadherin genes. Finally, western blot analysis demonstrated that treatment with CrCP induced activation of the NF-κB signaling pathway. Conclusion: Our results describe the characterization of the 3D structure and chemo-attractive activity of an LPS-induced CrCP peptide from Ciona robusta. Full article
Show Figures

Figure 1

Article
Isolation and Characterization of Antimicrobial Peptides with Unusual Disulfide Connectivity from the Colonial Ascidian Synoicum turgens
Mar. Drugs 2020, 18(1), 51; https://doi.org/10.3390/md18010051 - 12 Jan 2020
Cited by 5 | Viewed by 1824
Abstract
This study reports the isolation of two novel cysteine-rich antibacterial peptides, turgencin A and turgencin B, along with their oxidized derivatives, from the Arctic marine colonial ascidian Synoicum turgens. The peptides are post-translationally modified, containing six cysteines with an unusual disulfide connectivity [...] Read more.
This study reports the isolation of two novel cysteine-rich antibacterial peptides, turgencin A and turgencin B, along with their oxidized derivatives, from the Arctic marine colonial ascidian Synoicum turgens. The peptides are post-translationally modified, containing six cysteines with an unusual disulfide connectivity of Cys1-Cys6, Cys2-Cys5, and Cys3-Cys4 and an amidated C-terminus. Furthermore, the peptides contain methionine residues resulting in the isolation of peptides with different degrees of oxidation. The most potent peptide, turgencin AMox1 with one oxidized methionine, displayed antimicrobial activity against both Gram-negative and Gram-positive bacteria with a minimum inhibitory concentration (MIC) as low as 0.4 µM against selected bacterial strains. In addition, the peptide inhibited the growth of the melanoma cancer cell line A2058 (IC50 = 1.4 µM) and the human fibroblast cell line MRC-5 (IC50 = 4.8 µM). The results from this study show that natural peptides isolated from marine tunicates have the potential to be promising drug leads. Full article
Show Figures

Graphical abstract

2019

Jump to: 2021, 2020, 2018, 2017, 2016, 2014, 2013

Article
Identification of Fromiamycalin and Halaminol A from Australian Marine Sponge Extracts with Anthelmintic Activity against Haemonchus contortus
Mar. Drugs 2019, 17(11), 598; https://doi.org/10.3390/md17110598 - 23 Oct 2019
Cited by 7 | Viewed by 1500
Abstract
There is an urgent need to discover and develop new anthelmintics for the treatment of parasitic nematodes of veterinary importance to circumvent challenges linked to drug resistant parasites. Being one of the most diverse natural ecosystems, the marine environment represents a rich resource [...] Read more.
There is an urgent need to discover and develop new anthelmintics for the treatment of parasitic nematodes of veterinary importance to circumvent challenges linked to drug resistant parasites. Being one of the most diverse natural ecosystems, the marine environment represents a rich resource of novel chemical entities. This study investigated 2000 extracts from marine invertebrates, collected from Australian waters, for anthelmintic activity. Using a well-established in vitro bioassay, these extracts were screened for nematocidal activity against Haemonchus contortus — a socioeconomically important parasitic nematode of livestock animals. Extracts (designated Mu-1, Ha-1 and Ha-2) from two marine sponges (Monanchora unguiculata and Haliclona sp.) each significantly affected larvae of H. contortus. Individual extracts displayed a dose-dependent inhibition of both the motility of exsheathed third-stage larvae (xL3s) and the development of xL3s to fourth-stage larvae (L4s). Active fractions in each of the three extracts were identified using bioassay-guided fractionation. From the active fractions from Monanchora unguiculata, a known pentacyclic guanidine alkaloid, fromiamycalin (1), was purified. This alkaloid was shown to be a moderately potent inhibitor of L4 development (half-maximum inhibitory concentration (IC50) = 26.6 ± 0.74 µM) and L4 motility (IC50 = 39.4 ± 4.83 µM), although it had a relatively low potency at inhibiting of xL3 motility (IC50 ≥ 100 µM). Investigation of the active fractions from the two Haliclona collections led to identification of a mixture of amino alcohol lipids, and, subsequently, a known natural product halaminol A (5). Anthelmintic profiling showed that 5 had limited potency at inhibiting larval development and motility. These data indicate that fromiamycalin, other related pentacyclic guanidine alkaloids and/or halaminols could have potential as anthelmintics following future medicinal chemistry efforts. Full article
Show Figures

Graphical abstract

Article
Characterization, Recombinant Production and Structure-Function Analysis of NvCI, A Picomolar Metallocarboxypeptidase Inhibitor from the Marine Snail Nerita versicolor
Mar. Drugs 2019, 17(9), 511; https://doi.org/10.3390/md17090511 - 29 Aug 2019
Cited by 1 | Viewed by 1023
Abstract
A very powerful proteinaceous inhibitor of metallocarboxypeptidases has been isolated from the marine snail Nerita versicolor and characterized in depth. The most abundant of four, very similar isoforms, NvCla, was taken as reference and N-terminally sequenced to obtain a 372-nucleotide band coding for [...] Read more.
A very powerful proteinaceous inhibitor of metallocarboxypeptidases has been isolated from the marine snail Nerita versicolor and characterized in depth. The most abundant of four, very similar isoforms, NvCla, was taken as reference and N-terminally sequenced to obtain a 372-nucleotide band coding for the protein cDNA. The mature protein contains 53 residues and three disulphide bonds. NvCIa and the other isoforms show an exceptionally high inhibitory capacity of around 1.8 pM for human Carboxypeptidase A1 (hCPA1) and for other A-like members of the M14 CPA subfamily, whereas a twofold decrease in inhibitory potency is observed for carboxypeptidase B-like members as hCPB and hTAFIa. A recombinant form, rNvCI, was produced in high yield and HPLC, mass spectrometry and spectroscopic analyses by CD and NMR indicated its homogeneous, compact and thermally resistant nature. Using antibodies raised with rNvCI and histochemical analyses, a preferential distribution of the inhibitor in the surface regions of the animal body was observed, particularly nearby the open entrance of the shell and gut, suggesting its involvement in biological defense mechanisms. The properties of this strong, small and stable inhibitor of metallocarboxypeptidases envisage potentialities for its direct applicability, as well as leading or minimized forms, in biotechnological/biomedical uses. Full article
Show Figures

Figure 1

Communication
Bioactive Brominated Oxindole Alkaloids from the Red Sea Sponge Callyspongia siphonella
Mar. Drugs 2019, 17(8), 465; https://doi.org/10.3390/md17080465 - 09 Aug 2019
Cited by 15 | Viewed by 1883
Abstract
In the present study, LC-HRESIMS-assisted dereplication along with bioactivity-guided isolation led to targeting two brominated oxindole alkaloids (compounds 1 and 2) which probably play a key role in the previously reported antibacterial, antibiofilm, and cytotoxicity of Callyspongia siphonella crude extracts. Both metabolites [...] Read more.
In the present study, LC-HRESIMS-assisted dereplication along with bioactivity-guided isolation led to targeting two brominated oxindole alkaloids (compounds 1 and 2) which probably play a key role in the previously reported antibacterial, antibiofilm, and cytotoxicity of Callyspongia siphonella crude extracts. Both metabolites showed potent antibacterial activity against Gram-positive bacteria, Staphylococcus aureus (minimum inhibitory concentration (MIC) = 8 and 4 µg/mL) and Bacillus subtilis (MIC = 16 and 4 µg/mL), respectively. Furthermore, they displayed moderate biofilm inhibitory activity in Pseudomonas aeruginosa (49.32% and 41.76% inhibition, respectively), and moderate in vitro antitrypanosomal activity (13.47 and 10.27 µM, respectively). In addition, they revealed a strong cytotoxic effect toward different human cancer cell lines, supposedly through induction of necrosis. This study sheds light on the possible role of these metabolites (compounds 1 and 2) in keeping fouling organisms away from the sponge outer surface, and the possible applications of these defensive molecules in the development of new anti-infective agents. Full article
Show Figures

Figure 1

Review
Conversion of Chitin to Defined Chitosan Oligomers: Current Status and Future Prospects
Mar. Drugs 2019, 17(8), 452; https://doi.org/10.3390/md17080452 - 01 Aug 2019
Cited by 29 | Viewed by 2283
Abstract
Chitin is an abundant polysaccharide primarily produced as an industrial waste stream during the processing of crustaceans. Despite the limited applications of chitin, there is interest from the medical, agrochemical, food and cosmetic industries because it can be converted into chitosan and partially [...] Read more.
Chitin is an abundant polysaccharide primarily produced as an industrial waste stream during the processing of crustaceans. Despite the limited applications of chitin, there is interest from the medical, agrochemical, food and cosmetic industries because it can be converted into chitosan and partially acetylated chitosan oligomers (COS). These molecules have various useful properties, including antimicrobial and anti-inflammatory activities. The chemical production of COS is environmentally hazardous and it is difficult to control the degree of polymerization and acetylation. These issues can be addressed by using specific enzymes, particularly chitinases, chitosanases and chitin deacetylases, which yield better-defined chitosan and COS mixtures. In this review, we summarize recent chemical and enzymatic approaches for the production of chitosan and COS. We also discuss a design-of-experiments approach for process optimization that could help to enhance enzymatic processes in terms of product yield and product characteristics. This may allow the production of novel COS structures with unique functional properties to further expand the applications of these diverse bioactive molecules. Full article
Show Figures

