Modeling and Simulation of a Low-Cost Fast Charging Station Based on a Micro Gas Turbine and a Supercapacitor
Abstract
:1. Introduction and Motivation
2. System Overview and Modelling of a Micro Gas Turbine Generation System with PMSM
2.1. System Overview of the Power Generation Based on a Micro Gas Turbine with a High-Speed Generator
2.2. Modelling of the PMSM (Permanent Magnet Synchronous Machine, High-Speed Generator)
3. Model of the Entire System
4. Simulation Results and Finding the Optimal Value of Supercapacitor SC
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Parameter | Description | Value |
---|---|---|
W | Speed Controller | 25, p.u. |
X | Lead Constant | 0.1, s |
Y | Lag Constant | 0.05, s |
Z | Mode = 1 (1 = droop, 0 = isochronous) | 1 |
MAX | Fuel Demand Signal Upper Limit | 1.5, p.u. |
MIN | Fuel Demand Signal Lower Limit | −0.1, p.u. |
a | Valve Positioner | 1, s |
b | Valve Positioner | 0.05, s |
c | Valve Positioner | 1, s |
Wmin | No Load Fuel Consumption | 0.23 |
TF | Fuel System Time Constant | 04, s |
KF | Fuel System External Feedback Loop Gain | 0 |
ECR | Delay of Combustion System | 0.01, s |
ETD | Transport Delay of Turbine and Exhaust System | 0.02, s |
TCD | Compressor Discharge Lag Time Constant | 0.2, s |
TR | Rated Exhaust Temperature | 950, degree F |
TT | Temperature Controller Integration Constant | 527, degree F |
References
- Ke, S. Research and application of micro gas turbine system in distributed generation. Mech. Electr. Eng. 2005, 22, 55–59. [Google Scholar]
- Cohen, H.; Rogers, G.F.C.; Saravanamuttoo, H.I.H. Gas Turbine Theory, 4th ed.; Longman: London, UK, 1996. [Google Scholar]
- Harman, R.T.C. Gas Turbine Engineering, 1st ed.; Macmillan Press Ltd.: London, UK, 1981. [Google Scholar]
- Cirigliano, D.; Grimm, F.; Kutne, P.; Aigner, M. Economic analysis and optimal control strategy of micro gas-turbine with batteries and water tank: German case study. Appl. Sci. 2022, 12, 6069. [Google Scholar] [CrossRef]
- Ahout, W.; Hamilton, L. A Different Approach to Micro CHP, Final Report; Europe Commission H2020 Framework Programme. 2019. European Union CORDIS Website. Available online: https://cordis.europa.eu/project/id/701006/results/de (accessed on 11 May 2022).
- Kanchev, H.; Hinov, N.; Vacheva, G. Mathematical modelling of a charging station with supercapacitor energy storage. AIP Conf. Proc. 2018, 2048, 060027. [Google Scholar]
- Liu, Y.; Nikolaidis, T.; Madani, S.H.; Sarkandi, M.; Gamil, A.; Sainal, M.F.; Hosseini, S.V. Multi-fidelity combustor design and experimental test for a micro gas turbine system. Energies 2022, 15, 2342. [Google Scholar] [CrossRef]
- Bazooyar, B.; Darabkhani, H.G. Design procedure and performance analysis of a microturbine combustor working on biogas for power generation. In Turbo Expo: Power for Land, Sea, and Air; American Society of Mechanical Engineers: New York, NY, USA, 2019; Volume 58622, p. V04BT04A008. [Google Scholar]
- Tostado-Véliz, M.; Kamel, S.; Hasanien, H.M.; Arévalo, P.; Turky, R.A.; Jurado, F. A stochastic-interval model for optimal scheduling of PV-assisted multi-mode charging stations. Energy 2022, 253, 124219. [Google Scholar] [CrossRef]
- Li, T.; Zhang, J.; Zhang, Y.; Jiang, L.; Li, B.; Yan, D.; Ma, C. An optimal design and analysis of a hybrid power charging station for electric vehicles considering uncertainties. In Proceedings of the 44th Annual Conference of the IEEE Industrial Electronics Society, Washington, DC, USA, 21–23 October 2018; pp. 5147–5152. [Google Scholar] [CrossRef]
- Bhadra, S.; Mukhopadhyay, P.; Bhattacharya, S.; Debnath, S.; Jhampati, S.; Chandra, A. Design and development of solar power hybrid electric vehicles charging station. In Proceedings of the 2020 IEEE 1st International Conference for Convergence in Engineering (ICCE), Kolkata, India, 5–6 September 2020; pp. 285–289. [Google Scholar] [CrossRef]
- Mishra, S.; Sahu, L.K.; Tiwari, A.K.; Chander, A.H. Modelling of electric vehicle direct current fast charging station. In Proceedings of the 2021 Asian Conference on Innovation in Technology (ASIANCON), Pune, India, 27–29 August 2021; pp. 1–5. [Google Scholar] [CrossRef]
- Suriya Raj, S.J.S.; Sivaraman, P. Design and control of grid connected PV system for EV charging station using multiport converter. In Proceedings of the 2021 Smart Technologies, Communication and Robotics (STCR), Sathyamangalam, India, 9–10 October 2021; pp. 1–5. [Google Scholar] [CrossRef]
- Yuan, N.; Yu, Z.; Zhang, Y.; Chang, H.; Kang, H. Review of electric vehicle ultra-fast dc charging station. In Proceedings of the 2022 7th Asia Conference on Power and Electrical Engineering (ACPEE), Hangzhou, China, 15–17 April 2022; pp. 1–9. [Google Scholar] [CrossRef]
- Ji, F.; Zhang, X.; Du, F.; Ding, S.; Zhao, Y.; Xu, Z.; Wang, Y.; Zhou, Y. Experimental and numerical investigation on micro gas turbine as a range extender for electric vehicle. Appl. Therm. Eng. 2020, 173, 115236. [Google Scholar] [CrossRef]
- Capstone Turbine Corporation. Capstone C30 Microturbine. 2002. Capstone Turbine Corporation Website. Available online: http://www.casvi.net/resources/CAPSTONE%20C30%20MICROTURBINE.PDF (accessed on 29 May 2002).
