Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (57)

Search Parameters:
Keywords = micro combined heat and power (micro-CHP)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 1686 KB  
Review
Sector Coupling and Flexibility Measures in Distributed Renewable Energy Systems: A Comprehensive Review
by Lorenzo Mario Pastore
Sustainability 2026, 18(1), 437; https://doi.org/10.3390/su18010437 (registering DOI) - 1 Jan 2026
Abstract
Distributed energy systems (DESs) are crucial for renewable deployment, but decentralised generation substantially increases flexibility requirements. Flexibility is framed as a system property that emerges from the coordinated operation of demand, storage and dispatchable generation across multi-energy carriers. Demand response schemes and demand-side [...] Read more.
Distributed energy systems (DESs) are crucial for renewable deployment, but decentralised generation substantially increases flexibility requirements. Flexibility is framed as a system property that emerges from the coordinated operation of demand, storage and dispatchable generation across multi-energy carriers. Demand response schemes and demand-side management can provide flexibility, but their effective potential is constrained by user participation. Sector-coupling strategies and energy storage systems enable temporal and cross-sector decoupling between renewable generation and demand. Electrochemical batteries are technically mature and well suited for short-term balancing, but costs and environmental impacts are significant. Power-to-Heat with heat pumps and thermal energy storage is a cost-effective solution, especially when combined with low-temperature district heating. Electric vehicles, when operated under smart-charging and vehicle-to-grid schemes, can shift large charging demands feeding energy into the grid, facing battery degradation and infrastructure costs. Power-to-Gas and Power-to-X use hydrogen and electrofuels as long-term storage but are penalised by low round-trip efficiencies and significant capital costs if power-to-power with fuel cells is applied. On the supply side, micro-CHP can provide dispatchable capacity when fuelled by renewable fuels and combined with seasonal storage. Costs and efficiencies are strongly scale-dependent, and markets, regulation, digital infrastructure and social acceptance are key enablers of flexibility. Full article
(This article belongs to the Special Issue Advances in Sustainable Energy Planning and Thermal Energy Storage)
Show Figures

Figure 1

28 pages, 3642 KB  
Article
Life Cycle Cost Analysis of a Biomass-Driven ORC Cogeneration System for Medical Cannabis Greenhouse Cultivation
by Chrysanthos Golonis, Dimitrios Tyris, Anastasios Skiadopoulos, Dimitrios Bilalis and Dimitris Manolakos
Appl. Sci. 2025, 15(22), 12085; https://doi.org/10.3390/app152212085 - 13 Nov 2025
Viewed by 701
Abstract
Medical cannabis cultivation requires substantial energy for heating, lighting, and climate control. This study evaluates the economic feasibility of an innovative biomass-fired micro-CHP system in a greenhouse facility for medicinal cannabis cultivation. The system comprises an 80 kWth boiler retrofitted for biomass [...] Read more.
Medical cannabis cultivation requires substantial energy for heating, lighting, and climate control. This study evaluates the economic feasibility of an innovative biomass-fired micro-CHP system in a greenhouse facility for medicinal cannabis cultivation. The system comprises an 80 kWth boiler retrofitted for biomass and a 7 kWel ORC engine and is assessed against a diesel-boiler Business-As-Usual (BAU) benchmark. Thermal load simulations for two growing periods (1 March–30 June and 1 September–30 December) estimate an annual heating demand of 91,065.20 kWhth. The micro-CHP system delivers 8195.87 kWhel per year, exceeding the greenhouse’s 7839.90 kWhel consumption. Over a 30-year lifespan at a 7% discount rate, Life Cycle Costing yields EUR 196,421.33 for micro-CHP versus EUR 229,468.46 for BAU, a 14.4% reduction. Under all-equity financing, the project achieves an NPV of EUR 59,591.88, IRR of 27.32%, and a DPBP of 12.1 years; with 70% debt financing, NPV rises to EUR 61,211.39 and DPBP shortens to 10.5 years. Levelized Cost of Energy (LCOE) and Heat (LCOH) are EUR 0.122 per kWhel and EUR 0.062 per kWhth, respectively. While the LCOE is below the Greek and EU non-household averages (EUR 0.1578 and EUR 0.1515 per kWhel), the LCOH exceeds the corresponding heat price benchmarks (EUR 0.0401 and EUR 0.0535 per kWhth). These results indicate that, in the modeled context, biomass-ORC cogeneration can be a financially attractive and lower-carbon option for medicinal cannabis greenhouse operations. Full article
Show Figures

