Editor’s Choice Articles

Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal.

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
32 pages, 6341 KiB  
Review
Catalytic Oxidative Removal of Volatile Organic Compounds (VOCs) by Perovskite Catalysts: A Review
by Tong Xu, Chenlong Wang, Yanfei Lv, Bin Zhu and Xiaomin Zhang
Nanomaterials 2025, 15(9), 685; https://doi.org/10.3390/nano15090685 - 30 Apr 2025
Viewed by 317
Abstract
Volatile organic compound (VOC) emissions have become a critical environmental concern due to their contributions to photochemical smog formation, secondary organic aerosol generation, and adverse human health impacts in the context of accelerated industrialization and urbanization. Catalytic oxidation over perovskite-type catalysts is an [...] Read more.
Volatile organic compound (VOC) emissions have become a critical environmental concern due to their contributions to photochemical smog formation, secondary organic aerosol generation, and adverse human health impacts in the context of accelerated industrialization and urbanization. Catalytic oxidation over perovskite-type catalysts is an attractive technological approach for efficient VOC abatement. This review systematically evaluates the advancements in perovskite-based catalysts for VOC oxidation, focusing on their crystal structure–activity relationships, electronic properties, synthetic methodologies, and nanostructure engineering. Emphasis is placed on metal ion doping strategies and supported catalyst configurations, which have been demonstrated to optimize catalytic performance through synergistic effects. The applications of perovskite catalysts in diverse oxidation systems, including photocatalysis, thermal catalysis, electrocatalysis, and plasma-assisted catalysis, are comprehensively discussed with critical analysis of their respective advantages and limitations. It summarizes the existing challenges, such as catalyst deactivation caused by carbon deposition, sulfur/chlorine poisoning, and thermal sintering, as well as issues like low energy utilization efficiency and the generation of secondary pollutants. By consolidating current knowledge and highlighting future research directions, this review provides a solid foundation for the rational design of next-generation perovskite catalysts for sustainable VOC management. Full article
Show Figures

Graphical abstract

15 pages, 4032 KiB  
Article
The Effect of Microstructural Changes Produced by Heat Treatment on the Electromagnetic Interference Shielding Properties of Ti-Based MXenes
by Xue Han, Jae Jeong Lee, Ji Soo Kyoung and Yun Sung Woo
Nanomaterials 2025, 15(9), 676; https://doi.org/10.3390/nano15090676 - 29 Apr 2025
Viewed by 285
Abstract
Ti-based MXenes such as Ti3C2TX and Ti2CTX have attracted considerable attention because of their superior electromagnetic interference (EMI) shielding effectiveness compared to other EMI shielding materials, especially for high electromagnetic (EM) wave absorption. In this [...] Read more.
Ti-based MXenes such as Ti3C2TX and Ti2CTX have attracted considerable attention because of their superior electromagnetic interference (EMI) shielding effectiveness compared to other EMI shielding materials, especially for high electromagnetic (EM) wave absorption. In this study, we investigated the microstructural changes produced by heat treatment and their effect on the EMI shielding properties of Ti-based MXenes. Ti3C2TX and Ti2CTX films were prepared using vacuum filtration and annealed at temperatures up to 300 °C. The microstructures and chemical bonding properties of these heat-treated Ti3C2TX and Ti2CTX films were analyzed, and the EMI shielding effectiveness was measured in the X-band and THz frequency range. The porous Ti3C2TX film showed higher EM absorption than that calculated using the transfer matrix method. On the other hand, the Ti2CTX films had a more densely stacked structure and lower EM absorption. As the heat treatment temperature increased, Ti3C2TX developed a more porous structure without significant changes in its chemical bonding. Its EM absorption per unit of thickness increased up to 6 dB/μm, while the reflectance remained constant at less than 1 dB/μm after heat treatment. This suggested that the heat treatment of Ti-based MXenes can increase the porosity of the film by removing residual organics without changing the chemical bonds, thereby increasing electromagnetic shielding through absorption. Full article
(This article belongs to the Section 2D and Carbon Nanomaterials)
Show Figures

Graphical abstract

24 pages, 5526 KiB  
Review
Advancements in Ti3C2 MXene-Integrated Various Metal Hydrides for Hydrogen Energy Storage: A Review
by Adem Sreedhar and Jin-Seo Noh
Nanomaterials 2025, 15(9), 673; https://doi.org/10.3390/nano15090673 - 28 Apr 2025
Viewed by 348
Abstract
The current world is increasingly focusing on renewable energy sources with strong emphasis on the economically viable use of renewable energy to reduce carbon emissions and safeguard human health. Solid-state hydrogen (H2) storage materials offer a higher density compared to traditional [...] Read more.
The current world is increasingly focusing on renewable energy sources with strong emphasis on the economically viable use of renewable energy to reduce carbon emissions and safeguard human health. Solid-state hydrogen (H2) storage materials offer a higher density compared to traditional gaseous and liquid storage methods. In this context, this review evaluates recent advancements in binary, ternary, and complex metal hydrides integrated with 2D Ti3C2 MXene for enhancing H2 storage performance. This perspective highlights the progress made in H2 storage through the development of active sites, created by interactions between multilayers, few-layers, and internal edge sites of Ti3C2 MXene with metal hydrides. Specifically, the selective incorporation of Ti3C2 MXene content has significantly contributed to improvements in the H2 storage performance of various metal hydrides. Key benefits include low operating temperatures and enhanced H2 storage capacity observed in Ti3C2 MXene/metal hydride composites. The versatility of titanium multiple valence states (Ti0, Ti2+, Ti3+, and Ti4+) and Ti-C bonding in Ti3C2 plays a crucial role in optimizing the H2 absorption and desorption processes. Based on these promising developments, we emphasize the potential of solid-state Ti3C2 MXene interfaces with various metal hydrides for fuel cell applications. Overall, 2D Ti3C2 MXenes represent a significant advancement in realizing efficient H2 storage. Finally, we discuss the challenges and future directions for advancing 2D Ti3C2 MXenes toward commercial-scale H2 storage solutions. Full article
Show Figures

Graphical abstract

19 pages, 8907 KiB  
Article
Preparation of Polylactide/Halloysite-Nanoclay/Polytetrafluoro-Ethylene Composite Foam and Study of Properties and Morphology
by Silla George Raju, Hanieh Kargarzadeh and Andrzej Galeski
Nanomaterials 2025, 15(9), 667; https://doi.org/10.3390/nano15090667 - 27 Apr 2025
Viewed by 378
Abstract
Halloysite nanoclay (HNC) and as-polymerized polytetrafluoroethylene powder (PTFE) were introduced into biodegradable polylactic acid (PLA) via a melt mixing technique to enhance its mechanical, rheological properties and foaming ability. The synergetic effects of these fillers on the morphological, mechanical, thermal, and foaming properties [...] Read more.
Halloysite nanoclay (HNC) and as-polymerized polytetrafluoroethylene powder (PTFE) were introduced into biodegradable polylactic acid (PLA) via a melt mixing technique to enhance its mechanical, rheological properties and foaming ability. The synergetic effects of these fillers on the morphological, mechanical, thermal, and foaming properties of PLA were investigated. Results indicated that the tensile properties were improved in comparison to neat PLA. Differential Scanning Calorimetry (DSC) revealed a decrease in PLA crystallization time with increasing filler concentration, indicating a strong nucleating effect on PLA crystallization. Extensional flow tests showed that strain hardening in PLA composites is influenced by fillers, with PTFE particularly exhibiting a more pronounced effect, attributed to nanofibrillation and entanglement during melt processing. The addition of a dual-filler system improved the melt strength and viscosity of PLA, resulting in foams with decreased cell size and increased cell density. Full article
(This article belongs to the Section Nanocomposite Materials)
Show Figures

Graphical abstract

13 pages, 5903 KiB  
Article
Assembled Carbon Nanostructure Prepared by Spray Freeze Drying for Si-Based Anodes
by Wanxiong Zhu, Liewen Guo, Kairan Li, Mengxue Shen, Chang Lu, Zipeng Jiang, Huaihe Song and Ang Li
Nanomaterials 2025, 15(9), 661; https://doi.org/10.3390/nano15090661 - 26 Apr 2025
Viewed by 347
Abstract
Silicon-based materials provide a new pathway to break through the energy storage limits of battery systems but their industrialization process is still constrained by inherent diffusion hysteresis and unstable electrode structures. In this work, we propose a novel structural design strategy employing a [...] Read more.
Silicon-based materials provide a new pathway to break through the energy storage limits of battery systems but their industrialization process is still constrained by inherent diffusion hysteresis and unstable electrode structures. In this work, we propose a novel structural design strategy employing a modified spray freeze drying technique to construct multidimensional carbon nanostructures. The continuous morphological transition from carbon nanowires to carbon nanosheets was facilitated by the inducement of ultralow-temperature phase separation and the effect of polymer self-assembly. The unique wrinkled carbon nanosheet encapsulation effectively mitigated the stress concentration induced by the aggregation of silicon nanoparticles, while the open two-dimensional structure buffered the volume changes of silicon. As expected, the SSC-5M composite retained a reversible capacity of 1279 mAh g−1 after 100 cycles at 0.2 C (1 C = 1700 mAh g−1) and exhibited a capacity retention of 677.1 mAh g−1 after 400 cycles at 1 C, demonstrating excellent cycling stability. This study offers a new strategy for the development of silicon-based energy storage devices. Full article
(This article belongs to the Special Issue Nanoscale Carbon Materials for Advanced Energy-Related Applications)
Show Figures

