Skip Content
You are currently on the new version of our website. Access the old version .

Eng

Eng is an international, peer-reviewed, open access journal on all areas of engineering, published monthly online by MDPI.

Quartile Ranking JCR - Q2 (Engineering, Multidisciplinary)

All Articles (903)

To reduce mold costs in composite forming, multi-point tooling technology has been integrated into the hot diaphragm forming process. However, this approach still faces several challenges, including time-consuming prepreg layup, high energy consumption, and poor surface quality. This study proposes a heating pad-assisted multi-point thermoforming process: the prepreg is embedded in the thermal functional layers, placed on the lower mold, and formed via the downward movement of the upper mold to accomplish mold closure. Instead of the conventional rectangular array, this study adopted multi-point tooling with a hexagonal pin arrangement. Compared to traditional configurations, this hexagonal layout increases the punch support area by 9.8%, while its dense punch arrangement improves the accuracy of the molded curved surface. Taking a saddle-shaped surface as the target, a prototype part was fabricated. Subsequent analysis of the part’s surface quality identified three defects: dimples, fiber distortion, and ridge protrusions. The surface dimples were eliminated by adjusting the distance between the upper and lower molds. Notably, ridge protrusion is a defect unique to the hexagonal pin arrangement. We conducted a detailed analysis of its causes and solutions, finding that this defect arises from the combined effect of the pin arrangement and the saddle-shaped surface. Through a series of height compensation experiments, the maximum deviation at the ridges was reduced from 0.46 mm to approximately 0.35 mm, which is consistent with the deviation of defect-free areas. This work demonstrates that the multi-point hot-pressing process provides a potential, efficient, and low-cost method for manufacturing double-curvature composite components, whose effectiveness has been verified through the saddle-shaped case study.

3 February 2026

(a) DSC curves at different heating rates; (b) Relationship between temperature (T) and heating rate (β); (c) TGA curves at different heating rates.

Instability in dump slopes frequently induces landslides, a process governed by complex factors. To investigate the impact of gradation composition on dump slope stability, four distinct gradations were designed, and large-scale laboratory triaxial tests were conducted to characterize their strength and deformation behaviors under varying confining pressures. Concurrently, numerical models of dump slopes with these four gradations were established using Particle Flow Code (PFC) to simulate rainfall infiltration processes. Through a comparative analysis of particle contact force chains, pore water pressure evolution, particle displacement under varying rainfall durations, and safety factors under natural and rainfall conditions, the mechanisms governing the influence of gradation composition on slope stability were elucidated from both macroscopic and microscopic perspectives. Results indicate the following: (1) Gradation composition significantly affects the strength and deformation characteristics of dump materials. Sample group 3 (with a fine-to-coarse particle ratio of 4:6) exhibited the highest strength among the four test samples, with peak deviatoric stresses of 610 kPa, 1075 kPa, and 1539 kPa under confining pressures of 200 kPa, 400 kPa, and 600 kPa, respectively. Its corresponding shear strength parameters were a cohesion of 38.45 kPa and an internal friction angle of 32.55°. In contrast, sample group 4 (fine-to-coarse ratio of 6:4) showed the lowest strength, with peak deviatoric stresses of 489 kPa, 840 kPa, and 1290 kPa under the same confining pressures, and shear strength parameters of c = 25.35 kPa and φ = 30.02°. (2) Gradation modulates contact forces and failure modes via a “skeleton-filling” mechanism. (3) Gradation plays a critical role in controlling pore water pressure evolution and the seepage characteristics of the dump slope model. Among the four designed gradations and their corresponding numerical models, Model 3 was characterized by the highest contact forces and the lowest pore water pressure. It exhibited the highest stability under both natural and rainfall conditions, with safety factors of 1.70 and 1.22, respectively. Conversely, Model 4 showed weak particle contact forces and high pore pressure, demonstrating the poorest stability. It yielded safety factors of only 1.25 and 1.02 under natural and rainfall-saturated conditions, indicating that it represents the least favorable gradation composition. These findings provide valuable references for the optimization of dumping processes and stability control in similar engineering projects.

2 February 2026

Current situation diagram of the dump slope.

Animal Skin Attenuation in the Millimeter Wave Spectrum

  • Yarden Shay,
  • Alex Shteinman and
  • Stella Liberman-Aronov
  • + 3 authors

We quantify the transmission and absorption of 75–110 GHz radiation through ex vivo porcine skin. Millimeter waves are currently used in a range of technologies, including communication systems, fog-penetrating radar, and the detection of hidden weapons or drugs. They have also been proposed for use in non-lethal weaponry and, more recently, in targeted cancer therapies. Since pigs are often used as biological models for humans, determining how deeply millimeter waves penetrate a pig’s skin and influence the underlying tissues is essential for understanding their potential effects on humans. This experimental study aims to quantify that penetration and associated energy loss. The results show significant absorption in the skin and fat layer. Attenuation of over three orders of magnitude can be expected in penetration through a layer with a thickness of about 12 mm (−30 dB). The reflectance from the skin is similar at all frequencies. The values range from −10 to −20 dB, which probably depends on the texture of the skin. Therefore, most skin transfer loss is caused by absorption.

1 February 2026

The experimental setup.

This paper investigates bipartite synchronization in signed Lur’e networks influenced by semi-Markovian jump dynamics. A control strategy is proposed that adapts to mode-dependent switching by combining quantized feedback with selective pinning. The approach accommodates both leaderless and leader–following synchronization scenarios. For each switching mode, Lyapunov–Krasovskii-based analysis is employed to establish sufficient conditions using linear matrix inequalities (LMIs). The robustness and convergence of the method are confirmed through simulation studies, even in the presence of stochastic switching and limited communication precision.

1 February 2026

Signed network topology showing positive and negative edges, with the pinned node highlighted (blue).

News & Conferences

Issues

Open for Submission

Editor's Choice

Reprints of Collections

Feature Papers in Eng 2024
Reprint

Feature Papers in Eng 2024

Volume II
Editors: Antonio Gil Bravo
Feature Papers in Eng 2024
Reprint

Feature Papers in Eng 2024

Volume I
Editors: Antonio Gil Bravo

Get Alerted

Add your email address to receive forthcoming issues of this journal.

XFacebookLinkedIn
Eng - ISSN 2673-4117