Figure 1

23 pages, 2593 KB  
Article
Preliminary Comparison of Ammonia- and Natural Gas-Fueled Micro-Gas Turbine Systems in Heat-Driven CHP for a Small Residential Community
by Mateusz Proniewicz, Karolina Petela, Christine Mounaïm-Rousselle, Mirko R. Bothien, Andrea Gruber, Yong Fan, Minhyeok Lee and Andrzej Szlęk
Energies 2025, 18(15), 4103; https://doi.org/10.3390/en18154103 - 1 Aug 2025
Cited by 2 | Viewed by 1027
Abstract
This research considers a preliminary comparative technical evaluation of two micro-gas turbine (MGT) systems in combined heat and power (CHP) mode (100 kWe), aimed at supplying heat to a residential community of 15 average-sized buildings located in Central Europe over a year. Two [...] Read more.
This research considers a preliminary comparative technical evaluation of two micro-gas turbine (MGT) systems in combined heat and power (CHP) mode (100 kWe), aimed at supplying heat to a residential community of 15 average-sized buildings located in Central Europe over a year. Two systems were modelled in Ebsilon 15 software: a natural gas case (benchmark) and an ammonia-fueled case, both based on the same on-design parameters. Off-design simulations evaluated performance over variable ambient temperatures and loads. Idealized, unrecuperated cycles were adopted to isolate the thermodynamic impact of the fuel switch under complete combustion assumption. Under these assumptions, the study shows that the ammonia system produces more electrical energy and less excess heat, yielding marginally higher electrical efficiency and EUF (26.05% and 77.63%) than the natural gas system (24.59% and 77.55%), highlighting ammonia’s utilization potential in such a context. Future research should target validating ammonia combustion and emission profiles across the turbine load range, and updating the thermodynamic model with a recuperator and SCR accounting for realistic pressure losses. Full article
(This article belongs to the Special Issue Clean and Efficient Use of Energy: 3rd Edition)
Show Figures

Figure 1

25 pages, 1549 KB  
Article
Optimal Operating Patterns for the Energy Management of PEMFC-Based Micro-CHP Systems in European Single-Family Houses
by Santiago Navarro, Juan Manuel Herrero, Xavier Blasco and Alberto Pajares
Appl. Sci. 2025, 15(13), 7527; https://doi.org/10.3390/app15137527 - 4 Jul 2025
Cited by 1 | Viewed by 867
Abstract
Commercial proton exchange membrane fuel cell (PEMFC)-based micro-combined heat and power (micro-CHP) systems are operated by rule-based energy management systems (EMSs). These EMSs are easy to implement but do not perform an explicit economic optimization. On the other hand, an optimal EMS can [...] Read more.
Commercial proton exchange membrane fuel cell (PEMFC)-based micro-combined heat and power (micro-CHP) systems are operated by rule-based energy management systems (EMSs). These EMSs are easy to implement but do not perform an explicit economic optimization. On the other hand, an optimal EMS can explicitly incorporate an economic optimization, but its implementation is more complex and may not be viable in practice. In a previous contribution, it was shown that current rule-based EMSs do not fully exploit the economic potential of micro-CHP systems due to their inability to adapt to changing scenarios. This study investigates the economic performance and behavior of an optimal EMS in 46 scenarios within the European framework. This EMS is designed using a model predictive control approach, and it is formulated as a mixed integer linear programming problem. The results reveal that there are only four basic optimal operating patterns, which vary depending on the scenario. This finding enables the design of an EMS that is computationally simpler than the optimal EMS but capable of emulating it and, therefore, is able to adapt effectively to changing scenarios. This new EMS would improve the cost-effectiveness of PEMFC-based micro-CHP systems, reducing their payback period and facilitating their mass market uptake. Full article
(This article belongs to the Special Issue Advancements and Innovations in Hydrogen Energy)
Show Figures