Figure 1

24 pages, 7274 KiB  
Article
Segmental Mobility, Interfacial Polymer, Crystallization and Conductivity Study in Polylactides Filled with Hybrid Lignin-CNT Particles
by Panagiotis A. Klonos, Rafail O. Ioannidis, Andreas Pitsavas, Nikolaos D. Bikiaris, Sofia P. Makri, Stefania Koutsourea, Alexios Grigoropoulos, Ioanna Deligkiozi, Alexandros Zoikis-Karathanasis, Apostolos Kyritsis and Dimitrios N. Bikiaris
Nanomaterials 2025, 15(9), 660; https://doi.org/10.3390/nano15090660 - 26 Apr 2025
Cited by 1 | Viewed by 364
Abstract
A newly developed series of polylactide (PLA)-based composites filled with hybrid lignin–carbon nanotube (CNTs) particles were studied using thermal and dielectric techniques. The low CNT content (up to 3 wt%) aimed to create conductive networks while enhancing particle–polymer adhesion. For comparison, PLA composites [...] Read more.
A newly developed series of polylactide (PLA)-based composites filled with hybrid lignin–carbon nanotube (CNTs) particles were studied using thermal and dielectric techniques. The low CNT content (up to 3 wt%) aimed to create conductive networks while enhancing particle–polymer adhesion. For comparison, PLA composites based on lignin and CNTs were also examined. Although infrared spectroscopy showed no significant interactions, calorimetry and dielectric spectroscopy revealed a rigid interfacial PLA layer exhibiting restricted mobility. The interfacial polymer amount was found to increase monotonically with the particle content. The hybrid-filled PLA composites exhibited electrical conductivity, whereas PLA/Lignin and PLA/CNTs remained insulators. The result was indicative of a synergistic effect between lignin and CNTs, leading to lowering of the percolation threshold to 3 wt%, being almost ideal for sustainable conductive printing inks. Despite the addition of lignin and CNTs at different loadings, the glass transition temperature of PLA (60 °C) decreased slightly (softer composites) by 1–2 K in the composites, while the melting temperature remained stable at ~175 °C, favoring efficient processing. Regarding crystallization, which is typically slow in PLA, the hybrid lignin/CNT particles promoted crystal nucleation without increasing the total crystallizable fraction. Overall, these findings highlight the potential of eco-friendly conductive PLA composites for new-generation applications, such as printed electronics. Full article
Show Figures

Graphical abstract

15 pages, 10381 KiB  
Article
Photocatalytic Response of Flash-Lamp-Annealed Titanium Oxide Films Produced by Oblique-Angle Deposition
by Raúl Gago, Slawomir Prucnal, Francisco Javier Palomares, Leopoldo Álvarez-Fraga, Ana Castellanos-Aliaga and David G. Calatayud
Nanomaterials 2025, 15(9), 662; https://doi.org/10.3390/nano15090662 - 26 Apr 2025
Viewed by 291
Abstract
We report the photocatalytic (PC) response of titanium oxide (TiOx) films grown by reactive DC magnetron sputtering under oblique-angle-deposition (OAD) and subjected to post-deposition flash-lamp-annealing (FLA). Under ballistic growth conditions, OAD yields TiOx films with either compact or inclined columnar [...] Read more.
We report the photocatalytic (PC) response of titanium oxide (TiOx) films grown by reactive DC magnetron sputtering under oblique-angle-deposition (OAD) and subjected to post-deposition flash-lamp-annealing (FLA). Under ballistic growth conditions, OAD yields TiOx films with either compact or inclined columnar structure as the deposition incidence angle (α) with respect to the substrate normal varies from zero to grazing. On the one hand, films produced for α ≤ 45° display a compact and opaque structure comprising the formation of nanocrystalline cubic titanium monoxide (c-TiO) phase. On the other hand, films grown at larger α (≥60°) display tilted columns with amorphous structure, yielding highly porous films and an increased transparency for α > 75°. For TiOx films grown at large α, FLA induces phase transformation to nanocrystalline anatase from the amorphous state. In contrast to as-grown samples, FLA samples display PC activity as assessed by bleaching of methyl orange dye. The best PC performance is attained for an intermediate situation (α = 60–75°) between compact and columnar structures. The obtained photoactivity is discussed in terms of the different microstructures obtained by OAD and posterior phase formation upon FLA. Full article
Show Figures

Graphical abstract

15 pages, 4751 KiB  
Article
SnO Nanosheet Transistor with Remarkably High Hole Effective Mobility and More than Six Orders of Magnitude On-Current/Off-Current
by Kuan-Chieh Chen, Jiancheng Wu, Pheiroijam Pooja and Albert Chin
Nanomaterials 2025, 15(9), 640; https://doi.org/10.3390/nano15090640 - 23 Apr 2025
Viewed by 448
Abstract
Using novel SiO2 surface passivation and ultraviolet (UV) light anneal, a 12 nm thick SnO p-type FET (pFET) shows hole effective mobilities (µeff) of more than 100 cm2/V·s and 31.1 cm2/V·s at hole densities (Qh [...] Read more.
Using novel SiO2 surface passivation and ultraviolet (UV) light anneal, a 12 nm thick SnO p-type FET (pFET) shows hole effective mobilities (µeff) of more than 100 cm2/V·s and 31.1 cm2/V·s at hole densities (Qh) of 1 × 1011 and 5 × 1012 cm−2, respectively. To further improve the on-current/off-current (ION/IOFF), an ultra-thin 7 nm thick SnO nanosheet pFET shows a record-breaking ION/IOFF of 6.9 × 106 and remarkable µeff values of ~70 cm2/V·s and 20.7 cm2/V·s at Qh of 1 × 1011 cm−2 and 5 × 1012 cm−2, respectively. This is the first report of an oxide semiconductor transistor achieving a hole effective mobility µeff that reaches 20% of that in single-crystal Si pFETs at an ultra-thin body thickness of 7 nm. In sharp contrast, the control SnO nanosheet pFET without surface passivation or UV anneal exhibits a small ION/IOFF of 1.8 × 104 and a µeff of only 6.1 cm2/V·s at 5 × 1012 cm−2 Qh. The enhanced SnO pFET performance is attributed to reduced defects and improved quality in the SnO channel, as confirmed by decreased charges related to sub-threshold swing (SS) and threshold voltage (Vth) shift. Such a large improvement is further supported by the increased Sn2+ after passivation and UV anneal, as evidenced by X-ray photoelectron spectroscopy (XPS) analysis. The ION/IOFF ratio exceeding six orders of magnitude, remarkably high hole µeff, and excellent two-month stability demonstrate that this pFET is a strong candidate for integration with SnON nFETs in next-generation ultra-high-definition displays and monolithic three-dimensional integrated circuits (3D ICs). Full article
(This article belongs to the Special Issue Integrated Circuit Research for Nanoscale Field-Effect Transistors)
Show Figures

Figure 1

55 pages, 12018 KiB  
Review
Antimicrobial Nanotubes: From Synthesis and Promising Antimicrobial Upshots to Unanticipated Toxicities, Strategies to Limit Them, and Regulatory Issues
by Silvana Alfei and Gian Carlo Schito
Nanomaterials 2025, 15(8), 633; https://doi.org/10.3390/nano15080633 - 21 Apr 2025
Cited by 1 | Viewed by 416
Abstract
Nanotubes (NTs) are nanosized tube-like structured materials made from various substances such as carbon, boron, or silicon. Carbon nanomaterials (CNMs), including carbon nanotubes (CNTs), graphene/graphene oxide (G/GO), and fullerenes, have good interatomic interactions and possess special characteristics, exploitable in several applications because of [...] Read more.
Nanotubes (NTs) are nanosized tube-like structured materials made from various substances such as carbon, boron, or silicon. Carbon nanomaterials (CNMs), including carbon nanotubes (CNTs), graphene/graphene oxide (G/GO), and fullerenes, have good interatomic interactions and possess special characteristics, exploitable in several applications because of the presence of sp2 and sp3 bonds. Among NTs, CNTs are the most studied compounds due to their nonpareil electrical, mechanical, optical, and biomedical properties. Moreover, single-walled carbon nanotubes (SWNTs) have, in particular, demonstrated high ability as drug delivery systems and in transporting a wide range of chemicals across membranes and into living cells. Therefore, SWNTs, more than other NT structures, have generated interest in medicinal applications, such as target delivery, improved imaging, tissue regeneration, medication, and gene delivery, which provide nanosized devices with higher efficacy and fewer side effects. SWNTs and multi-walled CNTs (MWCNTs) have recently gained a great deal of attention for their antibacterial effects. Unfortunately, numerous recent studies have revealed unanticipated toxicities caused by CNTs. However, contradictory opinions exist regarding these findings. Moreover, the problem of controlling CNT-based products has become particularly evident, especially in relation to their large-scale production and the nanosized forms of the carbon that constitute them. Important directive rules have been approved over the years, but further research and regulatory measures should be introduced for a safer production and utilization of CNTs. Against this background, and after an overview of CNMs and CNTs, the antimicrobial properties of pristine and modified SWNTs and MWCNTs as well as the most relevant in vitro and in vivo studies on their possible toxicity, have been reported. Strategies and preventive behaviour to limit CNT risks have been provided. Finally, a debate on regulatory issues has also been included. Full article
Show Figures