- Yinger, R.J. Behavior of Capstone and Honeywell Microturbine Generators During Load Changes; LBNL-49095; Lawrence Berkeley National Laboratory: Berkeley, CA, USA, 2001. [Google Scholar]
- Liu, C.R.; Shih, H.Y. The design and model simulation of a micro gas turbine combustor supplied with methane/syngas fuels. In Turbo Expo: Power for Land, Sea, and Air; American Society of Mechanical Engineers: New York, NY, USA, 2016; Volume 49750, p. V04AT04A028. [Google Scholar]
- Zhu, M.-Y.; Wang, R.; Xu, F.-C.; Du, X. Modeling and control parameter optimization of fuel pressurization system of micro gas turbine. In Proceedings of the 2019 Chinese Control Conference (CCC), Guangzhou, China, 27–30 July 2019; pp. 1713–1718. [Google Scholar] [CrossRef]
- Zhu, M.; Wu, X.; Li, Y.; Shen, J.; Zhang, J. Modeling and model predictive control of micro gas turbine-based combined cooling, heating and power system. In Proceedings of the 2016 Chinese Control and Decision Conference (CCDC), Yinchuan, China, 28–30 May 2016; pp. 65–70. [Google Scholar] [CrossRef]
- Rowen, W.I. Simplified mathematical representation of heavy duty gas turbines. J. Eng. Power 1983, 105, 865–870. [Google Scholar] [CrossRef]
- Li, J.J. Modeling and simulation of micro gas turbine generation system for grid connected operation. In Proceedings of the 2010 Asia-Pacific Power and Energy Engineering Conference, Chengdu, China, 28–31 March 2010; pp. 1–4. [Google Scholar] [CrossRef]
- Al-Hinai, A.; Feliachi, A. Dynamic model of a microturbine used as a distributed generator. In Proceedings of the Thirty-Fourth Southeastern Symposium on System Theory (Cat. No.02EX540), Huntsville, AL, USA, 19 March 2002; pp. 209–213. [Google Scholar] [CrossRef]
- Wei, H.; Jianhua, Z.; Ziping, W.; Ming, N. Dynamic modelling and simulation of a Micro turbine generation system in the microgrid. In Proceedings of the 2008 IEEE, International Conference on Sustainable Energy Technologies, Singapore, 24–27 November 2008. [Google Scholar]
- Gaonkar, D.N.; Patel, R.N. Modelling and simulation of microturbine based distributed generation system. In Proceedings of the 2006 IEEE Power India Conference, New Delhi, India, 10–12 April 2006; pp. 922–929. [Google Scholar]
- Emadi, A.; Young, Y.J.; Rajashekara, K. Power electronics and motor drives in electric, hybrid electric, and plug-in hybrid electric vehicles. IEEE Trans. Ind. Elect. 2008, 55, 2237–2245. [Google Scholar] [CrossRef]
- Shen, Q.; Zhou, Z.; Li, S.; Liao, X.; Wang, T.; He, X.; Zhang, J. Design and analysis of the high-speed permanent magnet motors: A review on the state of the art. Machines 2022, 10, 549. [Google Scholar] [CrossRef]
- Pfister, P.D.; Perriard, Y. Very-high-speed slotless permanent-magnet motors: Analytical modeling, optimization, design, and torque measurement methods. IEEE Trans. Ind. Electron. 2010, 57, 296–303. [Google Scholar] [CrossRef]
- Krause, P.C.; Wasynczuk, O.; Sudhoff, S.D. Analysis of Electric Machinery and Drive Systems, 2nd ed.; Wiley-IEEE Press: Piscataway, NJ, USA, 2002. [Google Scholar]
- Reatti, A.; Corti, F.; Tesi, A.; Torlai, A.; Kazimierczuk, M.K. Effect of Parasitic Components on Dynamic Performance of Power Stages of DC-DC PWM buck and boost converters in CCM. In Proceedings of the 2019 IEEE International Symposium on Circuits and Systems (ISCAS), Sapporo, Japan, 26–29 May 2019; pp. 1–5. [Google Scholar] [CrossRef]
