Cytotoxic Compounds from the Saudi Red Sea Sponge Xestospongia testudinaria
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. General Experimental Procedure
3.2. Animal Material
3.3. Extraction and Isolation
3.4. Spectral Data of the Compounds
3.5. Evaluation of the Antiproliferative Activity of the Compounds Using MTT Assay
4. Conclusions
Acknowledgments
Conflicts of Interest
References
- Sagar, S.; Kaur, M.; Minnema, K. Antiviral lead compounds from marine sponges. Mar. Drugs 2010, 8, 2619–2638. [Google Scholar] [CrossRef] [PubMed]
- Laport, M.; Santos, O.; Muricy, G. Marine sponges: Potential sources of new antimicrobial drugs. Curr. Pharm. Biotechnol. 2009, 10, 86–105. [Google Scholar] [CrossRef] [PubMed]
- Newman, D.; Cragg, G. Marine natural products and related compounds in clinical and advanced preclinical trials. J. Nat. Prod. 2004, 67, 1216–1238. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Xu, T.; Yang, X.-W.; Huang, R.; Yang, B.; Tang, L.; Liu, Y. Chemical and biological aspects of marine sponges of the genus Xestospongia. Chem. Biodivers. 2010, 7, 2201–2227. [Google Scholar] [CrossRef] [PubMed]
- El-Shitany, N.A.; Shaala, L.A.; Abbas, A.T.; Abdel-dayem, U.A.; Azhar, E.I.; Ali, S.S.; van Soest, R.W.M.; Youssef, D.T.A. Evaluation of the anti-inflammatory, antioxidant and immunomodulatory effects of the organic extract of the Red Sea marine sponge Xestospongia testudinaria against carrageenan induced rat paw inflammation. PLoS ONE 2015, 10, e0138917. [Google Scholar] [CrossRef] [PubMed]
- Cerqueira, F.; Watanadilok, R.; Sonchaeng, P.; Kijjoa, A.; Pinto, M.; Quarles van Ufford, H.; Kroes, B.; Beukelman, C.; Nascimento, M. Clionasterol: A potent inhibitor of complement component C1. Planta Medica 2003, 69, 174–176. [Google Scholar] [CrossRef] [PubMed]
- Edrada, R.; Proksch, P.; Wray, V.; Witte, L.; Müller, W.; van Soest, R. Four new bioactive manzamine-type alkaloids from the Philippine marine sponge Xestospongia ashmorica. J. Nat. Prod. 1996, 59, 1056–1060. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, M.; Kakuda, T.; Qi, J.; Hirata, M.; Shintani, T.; Yoshioka, Y.; Okamoto, T.; Oba, Y.; Nakamura, H.; Ojika, M. Novel relationship between the antifungal activity and cytotoxicity of marine-derived metabolite xestoquinone and its family. Biosci. Biotechnol. Biochem. 2005, 69, 1749–1752. [Google Scholar] [CrossRef] [PubMed]
- Patil, A.; Kokke, W.; Cochran, S.; Francis, T.; Tomszek, T.; Westley, J. Brominated polyacetylenic acids from the marine sponge Xestospongia muta: Inhibitors of HIV protease. J. Nat. Prod. 1992, 55, 1170–1177. [Google Scholar] [CrossRef] [PubMed]
- Pham, N.; Butler, M.; Hooper, J.; Moni, R.; Quinn, R. Isolation of xestosterol esters of brominated acetylenic fatty acids from the marine sponge Xestospongia testudinaria. J. Nat. Prod. 1999, 62, 1439–1442. [Google Scholar] [CrossRef] [PubMed]
