- Article
Maritime-Oriented Analysis of Heat Transfer Enhancement in Jeffrey Nanofluid Flow over a Stretching Sheet Embedded in a Porous Medium
- Nourhan I. Ghoneim,
- A. M. Amer and
- Ahmed M. Megahed
- + 1 author
This study numerically investigates the hydrothermal behaviour of a Jeffrey nanofluid with relevance to maritime thermal systems. The coupled nonlinear governing equations for momentum, heat, and mass transport are solved using a shooting technique that accounts for magnetohydrodynamic effects, Darcy porous-media resistance, viscous dissipation, and spatially varying internal heat generation. Variable thermophysical properties, including temperature-dependent viscosity and density, are also considered. The results reveal that porous resistance, fluid elasticity, and thermophysical variations significantly influence velocity, temperature, and concentration fields. The combined effects of porous drag and variable properties markedly alter the characteristics of heat and mass transfer. These findings provide insights into thermal and mass-transport performance, including skin friction, heat transfer, and concentration distributions, which are critical metrics for porous heat exchangers and nanofluid-based maritime coatings. Here, maritime relevance is represented via a generalised porous nanofluid model rather than a specific material. Among the key findings, increasing the slip velocity factor can reduce the surface skin-friction coefficient by approximately 48.7%, while the heat-transfer rate increases by nearly 27.1%, accompanied by a decrease of about 18.9% in the Sherwood number. Conversely, raising the density factor enhances the skin friction coefficient by roughly 103.8% and also augments the heat and mass transfer rates by about 61.3% and 106.1%, respectively. Likewise, at zero relaxation–retardation ratio, the flow reduces to the Newtonian case. Increasing this factor reduces the local Nusselt number by about 1.45%, indicating a slight weakening of heat transfer due to elastic effects. Furthermore, the reliability of the current numerical framework is established through a dual-validation approach, including an analytical assessment of limiting cases and a rigorous comparison with established data from the literature.
19 February 2026