Figure 1

Article
New Antiproliferative Cembrane Diterpenes from the Red Sea Sarcophyton Species
Mar. Drugs 2019, 17(7), 411; https://doi.org/10.3390/md17070411 - 11 Jul 2019
Cited by 13 | Viewed by 2676
Abstract
The combination of liquid chromatography coupled to high resolution mass spectrometry (LC-HRESMS)-based dereplication and antiproliferative activity-guided fractionation was applied on the Red Sea-derived soft coral Sarcophyton sp. This approach facilitated the isolation of five new cembrane-type diterpenoids (15), along [...] Read more.
The combination of liquid chromatography coupled to high resolution mass spectrometry (LC-HRESMS)-based dereplication and antiproliferative activity-guided fractionation was applied on the Red Sea-derived soft coral Sarcophyton sp. This approach facilitated the isolation of five new cembrane-type diterpenoids (15), along with two known analogs (6 and 7), as well as the identification of 19 further, known compounds. The chemical structures of the new compounds were elucidated while using comprehensive spectroscopic analyses, including one-dimensional (1D) and two-dimensional (2D) NMR and HRMS. All of the isolated cembranoids (17) showed moderate in vitro antiproliferative activity against a human breast cancer cell line (MCF-7), with IC50 ranging from 22.39–27.12 µg/mL. This class of compounds could thus serve as scaffold for the future design of anticancer leads. Full article
Show Figures

Figure 1

Article
First Insight on the Mucus of the Annelid Myxicola infundibulum (Polychaeta, Sabellidae) as a Potential Prospect for Drug Discovery
Mar. Drugs 2019, 17(7), 396; https://doi.org/10.3390/md17070396 - 05 Jul 2019
Cited by 3 | Viewed by 1284
Abstract
Many marine organisms, including invertebrates, produce mucosal matrices having different functions. Besides mechanical protection, the mucus of many invertebrates contains specific compounds to make the animal poisonous and/or distasteful or irritating. The presence of antibiotic molecules is more advantageous for some invertebrates to [...] Read more.
Many marine organisms, including invertebrates, produce mucosal matrices having different functions. Besides mechanical protection, the mucus of many invertebrates contains specific compounds to make the animal poisonous and/or distasteful or irritating. The presence of antibiotic molecules is more advantageous for some invertebrates to contrast bacterial attack. In the present study we investigated the mucus of the Mediterranean annelid species Myxicola infundibulum living in a gelatinous envelope made up of dense mucus. Antimicrobial lysozyme-like and antioxidant activities were investigated to highlight the potential interest of the worm mucus as a source of bioactive compounds for biotechnological applications. In order to understand which kind of compounds could be responsible for the detected activities, the mucus of M. infundibulum was chemically characterized in terms of elemental composition, protein, lipid and carbohydrate content. Further chemical characterization was achieved by the advanced analytical technique of multinuclear and multidimensional NMR spectroscopy. NMR spectroscopy revealed the scarcity of lipids which preferentially resulted of alcoholic origin, or otherwise hydroxylate and several aminoacids (valine, leucine and alanine) in the aqueous extract in relation to the protein nature of M. infundibulum mucus. The mucus indeed is mainly composed by water (94% ± 0.7%) whereas its dry weight is made of proteins (36% ± 2.3%) followed by lipids (2.9% ± 0.07%) and carbohydrates (2% ± 0.31%). The mucus exerted a natural antibacterial lysozyme-like activity corresponding to 1.14 mg mL−1 of hen egg-white lysozyme and an antioxidant activity corresponding to 483.00 ± 79.22 nmolTE (Trolox equivalent)/mL sample as Trolox Equivalent Antioxidant Capacity (TEAC) and 276.26 ± 50.76 nmolTE/mL sample as Oxygen Radical Absorbance Capacity (ORAC). Therefore, our findings have potential implications due to the ongoing explosion of antibiotic resistant infections and the need to discover antibacterial agents. Additionally, the observed antioxidant activity is intriguing taking into account the need to find natural antioxidants useful for human health. Full article
Show Figures

Figure 1

Article
Integrated Gas Chromatograph-Mass Spectrometry (GC/MS) and MS/MS-Based Molecular Networking Reveals the Analgesic and Anti-Inflammatory Phenotypes of the Sea Slater Ligia exotica
Mar. Drugs 2019, 17(7), 395; https://doi.org/10.3390/md17070395 - 04 Jul 2019
Cited by 2 | Viewed by 1664
Abstract
The sea slater Ligia exotica is believed to have effects of reducing swelling and relieving pain in Chinese folk medicine. However, the scientific foundation of using the sea slater Ligia spp. as an analgesic and anti-inflammatory material remains elusive. In the present study, [...] Read more.
The sea slater Ligia exotica is believed to have effects of reducing swelling and relieving pain in Chinese folk medicine. However, the scientific foundation of using the sea slater Ligia spp. as an analgesic and anti-inflammatory material remains elusive. In the present study, various organic extracts from sea slater L. exotica were subjected to biological screening employing in vitro and in vivo models, and chemical phenotypes of the biologically active extract were deciphered by integrated gas chromatograph-mass spectrometry (GC-MS) profiling and MS/MS-based molecular networking. The results demonstrated, for the first time, that petroleum ether extract (PE) from L. exotica possessed remarkable anti-inflammatory and analgesic effects. Moreover, intragastric administration of PE at 200 mg/kg produced analgesic effects in both the writhing test and hot plate test. GC-MS analysis revealed that Z-9-hexadecenoic acid and 6-octadecenoic acid dominated in the volatile compositions of PE. Molecular networking (MN) suggested great chemical diversity within L. exotica. In total, 69 known compounds were identified in Ligia extracts by MS/MS spectral matching, and at least 7 analogues from two clusters of nitrogen-containing compounds (MN3,4) were strongly suggested as novel compounds. The molecular families MN1,3,4 were almost exclusively detected in the biologically active PE and ethyl acetate extract (EE). Importantly, various known compounds identified in MN1 were reported to possess analgesic and anti-inflammatory effects in the literature, which may contribute to the observed analgesic and anti-inflammatory effects of L. exotica. The present study not only demonstrated the ethnopharmaceutical value of L. exotica for pain-relief in Chinese folk medicine, but also suggested that sea slaters may represent a promising source for discovery of novel analgesic and anti-inflammatory compounds in the near future. Full article
Show Figures

Figure 1

Article
Anti-Inflammatory Effects of 5α,8α-Epidioxycholest-6-en-3β-ol, a Steroidal Endoperoxide Isolated from Aplysia depilans, Based on Bioguided Fractionation and NMR Analysis
Mar. Drugs 2019, 17(6), 330; https://doi.org/10.3390/md17060330 - 03 Jun 2019
Cited by 5 | Viewed by 1651
Abstract
Sea hares of Aplysia genus are recognized as a source of a diverse range of metabolites. 5α,8α-Endoperoxides belong to a group of oxidized sterols commonly found in marine organisms and display several bioactivities, including antimicrobial, anti-tumor, and immunomodulatory properties. Herein we report the [...] Read more.
Sea hares of Aplysia genus are recognized as a source of a diverse range of metabolites. 5α,8α-Endoperoxides belong to a group of oxidized sterols commonly found in marine organisms and display several bioactivities, including antimicrobial, anti-tumor, and immunomodulatory properties. Herein we report the isolation of 5α,8α-epidioxycholest-6-en-3β-ol (EnP(5,8)) from Aplysia depilans Gmelin, based on bioguided fractionation and nuclear magnetic resonance (NMR) analysis, as well as the first disclosure of its anti-inflammatory properties. EnP(5,8) revealed capacity to decrease cellular nitric oxide (NO) levels in RAW 264.7 macrophages treated with lipopolysaccharide (LPS) by downregulation of the Nos2 (inducible nitric oxide synthase, iNOS) gene. Moreover, EnP(5,8) also inhibited the LPS-induced expression of cyclooxygenase-2 (COX-2), interleukin 6 (IL-6), and tumor necrosis factor alpha (TNF-α) at the mRNA and protein levels. Mild selective inhibition of COX-2 enzyme activity was also evidenced. Our findings provide evidence of EnP(5,8) as a potential lead drug molecule for the development of new anti-inflammatory agents. Full article
Show Figures