- Taniguchi, M.; Uchio, Y.; Yasumoto, K.; Kusumi, T.; Ooi, T. Brominated unsaturated fatty acids from marine sponge collected in Papua New Guinea. Chem. Pharm. Bull. (Tokyo) 2008, 56, 378–382. [Google Scholar] [CrossRef] [PubMed]
- Shaala, L.A.; Youssef, D.T.A.; Badr, J.M.; Sulaiman, M.; Khedr, A.; El Sayed, K.A. Bioactive alkaloids from the Red Sea marine Verongid sponge Pseudoceratina arabica. Tetrahedron 2015, 71, 7837–7841. [Google Scholar] [CrossRef]
- Shaala, L.A.; Youssef, D.T.A.; Badr, J.M.; Souliman, M.; Khedr, A. Bioactive secondary metabolites from a Red Sea marine Verongid sponge Suberea species. Mar. Drugs 2015, 13, 1621–1631. [Google Scholar]
- Shaala, L.A.; Youssef, D.T.A. Identification and bioactivity of compounds from the fungus Penicillium sp. CYE-87 isolated from a marine tunicate. Mar. Drugs 2015, 13, 1698–1709. [Google Scholar] [CrossRef] [PubMed]
- Youssef, D.T.A.; Shaala, L.A.; Alshali, K.Z. Bioactive hydantoin alkaloids from the Red Sea marine sponge Hemimycale arabica. Mar. Drugs 2015, 13, 6609–6619. [Google Scholar] [CrossRef] [PubMed]
- Kokke, W.C.M.C.; Tarchini, C.; Stierle, D.B.; Djerassi, C. Isolation, structure elucidation and partial synthesis of xestosterol, biosynthetically significant sterol from the sponge Xestospongia muta. J. Org. Chem. 1979, 44, 3385–3388. [Google Scholar] [CrossRef]
- Bulama, J.; Dangoggo, S.; Halilu, M.; Tsaf, A.I.; Hassan, S. Isolation and characterization of palmitic acid from ethyl acetate extract of root bark of Terminalia glaucescens. Chem. Mater. Res. 2014, 6, 140–143. [Google Scholar]
- Ayyad, S.E.; Katoua, D.F.; Alarif, W.M.; Sobahi, T.R.; Aly, M.M.; Shaala, L.A.; Ghandourah, M.A. Two new polyacetylene derivatives from the Red Sea sponge Xestospongia sp. Z. Naturforschung C 2015, 70, 297–303. [Google Scholar]
- Brantley, S.E.; Molinski, T.F.; Preston, C.M.; DeLong, E.F. Brominated acetylenic fatty acids from Xestospongia sp., a marine spongebacteria association. Tetrahedron 1995, 51, 7667–7672. [Google Scholar] [CrossRef]
- Hirsh, S.; Carmely, S.; Kashman, Y. Brominated unsaturated acids from the marine sponge Xestospongia sp. Tetrahedron 1987, 43, 3257–3261. [Google Scholar] [CrossRef]
- Quinn, R.J.; Tucker, D.J. A brominated bisacetylenic acid from the marine sponge Xestospongia testudinaria. Tetrahedron Lett. 1985, 26, 1671–1672. [Google Scholar] [CrossRef]
- Kijjoa, A.; Bessa, J.; Wattanadilok, R.; Sawangwong, P.; Nascimento, M.; Pedro, M.; Silva, A.; Eaton, G.; van Soest, R.; Herz, W. Dibromotyrosine derivatives, a maleimide, aplysamine-2 and other constituents of the marine sponge Pseudoceratina purpurea. Z. Naturforschung 2005, 60b, 904–908. [Google Scholar]
- Wattanadilok, R.; Sawangwong, P.; Rodrigues, C.; Cidade, H.; Pinto, M.; Pinto, E.; Silva, A.; Kijjoa, A. Antifungal activity evaluation of the constituents of Haliclona baeri and Haliclona cymaeformis, collected from the Gulf of Thailand. Mar. Drugs 2007, 5, 40–51. [Google Scholar] [CrossRef] [PubMed]