Figure 1

25 pages, 6699 KB  
Article
Optimization of ORC-Based Micro-CHP Systems: An Experimental and Control-Oriented Study
by Márcio Santos, Jorge André, Ricardo Mendes and José B. Ribeiro
Processes 2025, 13(4), 1104; https://doi.org/10.3390/pr13041104 - 7 Apr 2025
Cited by 2 | Viewed by 1670
Abstract
This study presents an experimental and numerical investigation into the performance and control optimization of an Organic Rankine Cycle (ORC)-based micro-combined heat and power (micro-CHP) system. A steady-state, off-design, charge-sensitive model is developed to design a control strategy for an ORC micro-CHP combi-boiler, [...] Read more.
This study presents an experimental and numerical investigation into the performance and control optimization of an Organic Rankine Cycle (ORC)-based micro-combined heat and power (micro-CHP) system. A steady-state, off-design, charge-sensitive model is developed to design a control strategy for an ORC micro-CHP combi-boiler, aiming to efficiently meet real-time domestic hot water demands (up to 40 °C and 35 kW) while generating up to 2 kW of electricity. The system utilizes a natural gas burner to evaporate the working fluid (R245fa), with combustion heat power, volumetric pump speed, and expander speed as control variables. Experimental and numerical evaluations generate steady-state control maps to identify optimal operating regions. A PID-based dynamic control strategy is then developed to stabilize operation during start-ups and user demand variations. The results confirm that the strategy delivers hot water within 1.5 min in simple boiler mode and 3 min in cogeneration mode while improving electricity generation stability and outperforming manual control. The findings demonstrate that integrating steady-state modeling with optimized control enhances the performance, responsiveness, and efficiency of ORC-based micro-CHP systems, making them a viable alternative for residential energy solutions. Full article
(This article belongs to the Special Issue Modeling, Simulation and Control of Industrial Processes)
Show Figures

Figure 1

17 pages, 3461 KB  
Article
Dynamic Fractional-Order Model of Proton Exchange Membrane Fuel Cell System for Sustainability Improvement
by Yunjin Ao, Yong-Chao Liu, Salah Laghrouche and Denis Candusso
Sustainability 2024, 16(7), 2939; https://doi.org/10.3390/su16072939 - 1 Apr 2024
Cited by 3 | Viewed by 1800
Abstract
The proton exchange membrane fuel cell (PEMFC) stands at the forefront of advancing energy sustainability. Effective monitoring, control, diagnosis, and prognosis are crucial for optimizing the PEMFC system’s sustainability, necessitating a dynamic model that can capture the transient response of the PEMFC. This [...] Read more.
The proton exchange membrane fuel cell (PEMFC) stands at the forefront of advancing energy sustainability. Effective monitoring, control, diagnosis, and prognosis are crucial for optimizing the PEMFC system’s sustainability, necessitating a dynamic model that can capture the transient response of the PEMFC. This paper uses a dynamic fractional-order model to describe the behaviors of a stationary micro combined heat and power (mCHP) PEMFC stack. Based on the fractional-order equivalent circuit model, the applied model accurately represents the electrochemical impedance spectroscopy (EIS) and the dynamic voltage response under transient conditions. The applied model is validated through experiments on an mCHP PEMFC stack under various fault conditions. The EIS data is analyzed under different current densities and various fault conditions, including the stoichiometry of the anode and cathode, the stack temperature, and the relative humidity. The dynamic voltage response of the applied model shows good correspondence with experimental results in both phase and amplitude, thereby affirming the method’s precision and solidifying its role as a reliable tool for enhancing the sustainability and operational efficiency of PEMFC systems. Full article
(This article belongs to the Section Energy Sustainability)
Show Figures

