Supporting information

Isolation and characterization of antimicrobial peptides with unusual disulfide connectivity from the colonial ascidian *Synoicum turgens*

Ida K. Ø. Hansen ¹, Johan Isaksson ², Aaron G. Poth³, Kine Ø. Hansen ⁴, Aaron J. C. Andersen ¹, Céline S. Richard ¹, Hans-Matti Blencke¹, Klara Stensvåg¹, David J. Craik³ and Tor Haug ¹

- ¹ Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, UiT The Arctic University of Norway, Breivika, N-9037 Tromsø, Norway
- ² Department of Chemistry, UiT The Arctic University of Norway, Breivika, N-9037 Tromsø, Norway
- ³ Institute for Molecular Bioscience, The University of Queensland, Brisbane 4072, Queensland, Australia
- ⁴ Marbio, UiT The Arctic University of Norway, Breivika, N-9037, Tromsø, Norway

Table of contents

- Figure S1. MS spectra of the isotope patterns of the purified peptides
- Figure S2. MS/MS spectra of the intact peptides of turgencin A and turgencin A_{Mox1}
- Figure S3. MS/MS spectrum highlighting the different oxidation states of turgencin B
- Figure S4. Retention times of turgencin A, B and their oxidized derivatives
- Figure S5. ¹⁵N-HSQC (at natural abundance) of turgencin A_{Mox1} in water
- Figure S6. ¹⁵N-HSQC (at natural abundance) of turgencin B_{Mox2} in water
- Figure S7. TALOS+ predicted secondary structure of turgencin B_{Mox2}
- **Figure S8.** The ³*J*HNHA coupling constants of turgencin B_{Mox2}
- **Figure S9.** Early test calculations of turgencin B_{Mox2} using crude constraints to evaluate different disulfide patterns using crude constraints
- **Figure S10.** The most viable alternative disulfide pattern of turgencin B_{Mox2} compared to the found pattern in terms of energy
- **Figure S11.** RMSD relative to the starting frame, energies of the turgencin B_{Mox2} and the RMSF of the backbone during the free MD trajectory
- Figure S12. Comparison of NMR and molecular dynamics structures for turgencin BM0x2
- Table S1.
 Antimicrobial activity of solid phase extract fractions and the organic extract
- **Table S2.** Calculated and measured monoisotopic m/z [M+4H]⁴⁺ ions of the turgencins
- Table S3.
 Proton chemical shift assignments for turgencin A_{Mox1} in water
- Table S4.
 Carbon chemical shift assignments for turgencin A_{Mox1} in water
- **Table S5.**Proton chemical shift assignments for turgencin B_{Mox2} in water
- Table S6.
 Carbon chemical shift assignments for turgencin B_{Mox2} in water
- **Table S7.** Peptides sharing the same disulfide connectivity as turgencin B

Figure S1. MS spectra of the isotope patterns of the purified peptides turgencin A_{Mox1} , turgencin B, turgencin B_{Mox1} and turgencin B_{Mox2}. The [M+4H]⁴⁺ ions are highlighted, and the monoisotopic signals of these ions were used for calculation of the monoisotopic masses of the peptides.

G P K T K A A C K L A T C G K K P G G W K C K L C E L G C D A V

Figure S2. MS/MS spectra of the $[M+3H]^{3+}$ precursor ions m/z 1236.27 and m/z 1230.94 of the intact peptides of turgencin A and turgencin A_{Mox1} respectively.

Figure S3. MS/MS spectra of the [M+4H]⁴⁺ precursor ions, highlighting the differing oxidation states of Met5 across three turgencin B oxiforms, zoomed in between m/z 420-700. Spectrum 1 is of turgencin B (precursor m/z 885.65), spectrum 2 illustrates the oxidation of turgencin B_{Mox1} (precursor m/z 889.65), and spectrum 3 is of turgencin B_{Mox2} (precursor m/z 893.65).