- Wattanadilok, R.; Sonchaeng, P.; Kijjoa, A.; Damas, A.; Gales, L.; Silva, A.; Herz, W. Tetillapyrone and nortetillapyrone, two unusual hydroxypyran-2-ones from the marine sponge Tetilla japonica. J. Nat. Prod. 2001, 64, 1056–1058. [Google Scholar] [CrossRef]
- Al-Salahi, R.; Marzouk, M.; Ashour, A.; Alswaidan, I. Antitumor activity of 1,2,4-triazolo[1,5-a]quinazolines. Asian J. Chem. 2014, 26, 2173–2176. [Google Scholar]
- Lombardo, L.; Lee, F.; Chen, P.; Norris, D.; Barrish, J.; Behnia, K.; Castaneda, S.; Cornelius, L.; Das, J.; Doweyko, A.; et al. Discovery of N-(2-chloro-6-methyl-phenyl)-2-(6-(4-(2-hydroxyethyl)-piperazin-1-yl)-2-methylpyrimidin-4-ylamino) thiazole-5-carboxamide (BMS-354825), a dual Src/Abl kinase inhibitor with potent antitumor activity in preclinical assays. J. Med. Chem. 2004, 47, 6658–6661. [Google Scholar] [CrossRef] [PubMed]
Position | δC | |||
---|---|---|---|---|
1 | 2 | 3 | 4 | |
1 | 37.3 | 37.1 | 37.0 | 37.0 |
2 | 28.2 | 28.2 | 28.2 | 28.2 |
3 | 71.8 | 73.6 | 73.7 | 73.8 |
4 | 42.2 | 38.2 | 38.2 | 38.2 |
5 | 140.7 | 138.6 | 139.7 | 139.7 |
6 | 121.7 | 122.5 | 122.6 | 122.6 |
7 | 31.5 | 31.9 | 31.9 | 31.9 |
8 | 31.9 | 32.8 | 31.9 | 31.9 |
9 | 50.2 | 50.2 | 50.2 | 50.2 |
10 | 35.8 | 36.1 | 36.6 | 36.6 |
11 | 21.1 | 21.1 | 21.0 | 21.0 |
12 | 39.8 | 39.7 | 39.7 | 39.7 |
13 | 42.4 | 41.3 | 42.3 | 42.3 |
14 | 56.8 | 56.7 | 56.7 | 56.7 |
15 | 24.3 | 24.3 | 24.3 | 24.3 |
16 | 29.4 | 29.4 | 29.3 | 29.3 |
17 | 56.0 | 56.0 | 56.0 | 56.0 |
18 | 11.9 | 11.9 | 11.9 | 11.9 |
19 | 19.4 | 19.3 | 19.3 | 19.3 |
20 | 35.8 | 35.8 | 35.8 | 35.8 |
21 | 18.8 | 18.8 | 18.8 | 18.8 |
22 | 34.4 | 34.4 | 34.5 | 34.4 |
23 | 31.5 | 31.4 | 31.9 | 31.9 |
24 | 152.6 | 151.3 | 152.5 | 152.6 |
25 | 50.1 | 50.0 | 50.0 | 50.0 |
26 | 26.4 | 26.5 | 26.3 | 26.4 |
27 | 26.3 | 26.3 | 26.4 | 26.3 |
28 | 108.8 | 108.9 | 108.8 | 108.8 |
29 | 12.0 | 12.0 | 12.0 | 12.0 |
30 | 12.1 | 12.1 | 12.1 | 12.0 |
Position | δH (m, J in Hz) | δC | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
2 | 4 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |
1′ | 172.1 | 173.0 | 173.1 | 179.5 | 179.5 | 180.4 | 180.2 | 179.8 | ||
2′ | 2.20 (t, 7.5) | 2.50 (t, 7.5) | 34.4 | 31.9 | 31.9 | 38.7 | 32.7 | 34.0 | 34.0 | 32.8 |
3′ | 1.60 (m) | 1.85 (m) | 25.1 | 24.6 | 24.3 | 23.4 | 23.2 | 24.2 | 24.2 | 23.6 |
4′ | 1.29 (m) | 2.39 (t, 6.0) | 29.1 | 28.0 | 18.8 | 28.9 | 18.9 | 27.9 | 27.9 | 18.7 |
5′ | 1.29 (m) | 29.3 | 27.8 | 89.1 | 132.7 | 81.9 | 27.7 | 27.7 | 87.6 | |
6′ | 1.29 (m) | 29.6 | 19.3 | 79.1 | 124.5 | 66.3 | 19.2 | 19.2 | 79.9 | |
7′ | 1.29 (m) | 5.42 (d, 15.8) | 29.7 | 92.7 | 111.0 | 38.7 | 72.8 | 88.5 | 88.9 | 110.8 |
8′ | 1.29 (m) | 5.95 (m) | 29.8 | 79.2 | 141.2 | 18.6 | 74.4 | 79.3 | 79.1 | 141.8 |
