Hybrid Energy Scheduling in a Renewable Micro Grid
Abstract
:1. Introduction
1.1. Background
1.2. Literature Review
2. Hybrid-Energy Micro Gird Modeling
2.1. Thermal System Modeling
2.2. Renewable Generation Modeling
2.3. Storage Battery Modeling
2.4. EV Modeling
2.5. Load Demand Response Modeling
3. Optimal Scheduling Modeling
3.1. Objective Functions
3.2. Constraints
4. Hybrid Energy Optimization Scheduling Based on MTPSO
4.1. Multi-Organization Particle Swarm Optimization Algorithm
4.2. Hybrid Energy Optimization Scheduling Based on MTPSO
5. Case Study
Type | Pmin/kW | Pmax/kW | Rdown/(kW·min−1) | Rup/(kW·min−1) |
---|---|---|---|---|
MT | 5 | 65 | 5 | 10 |
GB | 0 | 300 | 3 | 8 |
WT | 0 | 150 | - | - |
PV | 0 | 100 | - | - |
5.1. First Scenario (Mode1: Electric and Thermal Power Supplied Separately)
Pwt | Ppv | Pgt1 | Pgs2 | Pst | Pev | Pgd | PriceIn | PriceOut | Pload | |
---|---|---|---|---|---|---|---|---|---|---|
1 | 71.4 | 0 | 62.8 | 62.8 | −20 | −15 | 0 | 0.4 | 0.36 | 130.3 |
2 | 71.5 | 0 | 56.8 | 56.8 | −20 | −15 | 0 | 0.4 | 0.36 | 100 |
3 | 66.8 | 0 | 52.6 | 52.6 | −20 | −15 | 0 | 0.4 | 0.36 | 90.2 |
4 | 68.1 | 0 | 40.5 | 40.5 | −20 | −15 | 0 | 0.4 | 0.36 | 86.4 |
5 | 67.9 | 0 | 47.5 | 47.5 | −20 | −15 | 0 | 0.4 | 0.36 | 96.9 |
6 | 82.1 | 0 | 41.4 | 41.4 | −20 | −15 | 0 | 0.4 | 0.36 | 98.4 |
7 | 62.1 | 3.2 | 51.4 | 51.4 | −20 | −15 | 0 | 0.4 | 0.36 | 100.8 |
8 | 62.3 | 3.8 | 53.4 | 53.4 | −20 | −15 | 0 | 0.8 | 0.72 | 116.6 |
9 | 71.9 | 18.9 | 48.7 | 48.7 | −20 | −15 | 0 | 0.8 | 0.72 | 145.5 |
10 | 70 | 67.2 | 15.8 | 15.8 | 0 | 0 | 0 | 1.2 | 1.08 | 172.7 |
11 | 69.5 | 95 | 10.0 | 10.0 | 0 | 0 | 0 | 1.2 | 1.08 | 198.8 |
12 | 60.8 | 96.9 | 10.0 | 10.0 | 0 | 0 | 0 | 1.2 | 1.08 | 203.9 |
13 | 71.5 | 96.7 | 10.0 | 10.0 | 0 | 0 | 0 | 1.2 | 1.08 | 204.7 |
14 | 70.1 | 95.8 | 10.1 | 10.1 | 0 | 0 | 0 | 1.2 | 1.08 | 216.1 |
15 | 87.7 | 89.5 | 10.3 | 10.3 | 0 | 0 | 0 | 1.2 | 1.08 | 218.7 |
16 | 94.9 | 64.9 | 20.1 | 20.1 | 0 | 0 | 0 | 1.2 | 1.08 | 222.1 |
17 | 71.1 | 49.7 | 45.2 | 45.2 | 0 | 0 | 0 | 1.2 | 1.08 | 232.2 |
18 | 76.4 | 34.4 | 45.7 | 45.7 | 20 | 6 | 0 | 1.2 | 1.08 | 243.3 |
19 | 82.3 | 3.7 | 50.6 | 50.6 | 40 | 12 | 0 | 1.4 | 1.26 | 255.8 |
20 | 80.4 | 0 | 56.5 | 56.5 | 40 | 12 | 0 | 1.4 | 1.26 | 265.6 |
21 | 86.4 | 0 | 46.2 | 46.2 | 40 | 12 | 0 | 1.4 | 1.26 | 248.9 |