Figure S4. Reversed-phase HPLC separation of turgencin A, B and their oxidized derivatives. Peptides with methionine oxidation exhibit shorter retention times, corresponding with decreased hydrophobicity.

Figure S5. ¹⁵N-HSQC (at natural abundance) of turgencin A_{Mox1} in water.

Figure S6. ¹⁵N-HSQC (at natural abundance) of turgencin B_{Mox2} in water.

Figure S7. TALOS+ predicted secondary structure of turgencin B_{Mox2} based on all available chemical shifts (HN, N, C, CA, CB, HA, HB). Overall patch of secondary fold is predicted. One residue (C16) is predicted as β -sheet with low confidence, however this is likely an effect of the disulfide bond affecting the chemical shifts.

Figure S8. The ³*J*_{HNHA} coupling constants for turgencin B_{Mox2} structure estimated using two methods using the TOCSY line widths and the sum/diff displacement of DQF-COSY and NOESY slices. The results indicate access to helical structures (green area) for both sides of the turn, but the couplings also suggest significant conformational averaging (blue area).

Figure S9. Early test calculations of turgencin B_{Mox2} using crude constraints to evaluate different disulfide patterns using crude constraints. 10 out of 50 structures of each simulation are superimposed, picked at even intervals from the energy profile.

Figure S10. The most viable alternative disulfide pattern of turgencin B_{Mox2} compared to the found pattern in terms of energy of 500 calculated simulated annealing structures using the final constraints.

Figure S11. The (a) RMSD relative to the starting frame, (b) energies of turgencin B_{Mox2} and (c) the RMSF of the backbone during the free MD trajectory.

Figure S12. Comparison of NMR and molecular dynamics structures for turgencin B_{Mox2} . (a) The representative NMR structure of turgencin B_{Mox2} selected for MD simulations, and (b) an ensemble sampling the last nanosecond of the simulation. Backbone core (res 6-32) RMSD ~ 1.5 Å. (c) The NMR and MD structures superimposed and displayed with ribbons.

	Antimicrobial activity (MIC; mg/mL)						
Extract	С. д.	<i>B. s.</i>	S. a.	Е. с.	<i>P. a.</i>		
10% MeCN SPE	1.25	5.00	5.00	10.00	5.00		
20% MeCN SPE	2.50	2.50	5.00	5.00	5.00		
30% MeCN SPE	0.16	0.16	2.50	5.00	5.00		
40% MeCN SPE	0.04	0.08	2.50	5.00	2.50		
80% MeCN SPE	0.31	0.31	2.50	5.00	2.50		
Organic	2.50	2.50	10.00	>10.00	>10.00		

Table S1. Antimicrobial activity of solid phase extract (SPE) fractions and the organic extract. Bacterial test strains: *C. g. - Corynebacterium glutamicum, B. s. - Bacillus subtilis, S. a. - Staphylococcus aureus, E. c. - Escherichia coli, P. a. - Pseudomonas aeruginosa.*

Table S2. Calculated and measured monoisotopic m/z [M+4H]⁴⁺ ions of turgencin A, turgencin B, and their oxidized derivatives.

Peptide	Calculated monoisotopic mass [M+4H]4+	Measured monoisotopic mass [M+4H]4+	Error (ppm)
Turgencin A	923.4568	923.4574	0.65
Turgencin A _{Mox1}	927.4555	927.4562	0.71
Turgencin B	885.6526	885.6536	1.11
Turgencin B _{Mox1}	889.6529	889.6532	0.34
Turgencin B _{Mox2}	893.6501	893.6518	1.92