Figure 1

20 pages, 4213 KB  
Article
Performance Evaluation of a Fuel Cell mCHP System under Different Configurations of Hydrogen Origin and Heat Recovery
by Pedro Gabana, Francisco V. Tinaut, Miriam Reyes and José Ignacio Domínguez
Energies 2023, 16(18), 6420; https://doi.org/10.3390/en16186420 - 5 Sep 2023
Cited by 5 | Viewed by 2168
Abstract
Motivated by the growing importance of fuel cell systems as the basis for distributed energy-generation systems, this work considers a micro-combined heat and power (mCHP) generation system based on a fuel cell integrated to satisfy the (power and thermal) energy demands of a [...] Read more.
Motivated by the growing importance of fuel cell systems as the basis for distributed energy-generation systems, this work considers a micro-combined heat and power (mCHP) generation system based on a fuel cell integrated to satisfy the (power and thermal) energy demands of a residential application. The main objective of this work is to compare the performance of several CHP configurations with a conventional alternative, in terms of primary energy consumption, greenhouse gas (GHG) emissions and economic viability. For that, a simulation tool has been developed to easily estimate the electrical and thermal energy generated by a hydrogen fuel cell, and all associated results related to the hydrogen production alternatives: excess or shortfall of electrical and thermal energy, CO2 emission factor, overall performance, operating costs, payback period, etc. A feasibility study of different configuration possibilities of the micro-CHP generation system has been carried out considering different heat-to-power ratios (HPRs) in the possible demands, and analyzing primary energy savings, CO2 emissions savings and operating costs. An extensive parametric study has been performed to analyze the effect of the fuel cell’s electric power and number of annual operation hours as parameters. Finally, a study of the influence of the configuration parameters on the final results has been carried out. Results show that, in general, configurations using hydrogen produced from natural gas save more primary energy than configurations with hydrogen production from electricity. Furthermore, it is concluded that the best operating points are those in which the generation system and the demand have similar HPR. It has also been estimated that a reduction in renewable hydrogen price is necessary to make these systems profitable. Finally, it has been determined that the most influential parameters on the results are the fuel cell electrical efficiencies, hydrogen production efficiency and hydrogen cost. Full article
(This article belongs to the Section A5: Hydrogen Energy)
Show Figures

Figure 1

24 pages, 1359 KB  
Article
The Faster the Better? Optimal Warm-Up Strategies for a Micro Combined Heat and Power Plant
by Tammo Zobel, Andreas Ritter and Christopher H. Onder
Energies 2023, 16(10), 4180; https://doi.org/10.3390/en16104180 - 18 May 2023
Cited by 1 | Viewed by 1818
Abstract
The warm-up process is a critical operation phase for micro Combined Heat and Power (mCHP) plants, directly impacting their efficiency, reliability, and lifetime. As small decentralized power generation units are increasingly expected to be operated on demand, start-ups will occur more frequently and [...] Read more.
The warm-up process is a critical operation phase for micro Combined Heat and Power (mCHP) plants, directly impacting their efficiency, reliability, and lifetime. As small decentralized power generation units are increasingly expected to be operated on demand, start-ups will occur more frequently and thus the importance of the warm-up process will further increase. In this study, we address this problem by presenting a mathematical optimization framework that finds optimal actuator trajectories that significantly reduce the warm-up time and improve the thermal efficiency of an mCHP plant. The proposed optimization framework is highly flexible and adaptable to various objective functions, such as maximizing efficiency or minimizing the deviation from desired temperature references. The underlying mathematical model has been experimentally validated on a physical mCHP test rig. Selected case studies further demonstrate the effectiveness and flexibility of the framework and show that with the optimized actuator trajectories, the mCHP plant can reach its steady-state operating temperature in 40% less time. The results also indicate that the shortest warm-up time does not necessarily lead to the highest thermal efficiency. Accordingly, the methodology proposed in this paper provides a powerful tool to study higher-level operational strategies of mCHP plants and thus to maximize their overall performance, which directly translates into an improved operational cost-effectiveness, particularly in demand-driven energy landscapes. Full article
Show Figures

Figure 1

6 pages, 1873 KB  
Proceeding Paper
Electrical Resilience in Residential Microgrids Powered by Biogas Micro-Combined Heat and Power (Micro-CHP) Systems
by Iker De Loma-Osorio and David Borge-Diez
Eng. Proc. 2023, 37(1), 106; https://doi.org/10.3390/ECP2023-14613 - 17 May 2023
Cited by 1 | Viewed by 1459
Abstract
The authors of this paper analyze the use of biogas-powered micro-Combined Heat and Power (micro-CHP) systems for residential microgrids to enhance their resilience during blackouts. With the increasing frequency of natural disasters, ensuring power system reliability has become a critical concern. Microgrids can [...] Read more.
The authors of this paper analyze the use of biogas-powered micro-Combined Heat and Power (micro-CHP) systems for residential microgrids to enhance their resilience during blackouts. With the increasing frequency of natural disasters, ensuring power system reliability has become a critical concern. Microgrids can provide a solution to this problem by integrating distributed energy resources and operating them independently of the grid. The authors of this paper investigate the design and implementation of biogas-powered micro-CHP systems for residential microgrids. The paper concludes with a discussion of the potential of biogas-powered micro-CHP systems as a key component of resilient and sustainable energy systems in the future. Full article
Show Figures