Graphical abstract

17 pages, 4524 KiB  
Article
Resultant Incidence Angle: A Unique Criterion for Controlling the Inclined Columnar Nanostructure of Metallic Films
by Aurélien Besnard, Hamidreza Gerami, Marina Raschetti and Nicolas Martin
Nanomaterials 2025, 15(8), 620; https://doi.org/10.3390/nano15080620 - 18 Apr 2025
Viewed by 368
Abstract
The original Glancing Angle Deposition (GLAD) technique was developed using the evaporation process, i.e., in high vacuum, with a nearly punctual source, and with the substrate aligned with the source axis. In this specific case, the substrate tilt angle can be assumed to [...] Read more.
The original Glancing Angle Deposition (GLAD) technique was developed using the evaporation process, i.e., in high vacuum, with a nearly punctual source, and with the substrate aligned with the source axis. In this specific case, the substrate tilt angle can be assumed to be equal to the impinging incidence angle of evaporated atoms. With the sputtering process, the deposition pressure is higher, sources are larger, and substrates are not intrinsically aligned with the source. As a result, deviations from the growth models applied for evaporation are reported, and the substrate tilt angle is no longer relevant for describing the impinging atomic flux. To control the inclined nanostructure of metallic films, a relevant description of the atomic flux is required, applicable across all deposition configurations. In this work, transport simulation is used to determine the resultant incidence angle, a unique criterion relevant to each specific deposition condition. The different representations of the flux are described and discussed, and some typical examples of the resultant angles are presented. Ten elements are investigated: three hcp transition metals (Ti, Zr, and Hf), six bcc transition metals (V, Nb, Ta, Cr, Mo, and W), and one fcc post-transition metal (Al). Full article
Show Figures

Graphical abstract

20 pages, 5035 KiB  
Article
Magnetic, Electronic Structure and Micromagnetic Properties of Ferrimagnetic DyCo3 as a Platform for Ferrimagnetic Skyrmions
by Radu George Hategan, Andrei Aldea, Razvan Dan Miclea, Razvan Hirian, Ioan Botiz, Roxana Dudric, Lokesh Rasabathina, Olav Hellwig, Georgeta Salvan, Dietrich R. T. Zahn, Romulus Tetean and Coriolan Tiusan
Nanomaterials 2025, 15(8), 606; https://doi.org/10.3390/nano15080606 - 15 Apr 2025
Viewed by 520
Abstract
We demonstrate tunable ferrimagnetic properties in both bulk and thin film ferrimagnetic DyCo3 compatible with the hosting of topological magnetic chiral textures, namely skyrmions suitable for integration into spintronic applications with classic, neuromorphic and quantum functionalities. The bulk samples were prepared by [...] Read more.
We demonstrate tunable ferrimagnetic properties in both bulk and thin film ferrimagnetic DyCo3 compatible with the hosting of topological magnetic chiral textures, namely skyrmions suitable for integration into spintronic applications with classic, neuromorphic and quantum functionalities. The bulk samples were prepared by arc-melting of stoichiometric mixtures under purified argon atmosphere and the thin films by Ultra-High-Vacuum magnetron sputtering from a stoichiometric target. Magnetometry allows us to extract the main magnetic properties of bulk and thin films: the saturation magnetization, the magnetic anisotropy and their variation with temperature. These results are successfully complemented by band structure ab initio DFT calculations. Based on the critical magnetic parameters extracted from experiments, we performed micromagnetic simulations that reveal the skyrmionic potential of our samples in both continuous thin film and nano-patterned architectures. Full article
(This article belongs to the Special Issue Nanoscale Spintronics and Magnetism: From Fundamentals to Devices)
Show Figures

Graphical abstract

22 pages, 5693 KiB  
Article
Graphene Nanoplatelet Distribution Governs Thermal Conductivity and Stability of Paraffin-Based PCMs
by Levina E. A. Wijkhuijs, Pauline Schmit, Ingeborg Schreur-Piet, Henk Huinink, Remco Tuinier and Heiner Friedrich
Nanomaterials 2025, 15(8), 587; https://doi.org/10.3390/nano15080587 - 11 Apr 2025
Viewed by 353
Abstract
Materials for heat storage are important to fully utilize renewable energy sources and to realize a constant, on-demand supply. Organic phase change materials (PCMs) can play a crucial role in heat storage, as they have many advantages; however, their widespread commercial adoption is [...] Read more.
Materials for heat storage are important to fully utilize renewable energy sources and to realize a constant, on-demand supply. Organic phase change materials (PCMs) can play a crucial role in heat storage, as they have many advantages; however, their widespread commercial adoption is hindered by their low thermal conductivity and lack of cyclic stability. To enhance performance, highly thermally conductive fillers such as graphene nanoplatelets (GNPs) have been used; however, the role of the filler network has not been investigated. Here, we present, from a colloidal perspective, an in-depth study of GNP networks in paraffin PCMs. We investigate how GNP size, aspect ratio, and network topology determine thermal conductivity and cyclic stability of the composite. Our results show that the best-performing GNP network is random, with an optimized GNP aspect ratio. Filler fractions should be such that overlap between GNPs is guaranteed, which prevents leakage of paraffin from the composite, ensuring cyclic stability. These results not only contribute valuable insights into the design of new PCM composites but also emphasize the significance of considering filler geometry and network topology alongside filler type and fraction for optimizing thermal performance and cyclic stability. Full article
(This article belongs to the Section 2D and Carbon Nanomaterials)
Show Figures

Graphical abstract

45 pages, 10295 KiB  
Review
Holistic Molecular Design of Ionic Surfaces for Tailored Water Wettability and Technical Applications
by Huiyun Wang, Chongling Cheng and Dayang Wang
Nanomaterials 2025, 15(8), 591; https://doi.org/10.3390/nano15080591 - 11 Apr 2025
Viewed by 554
Abstract
This comprehensive review systematically explores the molecular design and functional applications of nano-smooth hydrophilic ionic polymer surfaces. Beginning with advanced fabrication strategies—including plasma treatment, surface grafting, and layer-by-layer assembly—we critically evaluate their efficacy in eliminating surface irregularities and tailoring wettability. Central to this [...] Read more.
This comprehensive review systematically explores the molecular design and functional applications of nano-smooth hydrophilic ionic polymer surfaces. Beginning with advanced fabrication strategies—including plasma treatment, surface grafting, and layer-by-layer assembly—we critically evaluate their efficacy in eliminating surface irregularities and tailoring wettability. Central to this discussion are the types of ionic groups, molecular configurations, and counterion hydration effects, which collectively govern macroscopic hydrophilicity through electrostatic interactions, hydrogen bonding, and molecular reorganization. By bridging molecular-level insights with application-driven design, we highlight breakthroughs in oil–water separation, anti-fogging, anti-icing, and anti-waxing technologies, where precise control over ionic group density, the hydration layer’s stability, and the degree of perfection enable exceptional performance. Case studies demonstrate how zwitterionic architectures, pH-responsive coatings, and biomimetic interfaces address real-world challenges in industrial and biomedical settings. In conclusion, we synthesize the molecular mechanisms governing hydrophilic ionic surfaces and identify key research directions to address future material challenges. This review bridges critical gaps in the current understanding of molecular-level determinants of wettability while providing actionable design principles for engineered hydrophilic surfaces. Full article
(This article belongs to the Special Issue Advances in Polymer Nanocomposite Films:2nd Edition)
Show Figures

Figure 1

15 pages, 27251 KiB  
Article
Single-Frame Vignetting Correction for Post-Stitched-Tile Imaging Using VISTAmap
by Anthony A. Fung, Ashley H. Fung, Zhi Li and Lingyan Shi
Nanomaterials 2025, 15(7), 563; https://doi.org/10.3390/nano15070563 - 7 Apr 2025
Cited by 1 | Viewed by 430
Abstract
Stimulated Raman Scattering (SRS) nanoscopy imaging offers unprecedented insights into tissue molecular architecture but often requires stitching multiple high-resolution tiles to capture large fields of view. This process is time-consuming and frequently introduces vignetting artifacts—grid-like intensity fluctuations that degrade image quality and hinder [...] Read more.
Stimulated Raman Scattering (SRS) nanoscopy imaging offers unprecedented insights into tissue molecular architecture but often requires stitching multiple high-resolution tiles to capture large fields of view. This process is time-consuming and frequently introduces vignetting artifacts—grid-like intensity fluctuations that degrade image quality and hinder downstream quantitative analyses and processing such as super-resolution deconvolution. We present VIgnetted Stitched-Tile Adjustment using Morphological Adaptive Processing (VISTAmap), a simple tool that corrects these shading artifacts directly on the final stitched image. VISTAmap automatically detects the tile grid configuration by analyzing intensity frequency variations and then applies sequential morphological operations to homogenize the image. In contrast to conventional approaches that require increased tile overlap or pre-acquisition background sampling, VISTAmap offers a pragmatic, post-processing solution without the need for separate individual tile images. This work addresses pressing concerns by delivering a robust, efficient strategy for enhancing mosaic image uniformity in modern nanoscopy, where the smallest details make tremendous impacts. Full article
(This article belongs to the Special Issue New Advances in Applications of Nanoscale Imaging and Nanoscopy)
Show Figures