Residue	H (ppm)	Hα(ppm)	Hβ (ppm)	Hγ(ppm)	Others (ppm)
GLY1	8.56	3.91/3.92			
PRO ₂		4.38	2.24/1.84	2.00/1.94	α:3.50/3.52
LYS3	8.61	4.32	1.80/1.70	1.39/1.43	α:1.57/1.58, α:2.90
THR4	7.62	4.34	4.41	1.18	
LYS5	8.68	3.97	1.82/1.74	1.38/1.40	α:1.66, α:2.94
ALA6	8.34	3.99	1.34		
ALA7	8.00	4.12	1.39		
CYS8	8.16	4.18	3.39/2.96		
LYS9	8.58	3.66	1.80/1.69	1.23/1.22	α:1.58/1.56, α:2.90
MET 10	8.16	4.12	2.25	2.94/2.86	α: 1.57, α: 2.62
ALA 11	7.96	4.14	1.49		
CYS 12	8.10	4.45	3.06/3.12		
LYS 13	8.08	3.72	1.99/1.88	1.29	α:1.55, α:2.86
LEU 14	7.63	4.07	1.70/1.55	1.68	α1:0.78, α2:0.83
ALA 15	7.77	4.31	1.41		
THR 16	7.77	4.39	4.06	1.04	
CYS 17	8.29	4.21	3.21/2.81		
GLY 18	8.43	3.77/3.74			
LYS 19	7.80	4.26	1.81/1.67	1.36/1.41	α:1.59, α:2.91
LYS 20	7.70	4.75	1.75/1.64	1.26	α:1.63, α:2.90
PRO 21		4.74	1.89/2.38	1.99/1.90	α:3.58/3.34
GLY 22	8.46	3.67/4.01			
GLY 23	7.64	3.76/4.15			
TRP 24	8.42	4.34	3.36/3.18		α1:7.26, α1:10.13, α3:7.43, α2:7.13, α2: 7.41,αα3: 7.02
LYS 25	8.02	3.54	1.42/1.26	0.89/0.84	α:1.40, α:2.80
CYS 26	4.17	3.01/2.97			
LYS 27	7.78	3.96	1.74/1.80	1.37/1.29	α:1.54, α:2.84
LEU28	8.09	3.92	1.46/1.41	1.44	α:0.78/0.74
CYS 29	7.77	4.15	3.34/2.98		
GLU 30	8.43	3.69	2.06/1.88	1.90/2.60	
LEU 31	8.22	4.12	1.72/1.55	1.68	α:0.82/0.81
GLY 32	7.84	3.86/3.85			
CYS 33	7.54	4.66	3.07/2.97		
ASP 34	7.74	4.47	2.68		
ALA 35	7.54	4.27	1.40		
VAL36	7.53	3.98	2.08	γ1:0.92, γ2:0.85	

Table S3. Proton chemical shift assignments for turgencin $A_{\mbox{\scriptsize Mox1}}$ in water.

Residue	N (ppm)	Ca(ppm)	Cβ (ppm)	Cy(ppm)	Others (ppm)
GLY1	109.48	40.56			
PRO ₂		60.50	29.59	24.34	α:46.89
LYS3	121.19	53.92	30.14	22.24	α:26.21, α:39.33
THR4	111.99	58.48	68.09	19.07	
LYS5	123.81	57.34	29.02	22.26	α:26.72, α:39.32
ALA6	120.98	52.30	15.32		
ALA7	121.95	52.09	15.47		
CYS8	121.10	57.05	35.14		
LYS9	121.30	57.72	30.13	24.40	α:26.28, α:39.30
MET 10	120.45	52.02	23.24	48.40	α:26.3, α:36.80
ALA 11	123.40	52.42	14.53		
CYS 12	116.13	54.33	35.66		
LYS 13	123.81	56.97	29.22	22.05	α:26.27,αα:39.18
LEU14	118.52	53.97	39.30	24.20	α1:20.19, α2:21.16
ALA 15	120.99	50.92	16.46		
THR 16	109.91	61.20	66.78	18.18	
CYS 17	119.35	55.29	40.47		
GLY 18	118.81	43.86			
LYS 19	118.69	54.01	30.64	22.21	α:26.29,αα:39.33
LYS 20	117.80	50.79	30.37	22.04	α:26.25, α:39.34
PRO 21		61.75	28.76	24.43	α:47.84
GLY 22	106.81	42.12			
GLY 23	106.85	42.17			
TRP 24	122.69	57.01	25.95	108.03	α1:124.59,
					α2:126.89,
					α2:126.20,
					α3:117.93,
					α2:121.91,
					α2:112.01,
					α3:119,26,
					Να1:129.22
LYS 25	119.54	56.94	28.99	22.57	α:26.31, α:39.15
CYS 26	118.96	55.75	36.82		
LYS 27	120.16	56.37	29.55	22.18	α:26.125, α:39.22
LEU28	118.33	54.77	39.04	23.94	α:21.82/20.81
CYS 29	119.87	52.41	35.34		
GLU 30	107.90	57.71	26.49	34.96	
LEU 31	121.21	54.92	39.28	24.20	α:22.07