Figure 1

18 pages, 19900 KB  
Article
Food Waste to Energy through Innovative Coupling of CHP and Heat Pump
by Jan Drofenik, Danijela Urbancl, Darko Goričanec, Zdravko Kravanja and Zorka Novak Pintarič
Energies 2023, 16(8), 3344; https://doi.org/10.3390/en16083344 - 10 Apr 2023
Cited by 12 | Viewed by 4051
Abstract
This paper presents the conceptual design of a technological solution for the efficient conversion of food waste into heat and power. The distribution and composition of food loss and waste at different stages of the food supply chain in Slovenia and their potential [...] Read more.
This paper presents the conceptual design of a technological solution for the efficient conversion of food waste into heat and power. The distribution and composition of food loss and waste at different stages of the food supply chain in Slovenia and their potential for biogas production were determined. It was found that more than 50% of food waste comes from households. Therefore, a small plant was designed to convert food waste into biogas, which was innovatively coupled with a combined heat and power (CHP) unit and a heat pump. This doubles the amount of heat generated compared to conventional cogeneration. Based on the capacity of a micro commercial CHP unit, 3330 households (about 8000 residents) would supply food waste. The heat generated could replace 5% of the natural gas used for domestic water heating. The payback period would be 7.2 years at a heat price of about 80 EUR/MWh, however, for municipalities with more than 40,000 inhabitants the payback period would be reduced to less than 3 years. The cost price of the heat generated by this system would be about 25 EUR/MWh, taking into account the government subsidy for the operation of the CHP unit. Full article
Show Figures

Figure 1

20 pages, 5646 KB  
Article
Experimental Investigation of a Concentrating Bifacial Photovoltaic/Thermal Heat Pump System with a Triangular Trough
by Gülşah Karaca Dolgun, Onur Vahip Güler, Aleksandar G. Georgiev and Ali Keçebaş
Energies 2023, 16(2), 649; https://doi.org/10.3390/en16020649 - 5 Jan 2023
Cited by 5 | Viewed by 2346
Abstract
The heat absorbed by the heat transfer fluid for cooling a concentrated photovoltaic thermal (CPVT) solar collector can be used for purposes such as residential heating and cooking. Because of the combined production of heat and power, these systems are proposed for individual [...] Read more.
The heat absorbed by the heat transfer fluid for cooling a concentrated photovoltaic thermal (CPVT) solar collector can be used for purposes such as residential heating and cooking. Because of the combined production of heat and power, these systems are proposed for individual or commercial use in rural areas. In this study, a hybrid system was proposed to increase the electrical efficiency of the system. Experiments were conducted in winter conditions. Two operational modes were compared, namely a CPVT system with HP (HP-CPVT) and without HP (CPVT). The evaporator of the heat pump was settled inside the triangular trough receiver. The effects of cooling the PV system with a heat pump in the bifacial CPVT system on the electrical and thermal energy efficiencies were investigated. The electricity and thermal energy efficiencies of the CPVT system were calculated as 12.54% and 38.37% in the HP-CPVT system, respectively, and 10.05% and 81.97% in the CPVT system, respectively. The electrical exergy efficiencies of the CPVT system with and without HP were 14.65% and 10.73%, respectively. The thermal exergy efficiencies of the CPVT system with and without HP were 82.47% and 85.63%, respectively. The thermal heat obtained from the HP-CPVT system can be used for heating needs. Thus, the bifacial HP-CPVT system was an example of the micro-CHP system. Full article
(This article belongs to the Special Issue Performance and Optimization of Solar Thermal Energy Storage Systems)
Show Figures