- Sun, J.M.; Gamage, N.; Nakaoka, M.; Takano, H.; Hatakeyama, T. Comparative transient and steady-state performances of three resonant PWM inverter-controlled DC-DC converters using high-voltage transformer and cable parasitic circuit components. In Proceedings of the Power Conversion Conference—PCC ’97, Nagaoka, Japan, 6 August 1997; pp. 821–826. [Google Scholar] [CrossRef]
- Riehl, R.R.; Covolan Ulson, J.A.; Andreoli, A.L.; Alves, A.F. A simplified approach for identification of parasitic capacitances in three-phase induction motor driven by PWM inverter. In Proceedings of the 2014 17th International Conference on Electrical Machines and Systems (ICEMS), Hangzhou, China, 22–25 October 2014; pp. 2550–2554. [Google Scholar] [CrossRef]
- 2023 Nissan LEAF® Range, Charging & Battery. Available online: https://www.nissanusa.com/vehicles/electric-cars/leaf/features/range-charging-battery.html (accessed on 21 September 2022).
- New 48V Module (C0B); MSDS No. 3001491-EN.6; Maxwell Technologies: San Diego, CA, USA, 2022; Available online: https://maxwell.com/wp-content/uploads/2022/02/3001491-EN.7_48V-165F-C0B-Datasheet_20220216.pdf (accessed on 16 February 2022).
- Rimal, B.P.; Kong, C.; Poudel, B.; Wang, Y.; Shahi, P. Smart electric vehicle charging in the era of internet of vehicles, emerging trends, and open issues. Energies 2022, 15, 1908. [Google Scholar] [CrossRef]
- Aslanidou, I.; Rahman, M.; Zaccaria, V.; Kyprianidis, K.G. Micro gas turbines in the future smart energy system: Fleet monitoring, diagnostics, and system level requirements. Front. Mech. Eng. 2021, 7, 676853. [Google Scholar] [CrossRef]
- Bracco, S.; Delfino, F. A mathematical model for the dynamic simulation of low size cogeneration gas turbines within smart microgrids. Energy 2017, 119, 710–723. [Google Scholar] [CrossRef]
- Hayes, J.G.; Goodarzi, G.A. Electric Powertrain: Energy Systems, Power Electronics and Drives for Hybrid, Electric and Fuel Cell Vehicles. Wiley: Hoboken, NJ, USA, 2018. [Google Scholar]
- Liserre, M.; Sauter, T.; Hung, J.Y. Future energy systems: Integrating renewable energy sources into the smart power grid through industrial electronics. IEEE Ind. Electron. Mag. 2010, 4, 18–37. [Google Scholar] [CrossRef]
- Zhou, Y.; Stenzel, J. Simulation of a microturbine generation system for grid connected and islanding operations. In Proceedings of the 2009 Asia-Pacific Power and Energy Engineering Conference, Wuhan, China, 27–31 March 2009. [Google Scholar]
- Lukic, S.M.; Cao, J.; Bansal, R.C.; Rodriguez, F.; Emadi, A. Energy storage systems for automotive applications. IEEE Trans. Ind. Electron. 2008, 55, 2258–2267. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gilev, B.; Andreev, M.; Hinov, N.; Angelov, G. Modeling and Simulation of a Low-Cost Fast Charging Station Based on a Micro Gas Turbine and a Supercapacitor. Energies 2022, 15, 8020. https://doi.org/10.3390/en15218020
Gilev B, Andreev M, Hinov N, Angelov G. Modeling and Simulation of a Low-Cost Fast Charging Station Based on a Micro Gas Turbine and a Supercapacitor. Energies. 2022; 15(21):8020. https://doi.org/10.3390/en15218020
Chicago/Turabian StyleGilev, Bogdan, Miroslav Andreev, Nikolay Hinov, and George Angelov. 2022. "Modeling and Simulation of a Low-Cost Fast Charging Station Based on a Micro Gas Turbine and a Supercapacitor" Energies 15, no. 21: 8020. https://doi.org/10.3390/en15218020
APA StyleGilev, B., Andreev, M., Hinov, N., & Angelov, G. (2022). Modeling and Simulation of a Low-Cost Fast Charging Station Based on a Micro Gas Turbine and a Supercapacitor. Energies, 15(21), 8020. https://doi.org/10.3390/en15218020