Figure 1

Article
d-Amino Acid Substitution of α-Conotoxin RgIA Identifies its Critical Residues and Improves the Enzymatic Stability
Mar. Drugs 2019, 17(3), 142; https://doi.org/10.3390/md17030142 - 28 Feb 2019
Cited by 8 | Viewed by 1402
Abstract
α-Conotoxin RgIA is a selective and potent competitive antagonist of rat α9α10 nicotinic acetylcholine receptors (nAChR), but it is much less potent towards human α9α10 nAChR. Furthermore, RgIA is susceptible to proteolytic degradation due to containing four arginine residues. These disadvantages greatly limit [...] Read more.
α-Conotoxin RgIA is a selective and potent competitive antagonist of rat α9α10 nicotinic acetylcholine receptors (nAChR), but it is much less potent towards human α9α10 nAChR. Furthermore, RgIA is susceptible to proteolytic degradation due to containing four arginine residues. These disadvantages greatly limit its use for clinical applications. The purpose of this research was to identify critical stereocenters of RgIA and discover more stable analogues, enhancing its bioavailability by using the d-amino acid scan method. The activity of each variant was investigated against rat and human α9α10 nAChRs, which were expressed in Xenopus oocytes. Experimental assays showed that 14 out of 15 analogues had a substantial reduction in potency towards rat α9α10 nAChR. Noticeably, analogue 13 retained full biological activity compared with RgIA. Meanwhile, two other analogues, 14 and 15, of which l-Args were substituted with d-Args, exhibited a significantly increased potency towards human α9α10 nAChR, although these analogues showed decreased activities against rat α9α10 nAChR. Additionally, these three analogues exhibited a high resistance against enzymatic degradation in human serum and simulated intestinal fluid (SIF). Collectively, our findings suggest that a d-amino acid scan is a useful strategy for investigating how the side-chain chirality of amino acids affects the structure and function of peptides and may facilitate the development of more stable analogues to increase therapeutic potential. Full article
Show Figures

Graphical abstract

Article
Molecular Networking Reveals Two Distinct Chemotypes in Pyrroloiminoquinone-Producing Tsitsikamma favus Sponges
Mar. Drugs 2019, 17(1), 60; https://doi.org/10.3390/md17010060 - 16 Jan 2019
Cited by 12 | Viewed by 2587
Abstract
The temperate marine sponge, Tsitsikamma favus, produces pyrroloiminoquinone alkaloids with potential as anticancer drug leads. We profiled the secondary metabolite reservoir of T. favus sponges using HR-ESI-LC-MS/MS-based molecular networking analysis followed by preparative purification efforts to map the diversity of new and [...] Read more.
The temperate marine sponge, Tsitsikamma favus, produces pyrroloiminoquinone alkaloids with potential as anticancer drug leads. We profiled the secondary metabolite reservoir of T. favus sponges using HR-ESI-LC-MS/MS-based molecular networking analysis followed by preparative purification efforts to map the diversity of new and known pyrroloiminoquinones and related compounds in extracts of seven specimens. Molecular taxonomic identification confirmed all sponges as T. favus and five specimens (chemotype I) were found to produce mainly discorhabdins and tsitsikammamines. Remarkably, however, two specimens (chemotype II) exhibited distinct morphological and chemical characteristics: the absence of discorhabdins, only trace levels of tsitsikammamines and, instead, an abundance of unbranched and halogenated makaluvamines. Targeted chromatographic isolation provided the new makaluvamine Q, the known makaluvamines A and I, tsitsikammamine B, 14-bromo-7,8-dehydro-3-dihydro-discorhabdin C, and the related pyrrolo-ortho-quinones makaluvamine O and makaluvone. Purified compounds displayed different activity profiles in assays for topoisomerase I inhibition, DNA intercalation and antimetabolic activity against human cell lines. This is the first report of makaluvamines from a Tsitsikamma sponge species, and the first description of distinct chemotypes within a species of the Latrunculiidae family. This study sheds new light on the putative pyrroloiminoquinone biosynthetic pathway of latrunculid sponges. Full article
Show Figures

Figure 1

2018

Jump to: 2021, 2020, 2019, 2017, 2016, 2014, 2013

Article
Ceratinadins E and F, New Bromotyrosine Alkaloids from an Okinawan Marine Sponge Pseudoceratina sp.
Mar. Drugs 2018, 16(12), 463; https://doi.org/10.3390/md16120463 - 23 Nov 2018
Cited by 10 | Viewed by 2195
Abstract
Two new bromotyrosine alkaloids, ceratinadins E (1) and F (2), were isolated from an Okinawan marine sponge Pseudoceratina sp. as well as a known bromotyrosine alkaloid, psammaplysin F (3). The gross structures of 1 and 2 were [...] Read more.
Two new bromotyrosine alkaloids, ceratinadins E (1) and F (2), were isolated from an Okinawan marine sponge Pseudoceratina sp. as well as a known bromotyrosine alkaloid, psammaplysin F (3). The gross structures of 1 and 2 were elucidated on the basis of spectroscopic data. The absolute configurations of 1 and 2 were assigned by comparison of the NMR and ECD data with those of a known related bromotyrosine alkaloid, psammaplysin A (4). Ceratinadins E (1) and F (2) are new bromotyrosine alkaloids possessing an 8,10-dibromo-9-methoxy-1,6-dioxa-2-azaspiro[4.6]undeca-2,7,9-trien-4-ol unit with two or three 11-N-methylmoloka’iamine units connected by carbonyl groups, respectively. Ceratinadin E (1) exhibited antimalarial activities against a drug-resistant and a drug-sensitive strains of Plasmodium falciparum (K1 and FCR3 strains, respectively). Full article
Show Figures

Graphical abstract

Review
Bioactive Compounds Isolated from Neglected Predatory Marine Gastropods
Mar. Drugs 2018, 16(4), 118; https://doi.org/10.3390/md16040118 - 05 Apr 2018
Cited by 9 | Viewed by 2705
Abstract
A diverse range of predatory marine gastropods produce toxins, yet most of these molecules remain uncharacterized. Conus species have received the most attention from researchers, leading to several conopeptides reaching clinical trials. This review aims to summarize what is known about bioactive compounds [...] Read more.
A diverse range of predatory marine gastropods produce toxins, yet most of these molecules remain uncharacterized. Conus species have received the most attention from researchers, leading to several conopeptides reaching clinical trials. This review aims to summarize what is known about bioactive compounds isolated from species of neglected marine gastropods, especially in the Turridae, Terebridae, Babyloniidae, Muricidae, Buccinidae, Colubrariidae, Nassariidae, Cassidae, and Ranellidae families. Multiple species have been reported to contain bioactive compounds with potential toxic activity, but most of these compounds have not been characterized or even clearly identified. The bioactive properties and potential applications of echotoxins and related porins from the Ranellidae family are discussed in more detail. Finally, the review concludes with a call for research on understudied species. Full article
Show Figures

Figure 1

Article
Dual Roles of Ascidian Chondromodulin-1: Promoting Cell Proliferation Whilst Suppressing the Growth of Tumor Cells
Mar. Drugs 2018, 16(2), 59; https://doi.org/10.3390/md16020059 - 11 Feb 2018
Cited by 2 | Viewed by 1839
Abstract
Chondromodulin-1 (ChM-1) is an extracellular matrix protein that plays crucial roles in tumor cell growth and angiogenesis in vertebrates and humans. ChM-1 is highly expressed in the invertebrate Ciona savignyi, a marine ascidian chosen as a model. The effect of the recombinant [...] Read more.
Chondromodulin-1 (ChM-1) is an extracellular matrix protein that plays crucial roles in tumor cell growth and angiogenesis in vertebrates and humans. ChM-1 is highly expressed in the invertebrate Ciona savignyi, a marine ascidian chosen as a model. The effect of the recombinant Ciona mature ChM-1 peptide (Cs-mChM-1) on cell proliferation, migration and angiogenesis was evaluated on cultured cells. The results revealed that low concentrations of Cs-mChM-1 (12.5 nM) promoted osteoblastic cell (MC3T3-E1) growth and protected cells from H2O2-induced damage. However, a higher concentration of Cs-mChM-1 (i.e., 500 nM) not only suppressed both growth and migration of tumor cells, including human cervical cancer (HeLa) cells and human neuroblastoma (SH-SY5Y) cells, but also significantly inhibited proliferation and angiogenesis of human umbilical vein endothelial cells (HUVECs). The expression levels of cyclinD1 and mitogen-activated protein kinase 1 (MAPK1) were slightly increased in Cs-mChM-1 treated MC3T3-E1 cells, whereas these genes decreased in treated HeLa cells, SH-SY5Y cells and HUVECs. This result indicates that Cs-mChM-1 modifies cell behavior by regulating cell cycle and cell adhesion. Thus, the present results reveal that recombinant peptides of ChM-1 from invertebrates can play a dual role in cell proliferation and migration of different cell types. The inhibition effects on tumor cell growth and angiogenesis indicate potential pharmaceutical applications for recombinant Cs-mChM-1. Full article
Show Figures

Figure 1

Article
Specific Molecular Signatures for Type II Crustins in Penaeid Shrimp Uncovered by the Identification of Crustin-Like Antimicrobial Peptides in Litopenaeus vannamei
Mar. Drugs 2018, 16(1), 31; https://doi.org/10.3390/md16010031 - 16 Jan 2018
Cited by 13 | Viewed by 2294
Abstract
Crustins form a large family of antimicrobial peptides (AMPs) in crustaceans composed of four sub-groups (Types I-IV). Type II crustins (Type IIa or “Crustins” and Type IIb or “Crustin-like”) possess a typical hydrophobic N-terminal region and are by far the most representative sub-group [...] Read more.
Crustins form a large family of antimicrobial peptides (AMPs) in crustaceans composed of four sub-groups (Types I-IV). Type II crustins (Type IIa or “Crustins” and Type IIb or “Crustin-like”) possess a typical hydrophobic N-terminal region and are by far the most representative sub-group found in penaeid shrimp. To gain insight into the molecular diversity of Type II crustins in penaeids, we identified and characterized a Type IIb crustin in Litopenaeus vannamei (Crustin-like Lv) and compared Type II crustins at both molecular and transcriptional levels. Although L. vannamei Type II crustins (Crustin Lv and Crustin-like Lv) are encoded by separate genes, they showed a similar tissue distribution (hemocytes and gills) and transcriptional response to the shrimp pathogens Vibrio harveyi and White spot syndrome virus (WSSV). As Crustin Lv, Crustin-like Lv transcripts were found to be present early in development, suggesting a maternal contribution to shrimp progeny. Altogether, our in silico and transcriptional data allowed to conclude that (1) each sub-type displays a specific amino acid signature at the C-terminal end holding both the cysteine-rich region and the whey acidic protein (WAP) domain, and that (2) shrimp Type II crustins evolved from a common ancestral gene that conserved a similar pattern of transcriptional regulation. Full article
Show Figures