Figure 1

15 pages, 3915 KB  
Article
Modeling and Simulation of a Low-Cost Fast Charging Station Based on a Micro Gas Turbine and a Supercapacitor
by Bogdan Gilev, Miroslav Andreev, Nikolay Hinov and George Angelov
Energies 2022, 15(21), 8020; https://doi.org/10.3390/en15218020 - 28 Oct 2022
Cited by 8 | Viewed by 2906
Abstract
In recent years, micro turbine technology has become a continuously reliable and viable distributed generation system. The application of distributed energy power generation sources, such as micro gas turbines (MGT), to charge electric vehicles offers numerous technical, economical benefits, and opportunities. MGT are [...] Read more.
In recent years, micro turbine technology has become a continuously reliable and viable distributed generation system. The application of distributed energy power generation sources, such as micro gas turbines (MGT), to charge electric vehicles offers numerous technical, economical benefits, and opportunities. MGT are considered as they are smaller than conventional heavy-duty gas turbines. They also are capable of accepting and operating with different fossil fuels in the range of low–high pressure levels as well as co-generation opportunities. The MGT could provide the fast and reliable output power guaranteed and needed for grid stability. This paper provides a mathematical representation, modelling, and simulation of a low-cost fast charging station based on a micro gas turbine and a super capacitor forming altogether a power generation system suitable for use especially as energy source in fast charging stations and dynamic power systems. All the micro gas turbine’s parameters are estimated according to available performance and operational data. The proposed system generates up to 30 kW output power assuming that it operates with natural gas. The developed model of the system is simulated in the environment of MATLAB/Simulink. Each part of the micro turbine generation system is represented by a mathematical model. On the basis of the developed model of the system, the minimum value of the supercapacitor was determined, which ensures the charging schedule of a selected electric vehicle. Full article
Show Figures

Figure 1

22 pages, 1277 KB  
Article
Techno-Economic Optimization Study of Interconnected Heat and Power Multi-Microgrids with a Novel Nature-Inspired Evolutionary Method
by Paolo Fracas, Edwin Zondervan, Meik Franke, Kyle Camarda, Stanimir Valtchev and Svilen Valtchev
Electronics 2022, 11(19), 3147; https://doi.org/10.3390/electronics11193147 - 30 Sep 2022
Cited by 5 | Viewed by 2825
Abstract
The world is once again facing massive energy- and environmental challenges, caused by global warming. This time, the situation is complicated by the increase in energy demand after the pandemic years, and the dramatic lack of basic energy supply. The purely “green” energy [...] Read more.
The world is once again facing massive energy- and environmental challenges, caused by global warming. This time, the situation is complicated by the increase in energy demand after the pandemic years, and the dramatic lack of basic energy supply. The purely “green” energy is still not ready to substitute the fossil energy, but this year the fossil supplies are heavily questioned. Consequently, engineering must take flexible, adaptive, unexpected directions. For example, even the natural gas power plants are currently considered “green” by the European Union Taxonomy, joining the “green” hydrogen. Through a tight integration of highly intermittent renewable, or other distributed energy resources, the microgrid is the technology of choice to guarantee the expected impacts, making clean energy affordable. The focus of this work lies in the techno-economic optimization analysis of Combined Heat and Power (CHP) Multi-Micro Grids (MMG), a novel distribution system architecture comprising two interconnected hybrid microgrids. High computational resources are needed to investigate the CHP-MMG. To this aim, a novel nature-inspired two-layer optimization-simulation algorithm is discussed. The proposed algorithm is used to execute a techno-economic analysis and find the best settings while the energy balance is achieved at minimum operational costs and highest revenues. At a lower level, inside the algorithm, a Sequential Least Squares Programming (SLSQP) method ensures that the stochastic generation and consumption of energy deriving from CHP-MMG trial settings are balanced at each time-step. At the upper level, a novel multi-objective self-adaptive evolutionary algorithm is discussed. This upper level is searching for the best design, sizing, siting, and setting, which guarantees the highest internal rate of return (IRR) and the lowest Levelized Cost of Energy (LCOE). The Artificial Immune Evolutionary (AIE) algorithm imitates how the immune system fights harmful viruses that enter the body. The optimization method is used for sensitivity analysis of hydrogen costs in off-grid and on-grid highly perturbed contexts. It has been observed that the best CHP-MMG settings are those that promote a tight thermal and electrical energy balance between interconnected microgrids. The results demonstrate that such mechanism of energy swarm can keep the LCOE lower than 15 c€/kWh and IRR of over 55%. Full article
(This article belongs to the Special Issue Smart Energy Control & Conversion Systems)
Show Figures

