- Article
Hybrid AI–Taguchi–ANOVA Approach for Thermographic Monitoring of Electronic Devices
- Filippo Laganà,
- Danilo Pratticò and
- Marco F. Quattrone
- + 2 authors
Defects in printed circuit boards (PCBs), if not detected promptly, may persist over time until they cause the failure of critical components. Traditional monitoring methods, which are limited to simulations or superficial measurements, obstruct predictive maintenance and real-time fault detection. To address these issues and enhance real-time diagnostics of thermal anomalies in PCBs, this work proposes an integrated system that combines infrared thermography (IRT), artificial intelligence (AI) algorithms, and Taguchi–ANOVA statistical techniques. IR thermography was employed to identify thermal stresses in the devices during normal operation. The IR acquisitions were used to build a dataset for specialized AI model’s training, which combines thermal anomalies segmentation using U-Net with a Multilayer Perceptron (MLP) classifier for heat distribution patterns. The Taguchi method determines the optimal configuration of the selected parameters, while Analysis of Variance (ANOVA) evaluates the effect of each factor on the F1-score response. These techniques statistically validated the AI performance, confirming the optimal set of selected hyperparameters and quantifying their contribution to F1-score. The novelty of the study lies in the integration of real-time infrared thermography with an interpretable AI pipeline and a Taguchi–ANOVA statistical framework, which enables both optimisation and rigorous validation of AI performance under real-time operating conditions.
6 January 2026