Figure 1

Article
Bromopyrrole Alkaloids with the Inhibitory Effects against the Biofilm Formation of Gram Negative Bacteria
Mar. Drugs 2018, 16(1), 9; https://doi.org/10.3390/md16010009 - 02 Jan 2018
Cited by 9 | Viewed by 2408
Abstract
Anti-biofilm assay guided fractionation of the marine sponge Stylissa massa revealed the butanol soluble fraction that was possessing the inhibitory activity toward the biofilm formation of bacterium E. coli. Chromatographic separation of the bioactive fraction resulted in the isolation of 32 bromopyrrole [...] Read more.
Anti-biofilm assay guided fractionation of the marine sponge Stylissa massa revealed the butanol soluble fraction that was possessing the inhibitory activity toward the biofilm formation of bacterium E. coli. Chromatographic separation of the bioactive fraction resulted in the isolation of 32 bromopyrrole alkaloids, including six new alkaloids, named stylisines A–F (16). The structures of new alkaloids were established by comprehensive analyses of the two-dimensional (2D) NMR (COSY, HMQC, and HMBC) and the high resolution electrospray ionization mass spectroscopy (HRESIMS) data, while the absolute configurations were determined by the X-ray diffraction and the electronic circular dichroism (ECD) data. Bioassay results indicated that phakellin-based alkaloids, including dibromoisophakellin and dibromophakellin, significantly reduced the biofilm formation of the bacterium E. coli. Present work provided a group of new natural scaffolds for the inhibitory effects against the biofilm formation of E. coli. Full article
Show Figures

Graphical abstract

2017

Jump to: 2021, 2020, 2019, 2018, 2016, 2014, 2013

Review
The Potential of Indonesian Heterobranchs Found around Bunaken Island for the Production of Bioactive Compounds
Mar. Drugs 2017, 15(12), 384; https://doi.org/10.3390/md15120384 - 07 Dec 2017
Cited by 11 | Viewed by 2386
Abstract
The species diversity of marine heterobranch sea slugs found on field trips around Bunaken Island (North Sulawesi, Indonesia) and adjacent islands of the Bunaken National Marine Park forms the basis of this review. In a survey performed in 2015, 80 species from 23 [...] Read more.
The species diversity of marine heterobranch sea slugs found on field trips around Bunaken Island (North Sulawesi, Indonesia) and adjacent islands of the Bunaken National Marine Park forms the basis of this review. In a survey performed in 2015, 80 species from 23 families were collected, including 17 new species. Only three of these have been investigated previously in studies from Indonesia. Combining species diversity with a former study from 2003 reveals in total 140 species from this locality. The diversity of bioactive compounds known and yet to be discovered from these organisms is summarized and related to the producer if known or suspected (might it be down the food chain, de novo synthesised from the slug or an associated bacterium). Additionally, the collection of microorganisms for the discovery of natural products of pharmacological interest from this hotspot of biodiversity that is presented here contains more than 50 species that have never been investigated before in regard to bioactive secondary metabolites. This highlights the great potential of the sea slugs and the associated microorganisms for the discovery of natural products of pharmacological interest from this hotspot of biodiversity. Full article
Show Figures

Figure 1

Article
New 2-Methoxy Acetylenic Acids and Pyrazole Alkaloids from the Marine Sponge Cinachyrella sp.
Mar. Drugs 2017, 15(11), 356; https://doi.org/10.3390/md15110356 - 11 Nov 2017
Cited by 9 | Viewed by 2243
Abstract
Three new 2-methoxy acetylenic acids (1–3) and a known derivative (4), in addition to three new natural pyrazole alkaloids (5–7) were isolated from an Indonesian marine sponge of the genus Cinachyrella. Compounds 5 and 6 have previously been reported as synthetic compounds. The [...] Read more.
Three new 2-methoxy acetylenic acids (1–3) and a known derivative (4), in addition to three new natural pyrazole alkaloids (5–7) were isolated from an Indonesian marine sponge of the genus Cinachyrella. Compounds 5 and 6 have previously been reported as synthetic compounds. The structures of the new compounds were established on the basis of one- and two-dimensional NMR spectroscopy as well as by mass spectrometric data. The absolute configuration of the new acetylenic acid derivatives (1–3) was established by ECD spectroscopy. All isolated compounds were evaluated for their cytotoxicity against L5178Y mouse lymphoma cells. Compounds 1–4 exhibited strong activity with an IC50 value of 0.3 µM. A plausible biosynthetic pathway for the pyrazole metabolites 5–7 is proposed. Full article
Show Figures

Figure 1

Article
Two Furanosesterterpenoids from the Sponge Luffariella variabilis
Mar. Drugs 2017, 15(8), 249; https://doi.org/10.3390/md15080249 - 10 Aug 2017
Cited by 6 | Viewed by 2317
Abstract
Two new sesterterpenoids, 1 and 2, were isolated from the sponge Luffariella variabilis. Their planar structures were characterized with spectroscopic analyses. The sole chiral center of compound 1 was elucidated as 12R by comparing observed and calculated optical rotation values. The [...] Read more.
Two new sesterterpenoids, 1 and 2, were isolated from the sponge Luffariella variabilis. Their planar structures were characterized with spectroscopic analyses. The sole chiral center of compound 1 was elucidated as 12R by comparing observed and calculated optical rotation values. The configurations of compound 2 were determined by NMR and electronic circular dichroism (ECD) studies. Furthermore, compound 2 showed cytotoxicity at IC50 1.0 µM against NBT-T2 cells. Full article
Show Figures

Graphical abstract

Article
Antibacterial Activity of AI-Hemocidin 2, a Novel N-Terminal Peptide of Hemoglobin Purified from Arca inflata
Mar. Drugs 2017, 15(7), 205; https://doi.org/10.3390/md15070205 - 29 Jun 2017
Cited by 12 | Viewed by 2176
Abstract
The continued emergence of antibiotic resistant bacteria in recent years is of great concern. The search for new classes of antibacterial agents has expanded to non-traditional sources such as shellfish. An antibacterial subunit of hemoglobin (Hb-I) was purified from the mantle of Arca [...] Read more.
The continued emergence of antibiotic resistant bacteria in recent years is of great concern. The search for new classes of antibacterial agents has expanded to non-traditional sources such as shellfish. An antibacterial subunit of hemoglobin (Hb-I) was purified from the mantle of Arca inflata by phosphate extraction and ion exchange chromatography. A novel antibacterial peptide, AI-hemocidin 2, derived from Hb-I, was discovered using bioinformatics analysis. It displayed antibacterial activity across a broad spectrum of microorganisms, including several Gram-positive and Gram-negative bacteria, with minimal inhibitory concentration (MIC) values ranging from 37.5 to 300 μg/mL, and it exhibited minimal hemolytic or cytotoxic activities. The antibacterial activity of AI-hemocidin 2 was thermostable (25–100 °C) and pH resistant (pH 3–10). The cellular integrity was determined by flow cytometry. AI-hemocidin 2 was capable of permeating the cellular membrane. Changes in the cell morphology were observed with a scanning electron microscope. Circular dichroism spectra suggested that AI-hemocidin 2 formed an α-helix structure in the membrane mimetic environment. The results indicated that the anti-bacterial mechanism for AI-hemocidin 2 occurred through disrupting the cell membrane. AI-hemocidin 2 might be a potential candidate for tackling antibiotic resistant bacteria. Full article
Show Figures

Graphical abstract

Communication
Marine Cyclic Guanidine Alkaloids Monanchomycalin B and Urupocidin A Act as Inhibitors of TRPV1, TRPV2 and TRPV3, but not TRPA1 Receptors
Mar. Drugs 2017, 15(4), 87; https://doi.org/10.3390/md15040087 - 23 Mar 2017
Cited by 11 | Viewed by 2452
Abstract
Marine sponges contain a variety of low-molecular-weight compounds including guanidine alkaloids possessing different biological activities. Monanchomycalin B and urupocidin A were isolated from the marine sponge Monanchora pulchra. We found that they act as inhibitors of the TRPV1, TRPV2, and TRPV3 channels, but [...] Read more.
Marine sponges contain a variety of low-molecular-weight compounds including guanidine alkaloids possessing different biological activities. Monanchomycalin B and urupocidin A were isolated from the marine sponge Monanchora pulchra. We found that they act as inhibitors of the TRPV1, TRPV2, and TRPV3 channels, but are inactive against the TRPA1 receptor. Monanchomycalin B is the most active among all published marine alkaloids (EC50 6.02, 2.84, and 3.25 μM for TRPV1, TRPV2, and TRPV3, correspondingly). Moreover, monanchomycalin B and urupocidin A are the first samples of marine alkaloids affecting the TRPV2 receptor. Two semi-synthetic urupocidin A derivatives were also obtained and tested against TRP (Transient Receptor Potential) receptors that allowed us to collect some data concerning the structure-activity relationship in this series of compounds. We showed that the removal of one of three side chains or double bonds in the other side chains in urupocidin A led to a decrease of the inhibitory activities. New ligands specific to the TRPV subfamily may be useful for the design of medicines as in the study of TRP channels biology. Full article
Show Figures