Figure 1

32 pages, 4299 KB  
Review
Small-Scale Combined Heat and Power Systems: The Prospects for a Distributed Micro-Generator in the ‘Net-Zero’ Transition within the UK
by Geoffrey P. Hammond and Adam A. Titley
Energies 2022, 15(16), 6049; https://doi.org/10.3390/en15166049 - 20 Aug 2022
Cited by 15 | Viewed by 5044
Abstract
Small-scale combined heat and power (micro-CHP or mCHP) plants generate heat in the process of localised electricity production that can usefully be captured and employed for domestic space and water heating. Studies of the relative merits of three alternative network-connected mCHP plants are [...] Read more.
Small-scale combined heat and power (micro-CHP or mCHP) plants generate heat in the process of localised electricity production that can usefully be captured and employed for domestic space and water heating. Studies of the relative merits of three alternative network-connected mCHP plants are reviewed based respectively on an Internal Combustion engine (ICE), a Stirling engine (SE), and a Fuel Cell (FC). Each plant will, in most cases, result in lower carbon dioxide (CO2) emissions, relative to those from the most efficient condensing boilers. In addition, they lead to operational cost savings for the consumer, depending on house type. However, their capital costs are presently more expensive than a conventional boiler, with the FC being prohibitively so. The ICE and SE variants display the greatest economic and environmental benefit. Nevertheless, the performance and costs associated with these innovative technologies have rapidly improved over the last decade or so. Comparisons are also made with heat pumps that are seen as a major low-carbon competitor by the United Kingdom (UK) Government. Finally, the potential role of micro-CHP as part of a cluster of different micro-generators attached to contrasting dwellings is considered. The review places mCHP systems in the context of the UK transition pathway to net-zero CO2 emissions by 2050, whilst meeting residential energy demand. However, the lessons learned are applicable to many industrialised countries. Full article
Show Figures

Graphical abstract

17 pages, 10098 KB  
Article
Thermoelectric Energy Micro Harvesters with Temperature Sensors Manufactured Utilizing the CMOS-MEMS Technique
by Yi-Xuan Shen, Yao-Chuan Tsai, Chi-Yuan Lee, Chyan-Chyi Wu and Ching-Liang Dai
Micromachines 2022, 13(8), 1258; https://doi.org/10.3390/mi13081258 - 5 Aug 2022
Cited by 12 | Viewed by 2618
Abstract
This study develops a TEMH (thermoelectric energy micro harvester) chip utilizing a commercial 0.18 μm CMOS (complementary metal oxide semiconductor) process. The chip contains a TEMH and temperature sensors. The TEMH is established using a series of 54 thermocouples. The use of the [...] Read more.
This study develops a TEMH (thermoelectric energy micro harvester) chip utilizing a commercial 0.18 μm CMOS (complementary metal oxide semiconductor) process. The chip contains a TEMH and temperature sensors. The TEMH is established using a series of 54 thermocouples. The use of the temperature sensors monitors the temperature of the thermocouples. One temperature sensor is set near the cold part of the thermocouples, and the other is set near the hot part of the thermocouples. The performance of the TEMH relies on the TD (temperature difference) at the CHP (cold and hot parts) of the thermocouples. The more the TD at the CHP of the thermocouples increases, the higher the output voltage and output power of the TEMH become. To obtain a higher TD, the cold part of the thermocouples is designed as a suspended structure and is combined with cooling sheets to increase heat dissipation. The cooling sheet is constructed of a stack of aluminum layers and is mounted above the cold part of the thermocouple. A finite element method software, ANSYS, is utilized to compute the temperature distribution of the TEMH. The TEMH requires a post-process to obtain the suspended thermocouple structure. The post-process utilizes an RIE (reactive ion etch) to etch the two sacrificial materials, which are silicon dioxide and silicon substrate. The results reveal that the structure of the thermocouples is completely suspended and does not show any injury. The measured results reveal that the output voltage of the TEMH is 32.5 mV when the TD between the CHP of the thermocouples is 4 K. The TEMH has a voltage factor of 8.93 mV/mm2K. When the TD between the CHP of the thermocouples is 4 K, the maximum output power of the TEMH is 4.67 nW. The TEMH has a power factor of 0.31 nW/mm2K2. Full article
(This article belongs to the Special Issue CMOS-MEMS Fabrication Technologies and Devices)
Show Figures

Figure 1

Back to TopTop