22 | 78.2 | 0 | 41.1 | 41.1 | 40 | 12 | 0 | 1.2 | 1.08 | 221.2 |
23 | 91.2 | 0 | 49.6 | 49.6 | 0 | 0 | 0 | 0.8 | 0.72 | 200.9 |
24 | 72.2 | 0 | 50.2 | 50.2 | 0 | 0 | 0 | 0.8 | 0.72 | 170.5 |
5.2. Second Scenario (Mode 2: Hybrid Energy Supply, without Storage, EVs and DSM)
5.3. Third Scenario (Mode3: Hybrid Energy Supply, Storage Batteries Included, without EVs and Demand Response)
5.4. Fourth Scenario (Mode4: Hybrid Energy Supply, Storage Batteries and EVs Included, the Demand Response Not Considered)
5.5. Fifth Scenario (Mode5: Hybrid Energy Supply, All of the Factors Considered)
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Ding, J.X.; Somani, A. A Long-Term Investment Planning Model for Mixed Energy Infrastructure Integrated with Renewable Energy. In Proceedings of the Green Technologies Conference, Grapevine, TX, USA, 15–16 April 2010; pp. 1–10.
- Jin, C.R.; Sheng, X.; Ghosh, P. Energy efficient algorithms for Electric Vehicle charging with intermittent renewable energy sources. In Proceedings of the Power and Energy Society General Meeting (PES), Vancouver, BC, USA, 21–25 July 2013; pp. 1–5.
- Motevasel, M.; Seifi, A.R.; Niknam, T. Multi-objective energy management of CHP (combined heat and power)-based micro-grid. Energy 2013, 51, 123–136. [Google Scholar] [CrossRef]
- Moghaddam, A.A.; Seifi, A.; Niknam, T.; Pahlavani, M.R.A. Multi-Objective Operation Management of A Renewable Mg (Micro-Grid) with Back-up Micro-Turbine/Fuel Cell/Battery Hybrid Power Source. Energy 2011, 36, 6490–6507. [Google Scholar] [CrossRef]
- McLarty, D.; Sabate, C.C.; Brouwer, J.; Jabbari, F. Micro-grid energy dispatch optimization and predictive control algorithms; A UC Irvine case study. Int. J. Electr. Power Energy Syst. 2015, 65, 179–190. [Google Scholar] [CrossRef]
- Marnay, C.; Venkataramanan, G.; Stadler, M.; Siddiqui, A.; Firestone, R.; Chandran, B. Optimal Technology Selection and Operation of Microgrids in Commercial Buildings. In Proceedings of IEEE Power Engineering Society General Meeting, Tampa, FL, USA, 24–28 June 2007; pp. 1–7.
- Ye, Q.; Ma, T.; Gu, Y.; Wang, T.; Wang, D.; Bai, Y. Research on Dispatch Scheduling Model of Micro-grid with Distributed Energy. In Proceedings of the International Conference on Electricity Distribution, Shanghai, China, 10–14 September 2012; pp. 1–5.