Figure 1

Article
Biscembranoids and Cembranoids from the Soft Coral Sarcophyton elegans
Mar. Drugs 2017, 15(4), 85; https://doi.org/10.3390/md15040085 - 23 Mar 2017
Cited by 11 | Viewed by 2266
Abstract
Two novel biscembranoids, sarelengans A and B (1 and 2), five new cembranoids, sarelengans C–G (37), along with two known cembranoids (8 and 9) were isolated from the South China Sea soft coral Sarcophyton elegans [...] Read more.
Two novel biscembranoids, sarelengans A and B (1 and 2), five new cembranoids, sarelengans C–G (37), along with two known cembranoids (8 and 9) were isolated from the South China Sea soft coral Sarcophyton elegans. Their structures were determined by spectroscopic and chemical methods, and those of 1, 4, 5, and 6 were confirmed by single crystal X-ray diffraction. Compounds 1 and 2 represent the first example of biscembranoids featuring a trans-fused A/B-ring conjunction between the two cembranoid units. Their unique structures may shed light on an unusual biosynthetic pathway involving a cembranoid-∆8 rather than the normal cembranoid-∆1 unit in the endo-Diels-Alder cycloaddition. Compounds 2 and 3 exhibited potential inhibitory effects on nitric oxide production in RAW 264.7 macrophages, with IC50 values being at 18.2 and 32.5 μM, respectively. Full article
Show Figures

Graphical abstract

Article
Metabolic Profiling as a Screening Tool for Cytotoxic Compounds: Identification of 3-Alkyl Pyridine Alkaloids from Sponges Collected at a Shallow Water Hydrothermal Vent Site North of Iceland
Mar. Drugs 2017, 15(2), 52; https://doi.org/10.3390/md15020052 - 22 Feb 2017
Cited by 7 | Viewed by 2866
Abstract
Twenty-eight sponge specimens were collected at a shallow water hydrothermal vent site north of Iceland. Extracts were prepared and tested in vitro for cytotoxic activity, and eight of them were shown to be cytotoxic. A mass spectrometry (MS)-based metabolomics approach was used to [...] Read more.
Twenty-eight sponge specimens were collected at a shallow water hydrothermal vent site north of Iceland. Extracts were prepared and tested in vitro for cytotoxic activity, and eight of them were shown to be cytotoxic. A mass spectrometry (MS)-based metabolomics approach was used to determine the chemical composition of the extracts. This analysis highlighted clear differences in the metabolomes of three sponge specimens, and all of them were identified as Haliclona (Rhizoniera) rosea (Bowerbank, 1866). Therefore, these specimens were selected for further investigation. Haliclona rosea metabolomes contained a class of potential key compounds, the 3-alkyl pyridine alkaloids (3-APA) responsible for the cytotoxic activity of the fractions. Several 3-APA compounds were tentatively identified including haliclamines, cyclostellettamines, viscosalines and viscosamines. Among these compounds, cyclostellettamine P was tentatively identified for the first time by using ion mobility MS in time-aligned parallel (TAP) fragmentation mode. In this work, we show the potential of applying metabolomics strategies and in particular the utility of coupling ion mobility with MS for the molecular characterization of sponge specimens. Full article
Show Figures

Graphical abstract

Article
Klyflaccicembranols A–I, New Cembranoids from the Soft Coral Klyxum flaccidum
Mar. Drugs 2017, 15(1), 23; https://doi.org/10.3390/md15010023 - 21 Jan 2017
Cited by 9 | Viewed by 3123
Abstract
New cembranoids klyflaccicembranols A–I (19), along with gibberosene D (10), have been isolated from the organic extract of a Formosan soft coral Klyxum flaccidum. Their structures were established by extensive spectroscopic analyses, including 2D NMR spectroscopy, [...] Read more.
New cembranoids klyflaccicembranols A–I (19), along with gibberosene D (10), have been isolated from the organic extract of a Formosan soft coral Klyxum flaccidum. Their structures were established by extensive spectroscopic analyses, including 2D NMR spectroscopy, and spectral data comparison with related structures. The cytotoxicity of the isolated metabolites, as well as their nitric oxide (NO) inhibitory activity, were evaluated and reported. Metabolites 2, 4, 6, 8 and 9 were found to exhibit variable activities against a limited panel of cancer cell lines in a range of IC50 16.5–49.4 μM. Among the tested cembranoids, compounds 4, 5, 6, and 9 significantly inhibited NO production in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages at a dose of 50 μg/mL. Full article
Show Figures

Figure 1

Article
Excavatolide B Attenuates Rheumatoid Arthritis through the Inhibition of Osteoclastogenesis
Mar. Drugs 2017, 15(1), 9; https://doi.org/10.3390/md15010009 - 06 Jan 2017
Cited by 13 | Viewed by 3742
Abstract
Osteoclasts are multinucleated giant cells of macrophage/monocyte lineage, and cell differentiation with the upregulation of osteoclast-related proteins is believed to play a major role in the destruction of the joints in the course of rheumatoid arthritis (RA). Pro-inflammatory cytokines, such as interleukin-17A (IL-17A) [...] Read more.
Osteoclasts are multinucleated giant cells of macrophage/monocyte lineage, and cell differentiation with the upregulation of osteoclast-related proteins is believed to play a major role in the destruction of the joints in the course of rheumatoid arthritis (RA). Pro-inflammatory cytokines, such as interleukin-17A (IL-17A) and macrophage colony-stimulating factor (M-CSF), can be overexpressed in RA and lead to osteoclastogenesis. In a previous study, we found that cultured-type soft coral-derived excavatolide B (Exc-B) exhibited anti-inflammatory properties. In the present study, we thus aimed to evaluate the anti-arthritic activity of Exc-B in in vitro and in vivo models. The results demonstrated that Exc-B inhibits LPS-induced multinucleated cell and actin ring formation, as well as TRAP, MMP-9, and cathepsin K expression. Additionally, Exc-B significantly attenuated the characteristics of RA in adjuvant (AIA) and type II collagen-induced arthritis (CIA) in rats. Moreover, Exc-B improved histopathological features, and reduced the number of TRAP-positive multinucleated cells in the in vivo AIA and CIA models. Immunohistochemical analysis showed that Exc-B attenuated the protein expression of cathepsin K, MMP-2, MMP-9, CD11b, and NFATc1 in ankle tissues of AIA and CIA rats. Level of interleukin-17A and macrophage colony-stimulating factor were also decreased by Exc-B. These findings strongly suggest that Exc-B could be of potential use as a therapeutic agent by inhibiting osteoclast differentiation in arthritis. Moreover, this study also illustrates the use of the anti-inflammatory marine compound, Exc-B, as a potential therapeutic strategy for RA. Full article
Show Figures

Figure 1

Review
Secondary Metabolites from the Marine Sponge Genus Phyllospongia
Mar. Drugs 2017, 15(1), 12; https://doi.org/10.3390/md15010012 - 06 Jan 2017
Cited by 21 | Viewed by 3241
Abstract
Phyllospongia, one of the most common marine sponges in tropical and subtropical oceans, has been shown to be a prolific producer of natural products with a broad spectrum of biological activities. This review for the first time provides a comprehensive overview of [...] Read more.
Phyllospongia, one of the most common marine sponges in tropical and subtropical oceans, has been shown to be a prolific producer of natural products with a broad spectrum of biological activities. This review for the first time provides a comprehensive overview of secondary metabolites produced by Phyllospongia spp. over the 37 years from 1980 to 2016. Full article
Show Figures

Chart 1

2016

Jump to: 2021, 2020, 2019, 2018, 2017, 2014, 2013

Article
Merosesquiterpene Congeners from the Australian Sponge Hyrtios digitatus as Potential Drug Leads for Atherosclerosis Disease
Mar. Drugs 2017, 15(1), 6; https://doi.org/10.3390/md15010006 - 27 Dec 2016
Cited by 6 | Viewed by 2829
Abstract
A study of the chemical constituents from the Australian Sponge Hyrtios digitatus has provided a perspective on the connection between the chemistry and biology of the puupehenones, a unique and unusual class of merosesquiterpenes. In this study, a new tetracyclic merosesquiterpene, 19-methoxy-9,15-ene-puupehenol ( [...] Read more.
A study of the chemical constituents from the Australian Sponge Hyrtios digitatus has provided a perspective on the connection between the chemistry and biology of the puupehenones, a unique and unusual class of merosesquiterpenes. In this study, a new tetracyclic merosesquiterpene, 19-methoxy-9,15-ene-puupehenol (1) was isolated from the marine sponge Hyrtios digitatus along with the known 20-methoxy-9,15-ene-puupehenol (2). Their structures were elucidated on the basis of spectroscopic data (1H and 13C NMR) in combination with experimental electronic circular dichroism (ECD) data. Compounds 1 and 2 are active at 1.78 μM and 3.05 μM, respectively, on Scavenger Receptor-Class B Type 1 HepG2 (SR-B1 HepG2) stable cell lines, targeting atherosclerosis disease. Full article
Show Figures