 $\label{eq:table_state} \textbf{Table S4.} Carbon \ chemical \ shift \ assignments \ for \ turgencin \ A_{\text{Mox1}} \ in \ water.$

GLY 32	107.37	43.87			
CYS 33	117.92	56.11	33.55		
ASP 34	119.77	53.49	37.87		
ALA 35	121.58	50.23	16.27		
VAL36	117.53	59.61	29.45	γ1:17.82, γ2:18.46	

 $\textbf{Table S5.} \ Proton \ chemical \ shift \ assignments \ for \ turgencin \ B_{Mox2} \ in \ water.$

Residue	H (ppm)	Hα(ppm)	$H\beta$ (ppm)	Hγ(ppm)	Others (ppm)
GLY1	7.63	3.65, 3.77	-	-	-
ILE2	8.65	3.94	1.79	1.19, 1.42, CH ₃ : 0.86	δCH3: 0.81
LYS3	8.43	3.88	1.67, 1.76	1.32, 1.47	δCH2:1.60, εCH2: 2.89
GLU4	8.41	3.82	1.94, 1.98	2.17, 2.25	-
MET5	8.01	4.20	2.21, 2.28	2.84, 3.01	εCH3: 2.58
LEU6	8.50	3.97	1.420, 1.749	1.74	δCH3: 0.75, 0.77
CYS7	7,83	4.20	2.820, 3.254	-	-
ASN8	8.57	4.20	2.701, 2.748	-	-
MET9	8.22	4.14	2.24	2.73, 3.02	εCH3: 2.57
ALA 10	7.86	4.21	1.48	-	-
CYS 11	8.01	4.27	3.04, 3.07	-	-
ALA12	8.22	3.73	1.42	-	-
GLN 13	7.55	4.19	2.06, 2.20	2.40, 2.48	εNH2: 6.85, 7.31
THR 14	7.43	4.50	4.26	1.16	-
VAL 15	8.81	4.09	2.09	0.98, 1.04	-
CYS 16	8.13	4.89	2.76, 3.31	-	-
LYS 17	7.23	3.99	1.70	1.30	δCH2:1.60, εCH2: 2.90
LYS 18	8.13	4.17	1.70, 1.80	1.31	δCH2:1.60, εCH2: 2.89
SER 19	7.77	4.37	3.76, 3.83	-	-
GLY 20	8.18	3.82, 4.12	-	-	-
GLY 21	8.62	3.85, 4.44	-	-	-

PRO 22	-	4.26	1.87, 2.30	1.90, 1.98	δCH2: 3.54, 3.68
LEU23	8.46	4.09	1.34, 1.70	1.60	δCH3: 0.80, 0.84
CYS 24	7.50	4.19	3.16, 3.21	-	-
ASP 25	8.39	4.25	2.62, 2.67	-	-
THR 26	8.34	3.86	4.08	1.17	-
CYS 27	7.56	4.16	3.01, 3.36	-	-
GLN 28	8.29	3.93	1.99, 2.02	2.22, 2.61	-
ALA 29	8.38	4.02	1.41	-	-
ALA 30	7.64	4.15	1.46	-	-
CYS 31	7.49	4.55	3.00, 3.08	-	-
LYS 32	7.63	4.03	1.79, 1.85	1.36, 1.49	δCH2:1.59, εCH2: 2.86
ALA33	7.57	4.21	1.37	-	-
LEU34	7.61	4.15	1.45, 1.75	1.78	δCH3: 0.78, 0.82
GLY 35	7.93	3.78, 3.87	-	-	terminal-NH2: 7.05, 7.21

Table S6. Carbon chemical shift assignments for turgencin B_{Mox2} in water.