Figure 1

12 pages, 4609 KiB  
Article
Reduction of Interface State Density in 4H-SiC MOS Capacitors Modified by ALD-Deposited Interlayers
by Zhenyu Wang, Zhaopeng Bai, Yunduo Guo, Chengxi Ding, Qimin Huang, Lin Gu, Yi Shen, Qingchun Zhang and Hongping Ma
Nanomaterials 2025, 15(7), 555; https://doi.org/10.3390/nano15070555 - 5 Apr 2025
Viewed by 516
Abstract
This study proposed an innovative method for growing gate oxide on silicon carbide (SiC), where silicon oxide (SiO2) was fabricated on a deposited Al2O3 layer, achieving high quality gate oxide. A thin Al2O3 passivation layer [...] Read more.
This study proposed an innovative method for growing gate oxide on silicon carbide (SiC), where silicon oxide (SiO2) was fabricated on a deposited Al2O3 layer, achieving high quality gate oxide. A thin Al2O3 passivation layer was deposited via atomic layer deposition (ALD), followed by Si deposition and reoxidation to fabricate a MOS structure. The effects of different ALD growth cycles on the interface chemical composition, trap density, breakdown characteristics, and bias stress stability of the MOS capacitors were systematically investigated. X-ray photoelectron spectroscopy (XPS) analyses revealed that an ALD Al2O3 passivation layer with 10 growth cycles effectively suppresses the formation of the proportion of Si-OxCy bonds. Additionally, the SiO2/Al2O3/SiC gate stack with 10 ALD growth cycles exhibited optimal electrical properties, including a minimum interface state density (Dit) value of 3 × 1011 cm−2 eV−1 and a breakdown field (Ebd) of 10.9 MV/cm. We also systematically analyzed the bias stress stability of the capacitors at room temperature and elevated temperatures. Analysis of flat-band voltage (ΔVfb) and midgap voltage (ΔVmg) hysteresis after high-temperature positive and negative bias stress demonstrated that incorporating a thin Al2O3 layer at the interface is the key factor in enhancing the stability of Vfb and midgap voltage Vmg. Full article
(This article belongs to the Section Nanoelectronics, Nanosensors and Devices)
Show Figures

Graphical abstract

7 pages, 4310 KiB  
Communication
Controlled Vapor-Phase Synthesis of VSe2 via Selenium-Driven Gradual Transformation of Single-Crystalline V2O5 Nanosheets
by Gangtae Jin
Nanomaterials 2025, 15(7), 548; https://doi.org/10.3390/nano15070548 - 4 Apr 2025
Viewed by 405
Abstract
We report a gas-phase precursor modulation strategy for the controlled synthesis of 1T-phase vanadium diselenide (VSe2) from vanadium pentoxide (V2O5) nanosheets by systematically adjusting the vapor pressure of selenium. By controlling the selenium vapor pressure, selenium-free vapor [...] Read more.
We report a gas-phase precursor modulation strategy for the controlled synthesis of 1T-phase vanadium diselenide (VSe2) from vanadium pentoxide (V2O5) nanosheets by systematically adjusting the vapor pressure of selenium. By controlling the selenium vapor pressure, selenium-free vapor transport of vanadium dioxide led to the spontaneous oxidation and formation of tens-of-micrometer-sized rectangular V2O5 crystals, while moderate selenium introduction produced intermediate oxygen-rich phases with trapezoidal crystal facets, and a highly selenium-rich environment yielded trigonal VSe2 crystals. Raman scattering measurements confirmed the stepwise transformation from V2O5 to VSe2, and atomic force microscopy revealed well-defined layered morphologies and distinct conformation within an atomically thin regime. Additionally, high-resolution transmission electron microscopy validated the orthorhombic and trigonal crystal structures of V2O5 and VSe2, respectively. This work demonstrates the versatility of fine-tuned vapor-phase growth conditions in vanadium-based layered compounds, providing useful platforms to optimize structural composition with atomic precision. Full article
(This article belongs to the Section Synthesis, Interfaces and Nanostructures)
Show Figures

Figure 1

25 pages, 30610 KiB  
Review
Synthesis, Characterization, Magnetic Properties, and Applications of Carbon Dots as Diamagnetic Chemical Exchange Saturation Transfer Magnetic Resonance Imaging Contrast Agents: A Review
by Endale Mulugeta, Tirusew Tegafaw, Ying Liu, Dejun Zhao, Ahrum Baek, Jihyun Kim, Yongmin Chang and Gang Ho Lee
Nanomaterials 2025, 15(7), 542; https://doi.org/10.3390/nano15070542 - 2 Apr 2025
Viewed by 600
Abstract
Carbon dots (CDs) are metal-free carbon-based nanoparticles. They possess excellent photoluminescent properties, various physical properties, good chemical stability, high water solubility, high biocompatibility, and tunable surface functionalities, suitable for biomedical applications. Their properties are subject to synthetic conditions such as pH, reaction time, [...] Read more.
Carbon dots (CDs) are metal-free carbon-based nanoparticles. They possess excellent photoluminescent properties, various physical properties, good chemical stability, high water solubility, high biocompatibility, and tunable surface functionalities, suitable for biomedical applications. Their properties are subject to synthetic conditions such as pH, reaction time, temperature, precursor, and solvent. Until now, a large number of articles on the synthesis and biomedical applications of CDs using their photoluminescent properties have been reported. However, their research on magnetic properties and especially, diamagnetic chemical exchange saturation transfer (diaCEST) in magnetic resonance imaging (MRI) is very poor. The diaCEST MRI contrast agents are based on exchangeable protons of materials with bulk water protons and thus, different from conventional MRI contrast agents, which are based on enhancements of proton spin relaxations of bulk water and tissue. In this review, various syntheses, characterizations, magnetic properties, and potential applications of CDs as diaCEST MRI contrast agents are reviewed. Finally, future perspectives of CDs as the next-generation diaCEST MRI contrast agents are discussed. Full article
(This article belongs to the Section Physical Chemistry at Nanoscale)
Show Figures

Graphical abstract

14 pages, 3265 KiB  
Article
Graphene/PtSe2/Ultra-Thin SiO2/Si Broadband Photodetector with Large Responsivity and Fast Response Time
by Qing-Hai Zhu, Jian Chai, Shi-Yu Wei, Jia-Bao Sun, Yi-Jun Sun, Daisuke Kiriya and Ming-Sheng Xu
Nanomaterials 2025, 15(7), 519; https://doi.org/10.3390/nano15070519 - 29 Mar 2025
Viewed by 528
Abstract
Burgeoning two-dimensional (2D) materials provide more opportunities to overcome the shortcomings of silicon-based photodetectors. However, the inevitable carrier loss in the 2D material/Si heterojunction has seriously hindered further improvement in responsivity and detection speed. Here, we propose a graphene/PtSe2/ultra-thin SiO2 [...] Read more.
Burgeoning two-dimensional (2D) materials provide more opportunities to overcome the shortcomings of silicon-based photodetectors. However, the inevitable carrier loss in the 2D material/Si heterojunction has seriously hindered further improvement in responsivity and detection speed. Here, we propose a graphene/PtSe2/ultra-thin SiO2/Si photodetector (PD) with multiple optimization mechanisms. Due to the fact that photo-generated carriers can travel in the graphene plane toward the Au electrode, the introduction of a top graphene contact with low sheet resistance provides a carrier collection path in the vertical direction and further restricts the carrier recombination behavior at the lateral grain boundary of PtSe2 film. The ultra-thin SiO2 passivation layer reduces the defects at the PtSe2/Si heterojunction interface. As compared to the counterpart device without the graphene top contact, the responsivity, specific detectivity, and response speed of graphene/PtSe2/ultra-thin SiO2/Si PD under 808 nm illumination are improved to 0.572 A/W, 1.50 × 1011 Jones, and 17.3/38.8 µs, respectively. The device can detect broad-spectrum optical signals as measured from 375 nm to 1550 nm under zero bias. The PD line array with 16-pixel units shows good near-infrared imaging ability at room temperature. Our study will provide guiding significance for how to improve the comprehensive properties of PDs based on 2D/Si heterostructure for practical applications. Full article
(This article belongs to the Section Nanoelectronics, Nanosensors and Devices)
Show Figures