Figure 1

Article
Kunitz-Type Peptide HCRG21 from the Sea Anemone Heteractis crispa Is a Full Antagonist of the TRPV1 Receptor
Mar. Drugs 2016, 14(12), 229; https://doi.org/10.3390/md14120229 - 15 Dec 2016
Cited by 27 | Viewed by 3655
Abstract
Sea anemone venoms comprise multifarious peptides modulating biological targets such as ion channels or receptors. The sequence of a new Kunitz-type peptide, HCRG21, belonging to the Heteractis crispa RG (HCRG) peptide subfamily was deduced on the basis of the gene sequence obtained from [...] Read more.
Sea anemone venoms comprise multifarious peptides modulating biological targets such as ion channels or receptors. The sequence of a new Kunitz-type peptide, HCRG21, belonging to the Heteractis crispa RG (HCRG) peptide subfamily was deduced on the basis of the gene sequence obtained from the Heteractis crispa cDNA. HCRG21 shares high structural homology with Kunitz-type peptides APHC1–APHC3 from H. crispa, and clusters with the peptides from so named “analgesic cluster” of the HCGS peptide subfamily but forms a separate branch on the NJ-phylogenetic tree. Three unique point substitutions at the N-terminus of the molecule, Arg1, Gly2, and Ser5, distinguish HCRG21 from other peptides of this cluster. The trypsin inhibitory activity of recombinant HCRG21 (rHCRG21) was comparable with the activity of peptides from the same cluster. Inhibition constants for trypsin and α-chymotrypsin were 1.0 × 10−7 and 7.0 × 10−7 M, respectively. Electrophysiological experiments revealed that rHCRG21 inhibits 95% of the capsaicin-induced current through transient receptor potential family member vanilloid 1 (TRPV1) and has a half-maximal inhibitory concentration of 6.9 ± 0.4 μM. Moreover, rHCRG21 is the first full peptide TRPV1 inhibitor, although displaying lower affinity for its receptor in comparison with other known ligands. Macromolecular docking and full atom Molecular Dynamics (MD) simulations of the rHCRG21–TRPV1 complex allow hypothesizing the existence of two feasible, intra- and extracellular, molecular mechanisms of blocking. These data provide valuable insights in the structural and functional relationships and pharmacological potential of bifunctional Kunitz-type peptides. Full article
Show Figures

Figure 1

Article
Anti-Melanogenic Activity of Gagunin D, a Highly Oxygenated Diterpenoid from the Marine Sponge Phorbas sp., via Modulating Tyrosinase Expression and Degradation
Mar. Drugs 2016, 14(11), 212; https://doi.org/10.3390/md14110212 - 17 Nov 2016
Cited by 14 | Viewed by 3762
Abstract
Tyrosinase is the rate-limiting enzyme critical for melanin synthesis and controls pigmentation in the skin. The inhibition of tyrosinase is currently the most common approach for the development of skin-whitening cosmetics. Gagunin D (GD), a highly oxygenated diterpenoid isolated from the marine sponge [...] Read more.
Tyrosinase is the rate-limiting enzyme critical for melanin synthesis and controls pigmentation in the skin. The inhibition of tyrosinase is currently the most common approach for the development of skin-whitening cosmetics. Gagunin D (GD), a highly oxygenated diterpenoid isolated from the marine sponge Phorbas sp., has exhibited cytotoxicity toward human leukemia cells. However, the effect of GD on normal cells and the molecular mechanisms remain to be elucidated. In the present study, we identified for the first time the anti-melanogenic activity of GD and its precise underlying mechanisms in mouse melan-a cells. GD significantly inhibited melanin synthesis in the melan-a cells and a reconstructed human skin model. Further analysis revealed that GD suppressed the expression of tyrosinase and increased the rate of tyrosinase degradation. GD also inhibited tyrosinase enzymatic activity. In addition, GD effectively suppressed the expression of proteins associated with melanosome transfer. These findings suggest that GD is a potential candidate for cosmetic formulations due to its multi-functional properties. Full article
Show Figures

Figure 1

Review
Ceramide as a Target of Marine Triterpene Glycosides for Treatment of Human Myeloid Leukemia
Mar. Drugs 2016, 14(11), 205; https://doi.org/10.3390/md14110205 - 03 Nov 2016
Cited by 1 | Viewed by 3381
Abstract
Acute myeloid leukemia (AML) is a heterogeneous myeloid clonal disorder exhibiting the accumulation of immature myeloid progenitors in the bone marrow and peripheral blood. Standard AML therapy requires intensive combination chemotherapy, which leads to significant treatment-related toxicity. The search for new, low toxic [...] Read more.
Acute myeloid leukemia (AML) is a heterogeneous myeloid clonal disorder exhibiting the accumulation of immature myeloid progenitors in the bone marrow and peripheral blood. Standard AML therapy requires intensive combination chemotherapy, which leads to significant treatment-related toxicity. The search for new, low toxic marine agents, inducing the generation of ceramide in leukemic cells is a new approach to improve the therapy of leukemia. This review focuses on the metabolism of sphingolipids, the role of ceramide in treating leukemia, and the antitumor activity, related to ceramide metabolism, of some marine metabolites, particularly stichoposides, triterpene glycosides extracted from sea cucumbers of the family Stichopodiidae. Full article
Show Figures

Figure 1

Article
Novel Conopeptides of Largely Unexplored Indo Pacific Conus sp.
Mar. Drugs 2016, 14(11), 199; https://doi.org/10.3390/md14110199 - 27 Oct 2016
Cited by 11 | Viewed by 4200
Abstract
Cone snails are predatory creatures using venom as a weapon for prey capture and defense. Since this venom is neurotoxic, the venom gland is considered as an enormous collection of pharmacologically interesting compounds having a broad spectrum of targets. As such, cone snail [...] Read more.
Cone snails are predatory creatures using venom as a weapon for prey capture and defense. Since this venom is neurotoxic, the venom gland is considered as an enormous collection of pharmacologically interesting compounds having a broad spectrum of targets. As such, cone snail peptides represent an interesting treasure for drug development. Here, we report five novel peptides isolated from the venom of Conus longurionis, Conus asiaticus and Conus australis. Lo6/7a and Lo6/7b were retrieved from C. longurionis and have a cysteine framework VI/VII. Lo6/7b has an exceptional amino acid sequence because no similar conopeptide has been described to date (similarity percentage <50%). A third peptide, Asi3a from C. asiaticus, has a typical framework III Cys arrangement, classifying the peptide in the M-superfamily. Asi14a, another peptide of C. asiaticus, belongs to framework XIV peptides and has a unique amino acid sequence. Finally, AusB is a novel conopeptide from C. australis. The peptide has only one disulfide bond, but is structurally very different as compared to other disulfide-poor peptides. The peptides were screened on nAChRs, NaV and KV channels depending on their cysteine framework and proposed classification. No targets could be attributed to the peptides, pointing to novel functionalities. Moreover, in the quest of identifying novel pharmacological targets, the peptides were tested for antagonistic activity against a broad panel of Gram-negative and Gram-positive bacteria, as well as two yeast strains. Full article
Show Figures

Figure 1

Article
Evaluation of the Antioxidant Activity of the Marine Pyrroloiminoquinone Makaluvamines
Mar. Drugs 2016, 14(11), 197; https://doi.org/10.3390/md14110197 - 27 Oct 2016
Cited by 8 | Viewed by 3613
Abstract
Makaluvamines are pyrroloiminoquinones isolated from Zyzzya sponges. Until now, they have been described as topoisomerase II inhibitors with cytotoxic effects in diverse tumor cell lines. In the present work, seven makaluvamines were tested in several antioxidant assays in primary cortical neurons and neuroblastoma [...] Read more.
Makaluvamines are pyrroloiminoquinones isolated from Zyzzya sponges. Until now, they have been described as topoisomerase II inhibitors with cytotoxic effects in diverse tumor cell lines. In the present work, seven makaluvamines were tested in several antioxidant assays in primary cortical neurons and neuroblastoma cells. Among the alkaloids studied, makaluvamine J was the most active in all the assays. This compound was able to reduce the mitochondrial damage elicited by the well-known stressor H2O2. The antioxidant properties of makaluvamine J are related to an improvement of the endogenous antioxidant defenses of glutathione and catalase. SHSY5Y assays proved that this compound acts as a Nrf2 activator leading to an improvement of antioxidant defenses. A low concentration of 10 nM is able to reduce the reactive oxygen species release and maintain a correct mitochondrial function. Based on these results, non-substituted nitrogen in the pyrrole plus the presence of a p-hydroxystyryl without a double bond seems to be the most active structure with a complete antioxidant effect in neuronal cells. Full article
Show Figures