Residue	N (ppm)	Ca(ppm)	$C\beta$ (ppm)	Cy(ppm)	Others (ppm)
GLY1	-	61.014	-	-	-
ILE2	122.15	60.82	35.45	14.68, 25.64	δCH3: 10.32
LYS3	120.82	57.24	29.27	22.65	δCH2: 26.37 εCH2: 39.28
GLU4	120.90	57.43	26.15	33.18	-
MET5	118.83	55.76	23.13	48.73	εCH3: 36.56
LEU6	121.07	55.31	38.68	23.92	δCH3: 19.85, 22.68
CYS7	121.22	57.19	32.11	-	-
ASN8	120.64	54.04	35.91	-	-
MET9	120.49	55.60	22.93	47.84	εCH3: 36.547
ALA 10	122.84	52.64	14.45	-	-
CYS 11	116.93	54.80	35.20	-	-
ALA 12	123.91	52.69	15.50	-	-
GLN 13	111.92	53.47	27.05	31.25	δCO: 177.40
THR 14	108.63	57.095	67.66	18.38	-
VAL15	118.30	61.24	29.56	17.42, 19.53	-
CYS 16	116.07	52.91	41.12	-	-

LYS 17	120.89	56.09	30.06	22.133	δCH2: 26.35 εCH2: 39.32
LYS 18	117.66	54.22	29.95	22.18	δCH2: 26.34 εCH2: 39.29
SER 19	113.19	55.42	61.55	-	-
GLY 20	108.86	42.22		-	-
GLY 21	110.51	42.04		-	-
PRO 22	-	62.77	29.46	24.59	δCH2: 47.00
LEU 23	117.91	55.08	38.44	24.45	δCH3: 20.31, 22.08
CYS 24	119.23	55.88	36.38	-	-
ASP 25	120.78	54.79	36.90	-	-
THR 26	116.55	63.82	66.02	18.78	-
CYS 27	123.34	58.41	35.90	-	-
GLN 28	116.81	56.55	25.79	32.02	-
ALA29	123.12	52.24	15.11	-	-
ALA 30	121.61	51.88	14.65	-	-
CYS 31	115.49	52.02	32.63	-	-
LYS 32	119.51	55.41	29.82	22.31	δCH2: 26.24, εCH2: 39.20
ALA 33	121.34	50.37	15.71	-	-
LEU34	118.72	53.19	39.37	23.84	δCH3: 20.26, 23.08
GLY 35	108.32	42.36	-	-	-

Table S7. Per	ptides sharing	the same disulfide	connectivity as tu	rgencin B (C	$C_{1}-C_{6}/C_{2}-C_{5}/C_{3}-C_{4}$
14010 07710	p liaco oriannig	, the builde albuilde	connectivity do tu	igeneni b (c	$c_0 c_1 c_0 c_1 c_0 c_1$