Figure 1

12 pages, 4145 KiB  
Article
The Effect of Al2O3 Nanoparticles on Hexagonal Boron Nitride Films Resulting from High-Temperature Annealing
by Qiang Li, Kangkang Liu, Ransheng Chen, Wannian Fang, Zhihao Zhang, Youwei Chen, Haifeng Liu, Ziyan Lin, Yuhuai Liu and Tao Wang
Nanomaterials 2025, 15(7), 484; https://doi.org/10.3390/nano15070484 - 24 Mar 2025
Viewed by 384
Abstract
A simple two-step approach was proposed to obtain hBN thin films with high crystalline quality, meaning that the films were initially prepared by using an RF magnetron sputtering technique and subsequently followed by a post-annealing process at a high temperature. In the case [...] Read more.
A simple two-step approach was proposed to obtain hBN thin films with high crystalline quality, meaning that the films were initially prepared by using an RF magnetron sputtering technique and subsequently followed by a post-annealing process at a high temperature. In the case of introducing Al2O3 nanoparticles, the effects of annealing temperature from 1000 °C to 1300 °C and annealing time from 0.5 h to 1.5 h on the recrystallization process of the grown hBN films were systematically studied by using XRD and SEM technologies. The introduction of Al2O3 impurities during the annealing process successfully reduced the transition temperature of hexagonal phase BN by more than 300 °C. The crystalline quality of hBN films grown by RF magnetron sputtering could be effectively enhanced under annealing at 1100 °C for 1 h. The DUV detectors were prepared using the hBN films before and after annealing, and showed a notable improvement in detector performance by using annealed films. It has significant application value in further enhancing the performance of DUV photodetectors based on high-quality hBN films. Full article
(This article belongs to the Special Issue Trends and Prospects in Nanoscale Thin Films and Coatings)
Show Figures

Figure 1

22 pages, 11419 KiB  
Article
A Modified Model Dielectric Function for Analyzing Optical Spectra of InGaN Nanofilms on Sapphire Substrates
by Devki N. Talwar, Hao-Hsiung Lin and Jason T. Haraldsen
Nanomaterials 2025, 15(7), 485; https://doi.org/10.3390/nano15070485 - 24 Mar 2025
Viewed by 332
Abstract
Due to a lower InN bandgap energy Eg~0.7 eV, InxGa1xN/Sapphire epifilms are considered valuable [...] Read more.
Due to a lower InN bandgap energy Eg~0.7 eV, InxGa1xN/Sapphire epifilms are considered valuable in the development of low-dimensional heterostructure-based photonic devices. Adjusting the composition x and thickness d in epitaxially grown films has offered many possibilities of light emission across a wide spectral range, from ultraviolet through visible into near-infrared regions. Optical properties have played important roles in making semiconductor materials useful in electro-optic applications. Despite the efforts to grow InxGa1xN/Sapphire samples, no x- and d-dependent optical studies exist for ultrathin films. Many researchers have used computationally intensive methods to study the electronic band structures Ejk, and subsequently derive optical properties. By including inter-band transitions at critical points from Ejk, we have developed a semiempirical approach to comprehend the optical characteristics of InN, GaN and InxGa1xN. Refractive indices of InxGa1xN and sapphire substrate are meticulously integrated into a transfer matrix method to simulate d- and x-dependent reflectivity RE  and transmission TE spectra of nanostructured InxGa1xN/Sapphire epifilms. Analyses of RE and TE have offered accurate x-dependent shifts of energy gaps for InxGa1xN (x = 0.5, 0.7) in excellent agreement with the experimental data. Full article
(This article belongs to the Section Nanocomposite Materials)
Show Figures

Figure 1

17 pages, 3301 KiB  
Article
Adsorption of Macrolide Antibiotics by Aged Microplastics of Different Sizes: Mechanisms and Effects
by Qi Li, Jingnan Tan, Haichao Sha, Ke Li and Xi Li
Nanomaterials 2025, 15(6), 467; https://doi.org/10.3390/nano15060467 - 19 Mar 2025
Viewed by 362
Abstract
Microplastics (MPs) and antibiotics are widely detected in water bodies. However, the adsorption behavior and mechanism of different particle size polystyrene (PS) MPs on macrolide antibiotics under natural aging remain to be elucidated. In this study, potassium persulfate (K2S2O [...] Read more.
Microplastics (MPs) and antibiotics are widely detected in water bodies. However, the adsorption behavior and mechanism of different particle size polystyrene (PS) MPs on macrolide antibiotics under natural aging remain to be elucidated. In this study, potassium persulfate (K2S2O8) was used to simulate the natural aging process of PS MPs. The adsorption behavior and mechanism of different size PS (80 and 400 μm) toward azithromycin (AZI), clarithromycin (CLA), and erythromycin (ERY) were investigated. Results of SEM showed that the surface roughness of aged PS MPs increased with the appearance of cracks, pits, and pores. XPS and FTIR analyses showed enhanced C=O functional groups in the aging process. The adsorption isotherm models revealed that the aging processes enhanced the AZI, CLA, and ERY adsorption tendency, as evidenced by the highest adsorption capacity for aged-80 μm (645, 665, 184 mg/kg) > original-80 μm (412, 420, 120 mg/kg), and aged-400 μm (280, 330, 110 mg/kg) > original-400 μm (197, 308, 100 mg/kg). Kinetic model fitting revealed that the adsorption process occurred in three stages: rapid, slow, and saturation. Adsorption kinetic curves for original and aged PS MPs conformed to the pseudo-second-order kinetic model. In contrast, the adsorption isotherm data fit the Langmuir model, indicating that the process primarily involved uniform monolayer chemical adsorption. Our findings provide insights into the substantial changes in the interactions between PS and macrolide antibiotics with aging processes. Full article
Show Figures

Figure 1

18 pages, 7168 KiB  
Article
Robust Carbon Nanotube Transistor Ion Sensors with Near-Nernstian Sensitivity for Multi-Ion Detection in Neurological Diseases
by Lidan Yan, Yang Zhang, Zhibiao Zhu, Yuqi Liang and Mengmeng Xiao
Nanomaterials 2025, 15(6), 447; https://doi.org/10.3390/nano15060447 - 15 Mar 2025
Cited by 1 | Viewed by 620
Abstract
Accurate monitoring of sodium and potassium ions in biological fluids is crucial for diseases related to electrolyte imbalance. Low-dimensional materials such as carbon nanotubes can be used to construct biochemical sensors based on high-performance field effect transistor (FET), but they face the problems [...] Read more.
Accurate monitoring of sodium and potassium ions in biological fluids is crucial for diseases related to electrolyte imbalance. Low-dimensional materials such as carbon nanotubes can be used to construct biochemical sensors based on high-performance field effect transistor (FET), but they face the problems of poor device consistency and difficulty in stable and reliable operation. In this work, we mass-produced carbon nanotube (CNT) floating-gate field-effect transistor devices with high uniformity and consistency through micro-/nanofabrication technology to improve the accuracy and reliability of detection without the need for statistical analysis based on machine learning. By introducing waterproof hafnium oxide gate dielectrics on the CNT FET channel, we not only effectively protect the channel area but also significantly improve the stability of the sensor. We have prepared array sensing technology based on CNT FET that can detect potassium, sodium, calcium, and hydrogen ions in artificial cerebrospinal fluid. The detection concentration range is 10 μM–100 mM and pH 3–pH 9, with a sensitivity close to the Nernst limit, and exhibits selective and long-term stable responses. This could help achieve early diagnosis and real-time monitoring of central nervous system diseases, highlighting the potential of this ion-sensing platform for highly sensitive and stable detection of various neurobiological markers. Full article
(This article belongs to the Special Issue Advanced Low-Dimensional Materials for Sensing Applications)
Show Figures

Figure 1

9 pages, 5541 KiB  
Article
Uniform Molecular Alignment on Ag-Doped Nickel Oxide Films
by Dong Wook Lee, Tae-Hyun Kim, Young Kwon Kim and Dae-Shik Seo
Nanomaterials 2025, 15(6), 449; https://doi.org/10.3390/nano15060449 - 15 Mar 2025
Viewed by 502
Abstract
This study presents the uniform alignment of liquid crystal (LC) molecules on silver (Ag)-doped nickel oxide (NiO) films. The films were fabricated using a solution brush coating process, with Ag doping concentrations of 0, 10, and 20 wt%. X-ray photoelectron spectroscopy confirmed the [...] Read more.
This study presents the uniform alignment of liquid crystal (LC) molecules on silver (Ag)-doped nickel oxide (NiO) films. The films were fabricated using a solution brush coating process, with Ag doping concentrations of 0, 10, and 20 wt%. X-ray photoelectron spectroscopy confirmed the successful formation of the films, while atomic force microscopy revealed nano/microgroove anisotropic structures, attributed to brush hair movement during coating. X-ray diffraction analysis indicated the films’ amorphous nature. Optical transmittance measurements demonstrated their suitability for electronic display applications. Polarized optical microscopy verified uniform LC molecular alignment and effective optical control. The fabricated LC cells exhibited increased LC polar anchoring energy, improving device stability. The polar anchoring energy increased by 1159.02% after Ag doping. Additionally, reduced residual charge was observed, suggesting minimized image sticking. These findings indicate that Ag-doped NiO films are a promising alternative for LC alignment layers in functional LC systems. Full article
(This article belongs to the Section Nanoelectronics, Nanosensors and Devices)
Show Figures