Figure 1

Communication
Degree of Suppression of Mouse Myoblast Cell Line C2C12 Differentiation Varies According to Chondroitin Sulfate Subtype
Mar. Drugs 2016, 14(10), 193; https://doi.org/10.3390/md14100193 - 21 Oct 2016
Cited by 1 | Viewed by 3060
Abstract
Chondroitin sulfate (CS), a type of glycosaminoglycan (GAG), is a factor involved in the suppression of myogenic differentiation. CS comprises two repeating sugars and has different subtypes depending on the position and number of bonded sulfate groups. However, the effect of each subtype [...] Read more.
Chondroitin sulfate (CS), a type of glycosaminoglycan (GAG), is a factor involved in the suppression of myogenic differentiation. CS comprises two repeating sugars and has different subtypes depending on the position and number of bonded sulfate groups. However, the effect of each subtype on myogenic differentiation remains unclear. In this study, we spiked cultures of C2C12 myoblasts, cells which are capable of undergoing skeletal muscle differentiation, with one of five types of CS (CS-A, -B, -C, -D, or -E) and induced differentiation over a fixed time. After immunostaining of the formed myotubes with an anti-MHC antibody, we counted the number of nuclei in the myotubes and then calculated the fusion index (FI) as a measure of myotube differentiation. The FI values of all the CS-treated groups were lower than the FI value of the control group, especially the group treated with CS-E, which displayed notable suppression of myotube formation. To confirm that the sugar chain in CS-E is important in the suppression of differentiation, chondroitinase ABC (ChABC), which catabolizes CS, was added to the media. The addition of ChABC led to the degradation of CS-E, and neutralized the suppression of myotube formation by CS-E. Collectively, it can be concluded that the degree of suppression of differentiation depends on the subtype of CS and that CS-E strongly suppresses myogenic differentiation. We conclude that the CS sugar chain has inhibitory action against myoblast cell fusion. Full article
Show Figures

Figure 1

Article
Three New Cytotoxic Polyhydroxysteroidal Glycosides from Starfish Craspidaster hesperus
Mar. Drugs 2016, 14(10), 189; https://doi.org/10.3390/md14100189 - 19 Oct 2016
Cited by 7 | Viewed by 2895
Abstract
Three new polyhydroxysteroidal glycosides, hesperuside A (1), B (2), and C (3), as well as a known novaeguinoside A (4), were isolated from the ethanol extract of starfish Craspidaster hesperus collected from the South China [...] Read more.
Three new polyhydroxysteroidal glycosides, hesperuside A (1), B (2), and C (3), as well as a known novaeguinoside A (4), were isolated from the ethanol extract of starfish Craspidaster hesperus collected from the South China Sea. Their structures were elucidated by extensive spectroscopic methods and chemical evidence. The compounds 13 present unprecedented carbohydrate chain 3-O-methyl-β-d-galactopyranose, which differ from each other in the side chains. These compounds exhibited cytotoxicity against human tumor cells BEL-7402, MOLT-4, and A-549 in vitro. Full article
Show Figures

Figure 1

Article
Angiotensin-I Converting Enzyme (ACE) Inhibitory and Anti-Hypertensive Effect of Protein Hydrolysate from Actinopyga lecanora (Sea Cucumber) in Rats
Mar. Drugs 2016, 14(10), 176; https://doi.org/10.3390/md14100176 - 30 Sep 2016
Cited by 12 | Viewed by 3782
Abstract
Food protein hydrolysates are known to exhibit angiotensin converting enzyme (ACE) inhibitory properties and can be used as a novel functional food for prevention of hypertension. This study evaluated the ACE inhibitory potentials of Actinopyga lecanora proteolysate (ALP) in vivo. The pre-fed rats [...] Read more.
Food protein hydrolysates are known to exhibit angiotensin converting enzyme (ACE) inhibitory properties and can be used as a novel functional food for prevention of hypertension. This study evaluated the ACE inhibitory potentials of Actinopyga lecanora proteolysate (ALP) in vivo. The pre-fed rats with ALP at various doses (200, 400, 800 mg/kg body weight) exhibited a significant (p ≤ 0.05) suppression effect after inducing hypertension. To determine the optimum effective dose that will produce maximal reduction in blood pressure, ALP at three doses was fed to the rats after inducing hypertension. The results showed that the 800 mg/kg body weight dose significantly reduced blood pressure without noticeable negative physiological effect. In addition, there were no observable changes in the rats’ heart rate after oral administration of the ALP. It was concluded that Actinopyga lecanora proteolysate could potentially be used for the development of functional foods and nutraceuticals for prevention and treatment of hypertension. Full article
Show Figures

Graphical abstract

Article
Mirabolides A and B; New Cytotoxic Glycerides from the Red Sea Sponge Theonella mirabilis
Mar. Drugs 2016, 14(8), 155; https://doi.org/10.3390/md14080155 - 18 Aug 2016
Cited by 2 | Viewed by 3497
Abstract
As a part of our continuing work to find out bioactive lead molecules from marine invertebrates, the CHCl3 fraction of the organic extract of the Red Sea sponge Theonella mirabilis showed cytotoxic activity in our primary screen. Bioassay-guided purification of the active [...] Read more.
As a part of our continuing work to find out bioactive lead molecules from marine invertebrates, the CHCl3 fraction of the organic extract of the Red Sea sponge Theonella mirabilis showed cytotoxic activity in our primary screen. Bioassay-guided purification of the active fractions of the sponge’s extract resulted in the isolation of two new glycerides, mirabolides A and B (1 and 2), together with the reported 4-methylene sterols, conicasterol (3) and swinhosterol B (4). The structures of the compounds were assigned by interpretation of their 1D (1H, 13C), 2D (COSY, HSQC, HMBC, ROESY) NMR spectral data and high-resolution mass determinations. Compounds 14 displayed marked cytotoxic activity against human breast adenocarcinoma cell line (MCF-7) with IC50 values of 16.4, 5.18, 6.23 and 3.0 μg/mL, respectively, compared to 5.4 μg/mL observed by doxorubicin as reference drug. Full article
Show Figures

Graphical abstract

Article
Anti-Dengue Virus Constituents from Formosan Zoanthid Palythoa mutuki
Mar. Drugs 2016, 14(8), 151; https://doi.org/10.3390/md14080151 - 09 Aug 2016
Cited by 10 | Viewed by 3975
Abstract
A new marine ecdysteroid with an α-hydroxy group attaching at C-4 instead of attaching at C-2 and C-3, named palythone A (1), together with eight known compounds (29) were obtained from the ethanolic extract of the Formosan [...] Read more.
A new marine ecdysteroid with an α-hydroxy group attaching at C-4 instead of attaching at C-2 and C-3, named palythone A (1), together with eight known compounds (29) were obtained from the ethanolic extract of the Formosan zoanthid Palythoa mutuki. The structures of those compounds were mainly determined by NMR spectroscopic data analyses. The absolute configuration of 1 was further confirmed by comparing experimental and calculated circular dichroism (CD) spectra. Anti-dengue virus 2 activity and cytotoxicity of five isolated compounds were evaluated using virus infectious system and [3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt (MTS) assays, respectively. As a result, peridinin (9) exhibited strong antiviral activity (IC50 = 4.50 ± 0.46 μg/mL), which is better than that of the positive control, 2′CMC. It is the first carotene-like substance possessing anti-dengue virus activity. In addition, the structural diversity and bioactivity of the isolates were compared by using a ChemGPS–NP computational analysis. The ChemGPS–NP data suggested natural products with anti-dengue virus activity locate closely in the chemical space. Full article
Show Figures

Graphical abstract

Review
Acetylated Triterpene Glycosides and Their Biological Activity from Holothuroidea Reported in the Past Six Decades
Mar. Drugs 2016, 14(8), 147; https://doi.org/10.3390/md14080147 - 04 Aug 2016
Cited by 30 | Viewed by 4773
Abstract
Sea cucumbers have been valued for many centuries as a tonic and functional food, dietary delicacies and important ingredients of traditional medicine in many Asian countries. An assortment of bioactive compounds has been described in sea cucumbers. The most important and abundant secondary [...] Read more.
Sea cucumbers have been valued for many centuries as a tonic and functional food, dietary delicacies and important ingredients of traditional medicine in many Asian countries. An assortment of bioactive compounds has been described in sea cucumbers. The most important and abundant secondary metabolites from sea cucumbers are triterpene glycosides (saponins). Due to the wide range of their potential biological activities, these natural compounds have gained attention and this has led to their emergence as high value compounds with extended application in nutraceutical, cosmeceutical, medicinal and pharmaceutical products. They are characterized by bearing a wide spectrum of structures, such as sulfated, non-sulfated and acetylated glycosides. Over 700 triterpene glycosides have been reported from the Holothuroidea in which more than 145 are decorated with an acetoxy group having 38 different aglycones. The majority of sea cucumber triterpene glycosides are of the holostane type containing a C18 (20) lactone group and either Δ7(8) or Δ9(11) double bond in their genins. The acetoxy group is mainly connected to the C-16, C-22, C-23 and/or C-25 of their aglycone. Apparently, the presence of an acetoxy group, particularly at C-16 of the aglycone, plays a significant role in the bioactivity; including induction of caspase, apoptosis, cytotoxicity, anticancer, antifungal and antibacterial activities of these compounds. This manuscript highlights the structure of acetylated saponins, their biological activity, and their structure-activity relationships. Full article
Show Figures