9′ | 1.29 (m) | 2.22 (m) | 29.8 | 110.3 | 32.5 | 87.2 | 108.6 | 110.3 | 110.3 | 32.4 |
10′ | 1.29 (m) | 2.22 (m) | 29.8 | 142.5 | 31.9 | 79.7 | 148.3 | 142.6 | 142.6 | 31.9 |
11′ | 1.29 (m) | 6.10 (m) | 29.6 | 32.4 | 144.3 | 110.7 | 33.0 | 32.4 | 31.9 | 144.3 |
12′ | 1.29 (m) | 5.55 (dd, 15.9, 1.5) | 29.4 | 28.5 | 110.0 | 141.9 | 28.7 | 28.4 | 32.5 | 110.0 |
13′ | 1.29 (m) | 29.3 | 28.3 | 90.4 | 31.9 | 28.7 | 28.3 | 144.3 | 90.4 | |
14′ | 1.29 (m) | 31.9 | 19.2 | 84.9 | 32.4 | 27.7 | 19.2 | 110.0 | 84.9 | |
15′ | 1.40 (m) | 6.25 (dd, 16.2, 2.2) | 22.7 | 88.6 | 117.7 | 144.3 | 28.4 | 92.8 | 90.4 | 117.7 |
16′ | 0.80 (t, 6.9) | 5.60 (d, 14.0) | 14.1 | 77.3 | 117.8 | 110.0 | 33.2 | 77.5 | 84.9 | 117.8 |
17′ | 117.9 | 90.4 | 138.8 | 117.9 | 117.7 | |||||
18′ | 117.1 | 84.9 | 88.6 | 117.1 | 117.5 | |||||
19′ | 117.7 | |||||||||
20′ | 117.9 |
Test Sample | HeLa Cell | HepG-2 | Daoy | |||
---|---|---|---|---|---|---|
% Inhibition 2 | IC50 3 | % Inhibition 2 | IC50 3 | % Inhibition 2 | IC50 3 | |
EtOH extract | 83.35 | 35.07 | 91.24 | 23.45 | 91.6 | 23.31 |
DCM + n-BuOH | 36.45 | NT 4 | 8.37 | NT 4 | 36.45 | NT 4 |
n-Hexane | 91.28 | 33.7 | 89.31 | 30.2 | 90.5 | 20.74 |
1 | 35.78 | NT 4 | 46.25 | NT 4 | 34.07 | NT 4 |
2 | 7.98 | NT 4 | 14.72 | NT 4 | 0 | NT 4 |
5 | 4.17 | NT 4 | 2.09 | NT 4 | 0 | NT 4 |
6 | 87.98 | 23.85 | 89.33 | 17.72 | 87.02 | 15.72 |
7 | 67 | 30.38 | 18.4 | NT 4 | 77.56 | 23.1 |
9 | 58.61 | 44.41 | 45.23 | NT 4 | 71.58 | 24.57 |
Dasatinib | 56.4 | 16.22 | 89.67 | 6.91 | 90.36 | 9.2 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
El-Gamal, A.A.; Al-Massarani, S.M.; Shaala, L.A.; Alahdald, A.M.; Al-Said, M.S.; Ashour, A.E.; Kumar, A.; Abdel-Kader, M.S.; Abdel-Mageed, W.M.; Youssef, D.T.A. Cytotoxic Compounds from the Saudi Red Sea Sponge Xestospongia testudinaria. Mar. Drugs 2016, 14, 82. https://doi.org/10.3390/md14050082
El-Gamal AA, Al-Massarani SM, Shaala LA, Alahdald AM, Al-Said MS, Ashour AE, Kumar A, Abdel-Kader MS, Abdel-Mageed WM, Youssef DTA. Cytotoxic Compounds from the Saudi Red Sea Sponge Xestospongia testudinaria. Marine Drugs. 2016; 14(5):82. https://doi.org/10.3390/md14050082
Chicago/Turabian StyleEl-Gamal, Ali A., Shaza M. Al-Massarani, Lamiaa A. Shaala, Abdulrahman M. Alahdald, Mansour S. Al-Said, Abdelkader E. Ashour, Ashok Kumar, Maged S. Abdel-Kader, Wael M. Abdel-Mageed, and Diaa T. A. Youssef. 2016. "Cytotoxic Compounds from the Saudi Red Sea Sponge Xestospongia testudinaria" Marine Drugs 14, no. 5: 82. https://doi.org/10.3390/md14050082
APA StyleEl-Gamal, A. A., Al-Massarani, S. M., Shaala, L. A., Alahdald, A. M., Al-Said, M. S., Ashour, A. E., Kumar, A., Abdel-Kader, M. S., Abdel-Mageed, W. M., & Youssef, D. T. A. (2016). Cytotoxic Compounds from the Saudi Red Sea Sponge Xestospongia testudinaria. Marine Drugs, 14(5), 82. https://doi.org/10.3390/md14050082