Figure 1

13 pages, 5601 KiB  
Review
Ordering Enhancement of Ion Bombardment-Induced Nanoripple Patterns: A Review
by Ying Liu, Hengbo Li, Chongyu Wang, Gaoyuan Yang, Frank Frost and Yilin Hong
Nanomaterials 2025, 15(6), 438; https://doi.org/10.3390/nano15060438 - 13 Mar 2025
Viewed by 438
Abstract
Low-energy ion bombardment (IB) has emerged as a promising, maskless nanofabrication tool for quasi-periodic nanoripples, marked by a high throughput and low cost. As templates, these IB-induced, self-organized surface nanoripples have shown potential for applications in diverse fields. However, the challenge of tailoring [...] Read more.
Low-energy ion bombardment (IB) has emerged as a promising, maskless nanofabrication tool for quasi-periodic nanoripples, marked by a high throughput and low cost. As templates, these IB-induced, self-organized surface nanoripples have shown potential for applications in diverse fields. However, the challenge of tailoring the ordering of these ripple patterns is preventing the widespread application of IB. Moreover, the enhancement of the ordering of these self-organized nanostructures involves the fundamental academic questions of nanoripple coupling (or superimposition) and guided self-organization. This review first focuses on the experimental progress made in developing representative strategies for the ordering enhancement of IB-induced nanoripples in terms of ion beams and targets. Second, we present our understanding of these developments from the perspectives of ripple superposition and guided self-organization. In particular, the basic conditions for ripple superposition under the non-conservation of mass are deduced based on the common features of the results from rocking bombardments of a single material and the bombardment of bilayer systems, providing insight into the mechanisms at play and deepening our understanding of these experimental observations. Finally, areas for future research are given, with the aim of improving ripple ordering from the viewpoints of ripple superimposition and guided self-organization. All this may re-stimulate interest in this field and will be of importance in advancing the academic research and practical applications of IB-induced nanopatterns. Full article
(This article belongs to the Special Issue Nanomanufacturing Using Ion Beam Technology)
Show Figures

Graphical abstract

30 pages, 7685 KiB  
Review
Recent Developments of Advanced Broadband Photodetectors Based on 2D Materials
by Yan Tian, Hao Liu, Jing Li, Baodan Liu and Fei Liu
Nanomaterials 2025, 15(6), 431; https://doi.org/10.3390/nano15060431 - 11 Mar 2025
Viewed by 1319
Abstract
With the rapid development of high-speed imaging, aerospace, and telecommunications, high-performance photodetectors across a broadband spectrum are urgently demanded. Due to abundant surface configurations and exceptional electronic properties, two-dimensional (2D) materials are considered as ideal candidates for broadband photodetection applications. However, broadband photodetectors [...] Read more.
With the rapid development of high-speed imaging, aerospace, and telecommunications, high-performance photodetectors across a broadband spectrum are urgently demanded. Due to abundant surface configurations and exceptional electronic properties, two-dimensional (2D) materials are considered as ideal candidates for broadband photodetection applications. However, broadband photodetectors with both high responsivity and fast response time remain a challenging issue for all the researchers. This review paper is organized as follows. Introduction introduces the fundamental properties and broadband photodetection performances of transition metal dichalcogenides (TMDCs), perovskites, topological insulators, graphene, and black phosphorus (BP). This section provides an in-depth analysis of their unique optoelectronic properties and probes the intrinsic physical mechanism of broadband detection. In Two-Dimensional Material-Based Broadband Photodetectors, some innovative strategies are given to expand the detection wavelength range of 2D material-based photodetectors and enhance their overall performances. Among them, chemical doping, defect engineering, constructing heterostructures, and strain engineering methods are found to be more effective for improving their photodetection performances. The last section addresses the challenges and future prospects of 2D material-based broadband photodetectors. Furthermore, to meet the practical requirements for very large-scale integration (VLSI) applications, their work reliability, production cost and compatibility with planar technology should be paid much attention. Full article
Show Figures

Figure 1

18 pages, 7417 KiB  
Article
Densely Stacked CoCu-MOFs Coated with CuAl/LDH Enhance Sulfamethoxazole Degradation in PMS-Activated Systems
by Xin Zhong, Xiaojun Liu, Meihuan Ji and Fubin Jiang
Nanomaterials 2025, 15(6), 432; https://doi.org/10.3390/nano15060432 - 11 Mar 2025
Viewed by 577
Abstract
As the most promising techniques for refractory antibiotic degradation in wastewater management, sulfate radical-based advanced oxidation processes (SR-AOPs) have attracted considerable attention. However, systematic studies on potassium peroxymonosulfate (PMS) activation by MOF-derived metal oxides coated with LDH materials are still lacking. In this [...] Read more.
As the most promising techniques for refractory antibiotic degradation in wastewater management, sulfate radical-based advanced oxidation processes (SR-AOPs) have attracted considerable attention. However, systematic studies on potassium peroxymonosulfate (PMS) activation by MOF-derived metal oxides coated with LDH materials are still lacking. In this work, a series of catalysts consisting of CoCu-MOFs coated with CuAl/LDH were synthesized for PMS activation in the removal of sulfamethoxazole (SMX). As expected, CoCu-MOFs coated with CuAl/LDH catalyst showed high SMX removal and stability in PMS activation. In the CoCu/LDH/PMS reaction, the SMX removal was nearly 100% after 60 min, and the mineralization reached 53.7%. The catalyst showed excellent catalytic stability and low metal leaching concentrations (Co: 0.013 mg/L, Cu: 0.313 mg/L), as detected by ICP. Sulfate radicals and hydroxyl radicals were identified as the dominant reactive species in the CoCu/LDH/PMS system. Moreover, the presence of 1O2 in the process revealed the coupling of non-radical and radical processes. The XPS results showed that the layered structure of CoCu/LDH promoted the recycling of metal ions (high and low valence), which facilitated heterogeneous PMS activation. The effects of different reaction conditions and reuse cycles were also determined. The SMX oxidation pathways were proposed based on the intermediates identified by LC/MS. The high activity and stability of CoCu/LDH provide a new mechanistic understanding of PMS activation catalysts and their potential utilization in practical wastewater treatment. Full article
(This article belongs to the Section Environmental Nanoscience and Nanotechnology)
Show Figures

Figure 1

15 pages, 2527 KiB  
Article
The Chemical Deformation of a Thermally Cured Polyimide Film Surface into Neutral 1,2,4,5-Benzentetracarbonyliron and 4,4′-Oxydianiline to Remarkably Enhance the Chemical–Mechanical Planarization Polishing Rate
by Man-Hyup Han, Hyun-Sung Koh, Il-Haeng Heo, Myung-Hoe Kim, Pil-Su Kim, Min-Uk Jeon, Min-Ji Kim, Woo-Hyun Jin, Kyoo-Chul Cho, Jinsub Park and Jea-Gun Park
Nanomaterials 2025, 15(6), 425; https://doi.org/10.3390/nano15060425 - 10 Mar 2025
Viewed by 959
Abstract
The rapid advancement of 3D packaging technology has emerged as a key solution to overcome the scaling-down limitation of advanced memory and logic devices. Redistribution layer (RDL) fabrication, a critical process in 3D packaging, requires the use of polyimide (PI) films with thicknesses [...] Read more.
The rapid advancement of 3D packaging technology has emerged as a key solution to overcome the scaling-down limitation of advanced memory and logic devices. Redistribution layer (RDL) fabrication, a critical process in 3D packaging, requires the use of polyimide (PI) films with thicknesses in the micrometer range. However, these polyimide films present surface topography variations in the range of hundreds of nanometers, necessitating chemical–mechanical planarization (CMP) to achieve nanometer-level surface flatness. Polyimide films, composed of copolymers of pyromellitimide and diphenyl ether, possess strong covalent bonds such as C–C, C–O, C=O, and C–N, leading to inherently low polishing rates during CMP. To address this challenge, the introduction of Fe(NO3)3 into CMP slurries has been proposed as a polishing rate accelerator. During CMP, this Fe(NO3)3 deformed the surface of a polyimide film into strongly positively charged 1,2,4,5-benzenetetracarbonyliron and weakly negatively charged 4,4′-oxydianiline (ODA). The chemically dominant polishing rate enhanced with the concentration of the Fe(NO3)3 due to accelerated surface interactions. However, higher Fe(NO3)3 concentrations reduce the attractive electrostatic force between the positively charged wet ceria abrasives and the negatively charged deformed surface of the polyimide film, thereby decreasing the mechanically dominant polishing rate. A comprehensive investigation of the chemical and mechanical polishing rate dynamics revealed that the optimal Fe(NO3)3 concentration to achieve the maximum polyimide film removal rate was 0.05 wt%. Full article
(This article belongs to the Section Synthesis, Interfaces and Nanostructures)
Show Figures