- Tran, D.; Khambadkone, A.M. Energy Management for Lifetime Extension of Energy Storage System in Micro-Grid Applications. IEEE Trans. Smart Grid 2013, 4, 1289–1296. [Google Scholar] [CrossRef]
- Mohsenian-Rad, H.; Ghamkhari, M. Optimal Charging of Electric Vehicles with Uncertain Departure Times: A Closed-Form Solution. IEEE Trans. Smart Grid 2015, 6, 940–942. [Google Scholar] [CrossRef]
- Habib, S.; Kamran, M.; Rashid, U. Impact Analysis of Vehicle-to-grid Technology and Charging Strategies of Electric Vehicles on Distribution Networks—A Review. J. Power Sources 2015, 277, 205–214. [Google Scholar] [CrossRef]
- Su, H.Y.; Li, R.Q. Cost-benefit analysis model of DSM under smart grid infrastructure. Power Syst. Prot. Control 2012, 40, 69–73. [Google Scholar]
- Liu, W.F.; Gao, W.; Jia, J.G.; Shen, Y. Study of Rules,Standards and Incentive Mechanisms in Implement of Power Demand Side Management in China. Power Syst. Technol. 2006, s2, 636–641. [Google Scholar]
- Hayes, B.; Hernando-Gil, I.; Collin, A.; Harrison, G.; Djokić, S. Optimal Power Flow for Maximizing Network Benefits From Demand-Side Management. IEEE Trans. Power Syst. 2014, 29, 1739–1747. [Google Scholar] [CrossRef]
- Wang, X.; Palazoglu, A.; El-Farra, N.H. Operational Optimization and Demand Response of Hybrid Renewable Energy Systems. Appl. Energy 2015, 143, 324–335. [Google Scholar] [CrossRef]
- Liu, J.J.; Wang, Z.J.; Yuan, J.H. Optimized Dispatch of Wind/PV/Battery Microgrid Based on PSO Algorithm. East Chin. Electr. Power 2014, 42, 1534–1539. [Google Scholar]
- Zhou, Y.Z.; Wu, H.; Li, Y.N.; Xin, H.; Song, Y. Dynamic Dispatch of Multi-microgrid for Neighboring Islands Based on MCS-PSO Algorithm. Autom. Electr. Power Syst. 2014, 9, 204–210. [Google Scholar]
- Chen, J.; Yang, X.; Zhu, L.; Zhang, M.; Li, Z. Microgrid Multi-objective Economic Dispatch Optimization. Proc. CSEE 2013, 33, 57–66. [Google Scholar]
- Zhu, L.; Yang, X.; Fu, Y. Optimal Plan and Design for Microgridincluding Micro Turbine. East Chin. Electr. Power 2011, 39, 2037–2040. [Google Scholar]
- Yang, Y.H.; Pei, W.; Qi, Z.P. Planning Method for Hybrid Energy Microgrid Based on Dynamic Operation Strategy. Autom. Electr. Power Syst. 2012, 36, 30–36. [Google Scholar]
- Mao, M.Q.; Sun, S.; Su, J.H. Economic Analysis of a Microgrid with Wind/Photovoltaic/Storages and Electric Vehicles. Autom. Electr. Power Syst. 2011, 35, 30–35. [Google Scholar]
- Chen, J.; Wang, C.S.; Zhao, B.; Zhang, X.S. Economic Operation Optimization of a Stand-alone Microgrid System Considering Characteristics of Energy Storage System. Autom. Electr. Power Syst. 2012, 6, 25–31. [Google Scholar]
- Tang, J. Principle and Application of PSO Algorithm. Comput. Technol. Dev. 2010, 20, 213–216. [Google Scholar]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Z.; Chen, C.; Yuan, J. Hybrid Energy Scheduling in a Renewable Micro Grid. Appl. Sci. 2015, 5, 516-531. https://doi.org/10.3390/app5030516
Liu Z, Chen C, Yuan J. Hybrid Energy Scheduling in a Renewable Micro Grid. Applied Sciences. 2015; 5(3):516-531. https://doi.org/10.3390/app5030516
Chicago/Turabian StyleLiu, Zifa, Chiye Chen, and Jiahai Yuan. 2015. "Hybrid Energy Scheduling in a Renewable Micro Grid" Applied Sciences 5, no. 3: 516-531. https://doi.org/10.3390/app5030516
APA StyleLiu, Z., Chen, C., & Yuan, J. (2015). Hybrid Energy Scheduling in a Renewable Micro Grid. Applied Sciences, 5(3), 516-531. https://doi.org/10.3390/app5030516