АМР	#aa	Sequence and protein data bank (PDB) ID	Species	Ref.
Turgencin B	35	GIKEMLCNMACAQTVCKKSGGPLCDTCQAACKAL-	Synoicum turgens	This work
		NH ₂	(ascidian)	
TEWP	36	pEKK <mark>C</mark> PGR <mark>C</mark> TLKCGKHERPTLPYNCGKYICCVPVKVK	Caretta caretta	[1]
		(PDB: 2B5B)	(Loggerhead sea	
			turtle)	
Pelovaterin	42	DDTPSSRCGSGGWGPCLPIVDLLCIVHVTVGCSGGFG	Pelodiscus	[2]
		CCRIG (PDB: 2JR3)	sinensis (Chinese	
			softshell turtle)	
Caenopore-5	81	RSALSCQMCELVVKKYEGSADKDANVIKKDFDAECK	Caenorhabditis	[3]
		KLFHTIPFGTRECDHYVNSKVDPIIHELEGGTAPKDVC	elegans (nematode)	
		TKLNE <mark>C</mark> P (PDB: 2JS9)		
NK-lysin	78	GLI <mark>CESC</mark> RKIIQKLEDMVGPQPNEDTVTQAASRV <mark>C</mark> DK	Sus scrofa (pig)	[4]
2		MKILRGV <mark>C</mark> KKIMRTFLRRISKDILTGKKPQAI <mark>C</mark> VDIKI <mark>C</mark>		
		KE (PDB: 1NKL)		
RTD-1	18	GFCRCLCRRGVCRCICTR (cyclic, 3 DSB + head to tail	Macaca mulatta	[5], [6]
		peptide bonds) (PDB: 2LYF)	(Rhesus monkey)	
Viscotoxin	46	KSCCPNTTGRNIYNACRLTGAPRPTCAKLSGCKIISGST	Viscum album	[7] (sequence),
A3		CPSDYPK (PDB: 1ED0)	(mistletoe)	[8] (activity)

References

- 1. Chattopadhyay, S.; Sinha, N. K.; Banerjee, S.; Roy, D.; Chattopadhyay, D.; Roy, S., Small cationic protein from a marine turtle has β-defensin-like fold and antibacterial and antiviral activity. *Proteins* **2006**, 64, 524-531.
- Lakshminarayanan, R.; Vivekanandan, S.; Samy, R. P.; Banerjee, Y.; Chi-Jin, E. O.; Teo, K. W.; Jois, S. D. S.; Kini, R. M.; Valiyaveettil, S., Structure, self-assembly, and dual role of a βdefensin-like peptide from the Chinese soft-shelled turtle eggshell matrix. *J. Am. Chem. Soc.* 2008, 130, 4660-4668.
- Mysliwy, J.; Dingley, A. J.; Stanisak, M.; Jung, S.; Lorenzen, I.; Roeder, T.; Leippe, M.; Grötzinger, J., Caenopore-5: The three-dimensional structure of an antimicrobial protein from *Caenorhabditis elegans*. *Developmental & Comparative Immunology* **2010**, 34, 323-330.
- 4. Liepinsh, E.; Andersson, M.; Ruysschaert, J.-M.; Otting, G., Saposin fold revealed by the NMR structure of NK-lysin. *Nature Structural Biology* **1997**, 4, 793-795.
- Tang, Y.-Q.; Yuan, J.; Ösapay, G.; Ösapay, K.; Tran, D.; Miller, C. J.; Ouellette, A. J.; Selsted, M.
 E., A cyclic antimicrobial peptide produced in primate leukocytes by the ligation of two truncated α-defensins. *Science* **1999**, 286, 498-502.
- 6. Selsted, M. E., θ-defensins: Cyclic antimicrobial peptides produced by binary ligation of truncated α-defensins. *Current Protein & Peptide Science* **2004**, 5, 365-371.
- Romagnoli, S.; Ugolini, R.; Fogolari, F.; Schaller, G.; Urech, K.; Giannattasio, M.; Ragona, L.; Molinari, H., NMR structural determination of viscotoxin A3 from *Viscum album L. Biochem. J.* 2000, 350, 569-577.
- 8. Giudici, A. M.; Regente, M. C.; Villalaín, J.; Pfüller, K.; Pfüller, U.; De La Canal, L., Mistletoe viscotoxins induce membrane permeabilization and spore death in phytopathogenic fungi. *Physiologia Plantarum* **2004**, 121, 2-7.