Figure 1

14 pages, 2249 KiB  
Article
Comparative Assessment of the Impacts of Wildland–Urban Interface Fire Ash on Growth of the Diatom Thalassiosira weissflogii
by Talal Alshehri, Amar Yasser Jassim, Bo Cai, Tammi L. Richardson and Mohammed Baalousha
Nanomaterials 2025, 15(6), 422; https://doi.org/10.3390/nano15060422 - 9 Mar 2025
Viewed by 655
Abstract
Fires at the wildland–urban interface (WUI) result in the release of ash into the atmosphere that can be transported for long distances and deposited on land and in oceans. Wildfire ash has the potential to increase phytoplankton biomass in the open ocean by [...] Read more.
Fires at the wildland–urban interface (WUI) result in the release of ash into the atmosphere that can be transported for long distances and deposited on land and in oceans. Wildfire ash has the potential to increase phytoplankton biomass in the open ocean by providing both major nutrients and trace metals. However, fires that originate at the WUI contain potentially toxic concentrations of metals such as Ti, Cr, Cu, Pb, and Zn, especially in coastal oceans close to WUI fires, where ash deposition rates are high. Here, we investigated the impact of fire ash from different sources originating from vegetation, structures, and vehicles on growth of the diatom Thalassiosira weissflogii (T. weissflogii). The diatom was exposed to ash suspensions containing equimolar concentrations of 10 and 50 µM Fe. The concentration of potentially toxic metals (e.g., Ti, Cu, and Zn) in the exposure suspensions decreased following the order vehicle ash suspension > structural ash suspension > vegetation ash suspension. Growth rates (GR) of T. weissflogii were between 0.44 d−1 and 0.52 d−1 in the controls, and varied with ash types, following the order vegetation (GR = 0.40 d−1 to 0.48 d−1) > vehicle (GR = 0.06 d−1 to 0.46 d−1) > structure (GR = 0.02 d−1 to 0.31 d−1) ash. Two ash samples (A 131 and A136) completely inhibited the growth of T. weissflogii, possibly due to high Ti, Cu, and Zn concentrations in the form of (nano)particles. Overall, this study showed that structural and vehicle ash, with high concentrations of potentially toxic metals, significantly suppress the growth of T. weissflogii, whereas vegetation ash with high concentrations of Fe and Mn but low concentrations of potentially toxic metals had no significant beneficial or suppressive effect. High concentrations of the metals Ti, Cu, and Zn in the form of nano(particles) in structural and vehicle ash are possible sources of toxicity to diatom growth. This study provides valuable insights into the potential impacts of WUI fires on aquatic ecosystems and can inform management strategies aimed at reducing these impacts. Full article
(This article belongs to the Section Environmental Nanoscience and Nanotechnology)
Show Figures

Graphical abstract

18 pages, 6287 KiB  
Article
Folic Acid-Conjugated Magnetic Oleoyl-Chitosan Nanoparticles for Controlled Release of Doxorubicin in Cancer Therapy
by Banendu Sunder Dash, Yi-Chian Lai and Jyh-Ping Chen
Nanomaterials 2025, 15(6), 415; https://doi.org/10.3390/nano15060415 - 7 Mar 2025
Cited by 2 | Viewed by 1046
Abstract
To develop an efficient drug delivery system, we co-entrapped superparamagnetic Fe3O4 and the chemotherapeutic drug doxorubicin (DOX) in oleoyl-chitosan (OC) to prepare DOX-entrapped magnetic OC (DOX-MOC) nanoparticles (NPs) through ionic gelation of OC with sodium tripolyphosphate (TPP). The NPs provide [...] Read more.
To develop an efficient drug delivery system, we co-entrapped superparamagnetic Fe3O4 and the chemotherapeutic drug doxorubicin (DOX) in oleoyl-chitosan (OC) to prepare DOX-entrapped magnetic OC (DOX-MOC) nanoparticles (NPs) through ionic gelation of OC with sodium tripolyphosphate (TPP). The NPs provide magnetically targeted delivery of DOX in cancer therapy. Using folic acid (FA)-grafted OC, FA-conjugated DOX-entrapped magnetic OC (FA-DOX-MOC) NPs were prepared similarly for FA-mediated active targeting of cancer cells with overexpressed folate receptors. Considering DOX loading and release, the best conditions for preparing DOX-MOC NPs were an OC:TPP mass ratio = 1:4 and OC concentration = 0.2%. These spherical NPs had a particle size of ~250 nm, 87.9% Fe3O4 content, 53.1 emu/g saturation magnetization, 83.1% drug encapsulation efficacy, and 2.81% drug loading efficiency. FA did not significantly change the physico-chemical characteristics of FA-DOX-MOC compared to DOX-MOC, and both NPs showed pH-dependent drug release behaviors, with much faster release of DOX at acidic pH values found in endosomes. However, FA could enhance the intracellular uptake of the NPs and DOX accumulation in the nucleus. This active targeting effect led to significantly higher cytotoxicity towards U87 cancer cells. These results suggest that FA-DOX-MOC NPs can efficiently deliver DOX for controlled drug release in cancer therapy. Full article
(This article belongs to the Section Biology and Medicines)
Show Figures

Figure 1

18 pages, 5239 KiB  
Article
A Facile Two-Step High-Throughput Screening Strategy of Advanced MOFs for Separating Argon from Air
by Xiaoyi Xu, Bingru Xin, Zhongde Dai, Chong Liu, Li Zhou, Xu Ji and Yiyang Dai
Nanomaterials 2025, 15(6), 412; https://doi.org/10.3390/nano15060412 - 7 Mar 2025
Viewed by 604
Abstract
Metal–organic frameworks (MOFs) based on the pressure swing adsorption (PSA) process show great promise in separating argon from air. As research burgeons, the number of MOFs has grown exponentially, rendering the experimental identification of materials with significant gas separation potential impractical. This study [...] Read more.
Metal–organic frameworks (MOFs) based on the pressure swing adsorption (PSA) process show great promise in separating argon from air. As research burgeons, the number of MOFs has grown exponentially, rendering the experimental identification of materials with significant gas separation potential impractical. This study introduced a high-throughput screening through a two-step strategy based on structure–property relationships, which leveraged Grand Canonical Monte Carlo (GCMC) simulations, to swiftly and precisely identify high-performance MOF adsorbents capable of separating argon from air among a vast array of MOFs. Compared to traditional approaches for material development and screening, this method significantly reduced both experimental and computational resource requirements. This research pre-screened 12,020 experimental MOFs from a computationally ready experimental MOF (CoRE MOF) database down to 7328 and then selected 4083 promising candidates through structure–performance correlation. These MOFs underwent GCMC simulation assessments, showing superior adsorption performance to traditional molecular sieves. In addition, an in-depth discussion was conducted on the structural characteristics and metal atoms among the best-performing MOFs, as well as the effects of temperature, pressure, and real gas conditions on their adsorption properties. This work provides a new direction for synthesizing next-generation MOFs for efficient argon separation in labs, contributing to energy conservation and consumption reduction in the production of high-purity argon gas. Full article
(This article belongs to the Section Inorganic Materials and Metal-Organic Frameworks)
Show Figures

Figure 1

14 pages, 4821 KiB  
Article
Controllable Hydrothermal Synthesis of 1D β-Ga2O3 for Solar-Blind Ultraviolet Photodetection
by Lingfeng Mao, Xiaoxuan Wang, Chaoyang Huang, Yi Ma, Feifei Qin, Wendong Lu, Gangyi Zhu, Zengliang Shi, Qiannan Cui and Chunxiang Xu
Nanomaterials 2025, 15(5), 402; https://doi.org/10.3390/nano15050402 - 6 Mar 2025
Viewed by 704
Abstract
Gallium oxide (Ga2O3), an ultrawide bandgap semiconductor, is an ideal material for solar-blind photodetectors, but challenges such as low responsivity and response speed persist. In this paper, one-dimensional (1D) Ga2O3 nanorods were designed to achieve high [...] Read more.
Gallium oxide (Ga2O3), an ultrawide bandgap semiconductor, is an ideal material for solar-blind photodetectors, but challenges such as low responsivity and response speed persist. In this paper, one-dimensional (1D) Ga2O3 nanorods were designed to achieve high photodetection performance due to their effective light absorption and light field confinement. Through modulating source concentration, pH value, temperature, and reaction time, 1D β-Ga2O3 nanorods were controllably fabricated using a cost-effective hydrothermal method, followed by post-annealing. The nanorods had a diameter of ~500 nm, length from 0.5 to 3 μm, and structure from nanorods to spindles, indicating that different β-Ga2O3 nanorods can be utilized controllably through tuning reaction parameters. The 1D β-Ga2O3 nanorods with a high length-to-diameter ratio were chosen to construct metal-semiconductor-metal type photodetectors. These devices exhibited a high responsivity of 8.0 × 10−4 A/W and detectivity of 4.58 × 109 Jones under 254 nm light irradiation. The findings highlighted the potential of 1D Ga2O3 nanostructures for high-performance solar-blind ultraviolet photodetectors, paving the way for future integrable deep ultraviolet optoelectronic devices. Full article
Show Figures

Figure 1

19 pages, 8848 KiB  
Article
Tribological Behavior and Mechanism of Silane-Bridged h-BN/MoS2 Hybrid Filling Epoxy Solid Lubricant Coatings
by Xiaoxiao Peng, Haiyan Jing, Lan Yu, Zongdeng Wu, Can Su, Ziyu Ji, Junjie Shu, Hua Tang, Mingzhu Xia, Xifeng Xia, Wu Lei and Qingli Hao
Nanomaterials 2025, 15(5), 401; https://doi.org/10.3390/nano15050401 - 6 Mar 2025
Viewed by 687
Abstract
To significantly improve the tribological performance of epoxy resin (EP), a novel h-BN/MoS2 composite was successfully synthesized using spherical MoS2 particles with lamellar self-assembly generated through the calcination method, followed by utilizing the “bridging effect” of a silane coupling agent to [...] Read more.
To significantly improve the tribological performance of epoxy resin (EP), a novel h-BN/MoS2 composite was successfully synthesized using spherical MoS2 particles with lamellar self-assembly generated through the calcination method, followed by utilizing the “bridging effect” of a silane coupling agent to achieve a uniform and vertically oriented decoration of hexagonal boron nitride (h-BN) nanosheets on the MoS2 surface. The chemical composition and microstructure of the h-BN/MoS2 composite were systematically investigated. Furthermore, the enhancement effect of composites with various contents on the frictional properties of epoxy coatings was studied, and the mechanism was elucidated. The results demonstrate that the uniform decoration of h-BN enhances the chemical stability of MoS2 in friction tests, and the MoS2 prevents oxidation and maintains its self-lubricating properties. Consequently, due to the protective effect of h-BN and the synergistic interaction between h-BN and MoS2, the 5 wt % h-BN/MoS2 composite exhibited the best friction and wear resistance when incorporated into EP. Compared to pure EP coatings, its average friction coefficient and specific wear rate (0.026 and 1.5 × 10−6 mm3 N−1 m−1, respectively) were significantly reduced. Specifically, the average friction coefficient decreased by 88% and the specific wear rate decreased by 99%, highlighting the superior performance of the h-BN/MoS2-enhanced epoxy composite coating. Full article
(This article belongs to the Section 2D and Carbon Nanomaterials)
Show Figures