Graphical abstract

Article
Topsensterols A–C, Cytotoxic Polyhydroxylated Sterol Derivatives from a Marine Sponge Topsentia sp.
Mar. Drugs 2016, 14(8), 146; https://doi.org/10.3390/md14080146 - 01 Aug 2016
Cited by 7 | Viewed by 4047
Abstract
Three new polyhydroxylated sterol derivatives topsensterols A–C (13) have been isolated from a marine sponge Topsentia sp. collected from the South China Sea. Their structures were elucidated by detailed analysis of the spectroscopic data, especially the NOESY spectra. Topsensterols [...] Read more.
Three new polyhydroxylated sterol derivatives topsensterols A–C (13) have been isolated from a marine sponge Topsentia sp. collected from the South China Sea. Their structures were elucidated by detailed analysis of the spectroscopic data, especially the NOESY spectra. Topsensterols A–C (l3) possess novel 2β,3α,4β,6α-tetrahydroxy-14α-methyl Δ9(11) steroidal nuclei with unusual side chains. Compound 2 exhibited cytotoxicity against human gastric carcinoma cell line SGC-7901 with an IC50 value of 8.0 μM. Compound 3 displayed cytotoxicity against human erythroleukemia cell line K562 with an IC50 value of 6.0 μM. Full article
Show Figures

Graphical abstract

Review
The Role of Spongia sp. in the Discovery of Marine Lead Compounds
Mar. Drugs 2016, 14(8), 139; https://doi.org/10.3390/md14080139 - 23 Jul 2016
Cited by 8 | Viewed by 4792
Abstract
A comprehensive review on the chemistry of Spongia sp. is here presented, together with the biological activity of the isolated compounds. The compounds are grouped in sesquiterpene quinones, diterpenes, C21 and other linear furanoterpenes, sesterterpenes, sterols (including secosterols), macrolides and miscellaneous compounds. Among [...] Read more.
A comprehensive review on the chemistry of Spongia sp. is here presented, together with the biological activity of the isolated compounds. The compounds are grouped in sesquiterpene quinones, diterpenes, C21 and other linear furanoterpenes, sesterterpenes, sterols (including secosterols), macrolides and miscellaneous compounds. Among other reports we include studies on the intraspecific diversity of a Mediterranean species, compounds isolated from associated sponge and nudibranch and compounds isolated from S. zimocca and the red seaweed Laurentia microcladia. Under biological activity a table of the reported biological activities of the various compounds and the biological screening of extracts are described. The present review covers the literature from 1971 to 2015. Full article
Show Figures

Graphical abstract

Article
Transcriptome of the Australian Mollusc Dicathais orbita Provides Insights into the Biosynthesis of Indoles and Choline Esters
Mar. Drugs 2016, 14(7), 135; https://doi.org/10.3390/md14070135 - 20 Jul 2016
Cited by 4 | Viewed by 4207
Abstract
Dicathais orbita is a mollusc of the Muricidae family and is well known for the production of the expensive dye Tyrian purple and its brominated precursors that have anticancer properties, in addition to choline esters with muscle-relaxing properties. However, the biosynthetic pathways that [...] Read more.
Dicathais orbita is a mollusc of the Muricidae family and is well known for the production of the expensive dye Tyrian purple and its brominated precursors that have anticancer properties, in addition to choline esters with muscle-relaxing properties. However, the biosynthetic pathways that produce these secondary metabolites in D. orbita are not known. Illumina HiSeq 2000 transcriptome sequencing of hypobranchial glands, prostate glands, albumen glands, capsule glands, and mantle and foot tissues of D. orbita generated over 201 million high quality reads that were de novo assembled into 219,437 contigs. Annotation with reference to the Nr, Swiss-Prot and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases identified candidate-coding regions in 76,152 of these contigs, with transcripts for many enzymes in various metabolic pathways associated with secondary metabolite biosynthesis represented. This study revealed that D. orbita expresses a number of genes associated with indole, sulfur and histidine metabolism pathways that are relevant to Tyrian purple precursor biosynthesis, and many of which were not found in the fully annotated genomes of three other molluscs in the KEGG database. However, there were no matches to known bromoperoxidase enzymes within the D. orbita transcripts. These transcriptome data provide a significant molecular resource for gastropod research in general and Tyrian purple producing Muricidae in particular. Full article
Show Figures

Graphical abstract

Article
Guanidine Alkaloids from the Marine Sponge Monanchora pulchra Show Cytotoxic Properties and Prevent EGF-Induced Neoplastic Transformation in Vitro
Mar. Drugs 2016, 14(7), 133; https://doi.org/10.3390/md14070133 - 15 Jul 2016
Cited by 29 | Viewed by 4316
Abstract
Guanidine alkaloids from sponges Monanchora spp. represent diverse bioactive compounds, however, the mechanisms underlying bioactivity are very poorly understood. Here, we report results of studies on cytotoxic action, the ability to inhibit EGF-induced neoplastic transformation, and the effects on MAPK/AP-1 signaling of eight [...] Read more.
Guanidine alkaloids from sponges Monanchora spp. represent diverse bioactive compounds, however, the mechanisms underlying bioactivity are very poorly understood. Here, we report results of studies on cytotoxic action, the ability to inhibit EGF-induced neoplastic transformation, and the effects on MAPK/AP-1 signaling of eight rare guanidine alkaloids, recently isolated from the marine sponge Monanchora pulchra, namely: monanchocidin A (1), monanchocidin B (2), monanchomycalin C (3), ptilomycalin A (4), monanchomycalin B (5), normonanchocidin D (6), urupocidin A (7), and pulchranin A (8). All of the compounds induced cell cycle arrest (apart from 8) and programmed death of cancer cells. Ptilomycalin A-like compounds 16 activated JNK1/2 and ERK1/2, following AP-1 activation and caused p53-independent programmed cell death. Compound 7 induced p53-independent cell death without activation of AP-1 or caspase-3/7, and the observed JNK1/2 activation did not contribute to the cytotoxic effect of the compound. Alkaloid 8 induced JNK1/2 (but not ERK1/2) activation leading to p53-independent cell death and strong suppression of AP-1 activity. Alkaloids 14, 7, and 8 were able to inhibit the EGF-induced neoplastic transformation of JB6 P+ Cl41 cells. Our results suggest that investigated guanidine marine alkaloids hold potential to eliminate human cancer cells and prevent cancer cell formation and spreading. Full article
Show Figures

Graphical abstract

Article
Antiproliferative Scalarane-Based Metabolites from the Red Sea Sponge Hyrtios erectus
Mar. Drugs 2016, 14(7), 130; https://doi.org/10.3390/md14070130 - 08 Jul 2016
Cited by 21 | Viewed by 3881
Abstract
Two new sesterterpenes analogs, namely, 12-acetoxy,16-epi-hyrtiolide (1) and 12β-acetoxy,16β-methoxy,20α-hydroxy-17-scalaren-19,20-olide (2), containing a scalarane-based framework along with seven previously reported scalarane-type sesterterpenes (39) have been isolated from the sponge Hyrtios erectus (order Dictyoceratida) collected [...] Read more.
Two new sesterterpenes analogs, namely, 12-acetoxy,16-epi-hyrtiolide (1) and 12β-acetoxy,16β-methoxy,20α-hydroxy-17-scalaren-19,20-olide (2), containing a scalarane-based framework along with seven previously reported scalarane-type sesterterpenes (39) have been isolated from the sponge Hyrtios erectus (order Dictyoceratida) collected from the Red Sea, Egypt. The structures of the isolated compounds were elucidated on the basis of their spectroscopic data and comparison with reported NMR data. Compounds 19 exhibited considerable antiproliferative activity against breast adenocarcinoma (MCF-7), colorectal carcinoma (HCT-116) and hepatocellular carcinoma cells (HepG2). Compounds 3, 5 and 9 were selected for subsequent investigations regarding their mechanism of cell death induction (differential apoptosis/necrosis assessment) and their influence on cell cycle distribution. Full article
Show Figures

Graphical abstract

Review
To Pee, or Not to Pee: A Review on Envenomation and Treatment in European Jellyfish Species
Mar. Drugs 2016, 14(7), 127; https://doi.org/10.3390/md14070127 - 08 Jul 2016
Cited by 16 | Viewed by 8919
Abstract
There is a growing cause for concern on envenoming European species because of jellyfish blooms, climate change and globalization displacing species. Treatment of envenomation involves the prevention of further nematocyst release and relieving local and systemic symptoms. Many anecdotal treatments are available but [...] Read more.
There is a growing cause for concern on envenoming European species because of jellyfish blooms, climate change and globalization displacing species. Treatment of envenomation involves the prevention of further nematocyst release and relieving local and systemic symptoms. Many anecdotal treatments are available but species-specific first aid response is essential for effective treatment. However, species identification is difficult in most cases. There is evidence that oral analgesics, seawater, baking soda slurry and 42–45 °C hot water are effective against nematocyst inhibition and giving pain relief. The application of topical vinegar for 30 s is effective on stings of specific species. Treatments, which produce osmotic or pressure changes can exacerbate the initial sting and aggravate symptoms, common among many anecdotal treatments. Most available therapies are based on weak evidence and thus it is strongly recommended that randomized clinical trials are undertaken. We recommend a vital increase in directed research on the effect of environmental factors on envenoming mechanisms and to establish a species-specific treatment. Adequate signage on jellyfish stings and standardized first aid protocols with emphasis on protective equipment and avoidance of jellyfish to minimize cases should be implemented in areas at risk. Full article
Show Figures

Graphical abstract