Figure 1

10 pages, 4851 KiB  
Article
Room-Temperature Synthesis of Carbon Nanochains via the Wurtz Reaction
by Juxiang Pu, Yongqing Gong, Menghao Yang and Mali Zhao
Nanomaterials 2025, 15(5), 407; https://doi.org/10.3390/nano15050407 - 6 Mar 2025
Viewed by 726
Abstract
In the field of surface synthesis, various reactions driven by the catalytic effect of metal substrates, particularly the Ullmann reaction, have been thoroughly investigated. The Wurtz reaction facilitates the coupling of alkyl halides through the removal of halogen atoms with a low energy [...] Read more.
In the field of surface synthesis, various reactions driven by the catalytic effect of metal substrates, particularly the Ullmann reaction, have been thoroughly investigated. The Wurtz reaction facilitates the coupling of alkyl halides through the removal of halogen atoms with a low energy barrier on the surface; however, the preparation of novel carbon nanostructures via the Wurtz reaction has been scarcely reported. Here, we report the successful synthesis of ethyl-bridged binaphthyl molecular chains on Ag(111) at room temperature via the Wurtz reaction. However, this structure was not obtained through low-temperature deposition followed by annealing even above room temperature. High-resolution scanning tunneling microscopy combined with density functional theory calculations reveal that the rate-limiting step of C–C homocoupling exhibits a low-energy barrier, facilitating the room-temperature synthesis of carbon nanochain structures. Moreover, the stereochemical configuration of adsorbed molecules hinders the activation of the C–X (X = Br) bond away from the metal surface and, therefore, critically influences the reaction pathways and final products. This work advances the understanding of surface-mediated reactions involving precursor molecules with stereochemical structures. Moreover, it provides an optimized approach for synthesizing novel carbon nanostructures under mild conditions. Full article
(This article belongs to the Special Issue Functionalized Nanostructures on Surfaces and at Interfaces)
Show Figures

Graphical abstract

15 pages, 9197 KiB  
Article
Fluorescent Silver Nanoclusters Associated with Double-Stranded Poly(dGdC) DNA
by Zakhar Reveguk, Roberto Improta, Lara Martínez-Fernández, Ruslan Ramazanov, Shachar Richter and Alexander Kotlyar
Nanomaterials 2025, 15(5), 397; https://doi.org/10.3390/nano15050397 - 5 Mar 2025
Viewed by 744
Abstract
Here, we demonstrate through AFM imaging and CD spectroscopy that the binding of silver ions (Ag+) to poly(dGdC), a double-stranded (ds) DNA composed of two identical repeating strands, at a stoichiometry of one Ag+ per GC base pair induces a [...] Read more.
Here, we demonstrate through AFM imaging and CD spectroscopy that the binding of silver ions (Ag+) to poly(dGdC), a double-stranded (ds) DNA composed of two identical repeating strands, at a stoichiometry of one Ag+ per GC base pair induces a one-base shift of one strand relative to the other. This results in a ds nucleic acid-Ag+ conjugate consisting of alternating CC and GG base pairs coordinated by silver ions. The proposed organization of the conjugate is supported by the results of our Quantum Mechanical (QM) and Molecular Mechanics (MMs) calculations. The reduction of Ag+ ions followed by the partial oxidation of silver atoms yields a highly fluorescent conjugate emitting at 720 nm. This fluorescent behavior in conjugates of long, repetitive ds DNA (thousands of base pairs) with silver has never been demonstrated before. We propose that the poly(dGdC)–Ag conjugate functions as a dynamic system, comprising various small clusters embedded within the DNA and interacting with one another through energy transfer. This hypothesis is supported by the results of our QM and MMs calculations. Additionally, these DNA–silver conjugates, comprising silver nanoclusters, may possess conductive properties, making them potential candidates for use as nanowires in nanodevices and nanosensors. Full article
(This article belongs to the Section Biology and Medicines)
Show Figures

Figure 1

11 pages, 2988 KiB  
Article
Temperature-Dependent Morphology Modulation of MoO2 from 1D Nanoribbons to 2D Nanoflakes for Enhanced Two-Dimensional Electrode Applications
by Di Wu, Tianrong Yi, Yutao Hu, Jianxiong Xie, Yu Deng, Junqi He, Yuting Sun, Jidong Liu, Qiaoyan Hao and Wenjing Zhang
Nanomaterials 2025, 15(5), 392; https://doi.org/10.3390/nano15050392 - 4 Mar 2025
Viewed by 631
Abstract
The morphology modulation of target crystals is important for understanding their growth mechanisms and potential applications. Herein, we report a convenient method for modulating the morphology of MoO2 by controlling different growth temperatures. With an increase in growth temperature, the morphology of [...] Read more.
The morphology modulation of target crystals is important for understanding their growth mechanisms and potential applications. Herein, we report a convenient method for modulating the morphology of MoO2 by controlling different growth temperatures. With an increase in growth temperature, the morphology of MoO2 changes from a nanoribbon to a nanoflake. Various characterization methods, including optical microscopy, atomic force microscopy, (vertical and tilted) scanning electron microscopy, Raman spectroscopy, high-resolution transmission electron microscopy, and selected area electron diffraction, were performed to unveil the morphology modulation and lattice structure of MoO2. Both MoO2 nanoribbons and nanoflakes display a standing-up growth mode on c-sapphire substrates, and their basal planes are MoO2(100). Further investigations into devices based on MoS2 with Au/Ti/MoO2 electrodes show the potential applications of MoO2 in two-dimensional electrodes. These findings are helpful for the synthesis of MoO2 with different morphologies and applications in the field of optoelectronic nanodevices. Full article
(This article belongs to the Section 2D and Carbon Nanomaterials)
Show Figures

Figure 1

21 pages, 4584 KiB  
Article
Charging and Aggregation of Nano-Clay Na-Montmorillonite in the Presence of Ciprofloxacin
by Chuanzi Zeng and Motoyoshi Kobayashi
Nanomaterials 2025, 15(5), 389; https://doi.org/10.3390/nano15050389 - 3 Mar 2025
Viewed by 767
Abstract
The transport and fate of antibiotics are significantly influenced by co-existing colloidal and nanosized substances, such as clay particles. Montmorillonite, a common clay mineral with a thin nano-sheet-like structure, enhances antibiotic (e.g., ciprofloxacin) mobility due to its strong adsorption properties. Nevertheless, little is [...] Read more.
The transport and fate of antibiotics are significantly influenced by co-existing colloidal and nanosized substances, such as clay particles. Montmorillonite, a common clay mineral with a thin nano-sheet-like structure, enhances antibiotic (e.g., ciprofloxacin) mobility due to its strong adsorption properties. Nevertheless, little is known about how ciprofloxacin systematically influences the charging and aggregation properties of montmorillonite. This study examines the effect of ciprofloxacin on the electrophoretic mobility and hydrodynamic diameter of Na-montmorillonite under varying pH levels and NaCl concentrations. Results show ciprofloxacin promotes aggregation and alters the surface net charge of Na-montmorillonite at acidic to neutral pH, where ciprofloxacin is positively charged. At higher pH levels, where ciprofloxacin is negatively charged, no significant effects are observed. The observed aggregation behaviors align with predictions based on the Derjaguin–Landau–Verwey–Overbeek (DLVO) theory. Specifically, the slow aggregation regime, the fast aggregation regime, and the critical coagulation concentration are identified. The relationship between critical coagulation ionic strength and electrokinetic surface charge density is well explained by the DLVO theory with the Debye–Hückel approximations. Additionally, non-DLVO interactions are inferred. At low NaCl and ciprofloxacin concentrations, minimal changes in aggregation and surface charge suggest dispersed montmorillonite may facilitate ciprofloxacin transport, raising environmental concerns. Full article
(This article belongs to the Section Synthesis, Interfaces and Nanostructures)
Show Figures

Figure 1

11 pages, 5067 KiB  
Article
Formation of Homogeneous Nanostructure via Interference of Square Flattop Femtosecond Laser Pulses
by Takemasa Sumimoto and Godai Miyaji
Nanomaterials 2025, 15(5), 355; https://doi.org/10.3390/nano15050355 - 25 Feb 2025
Viewed by 817
Abstract
We report on the formation of homogeneous nanostructures using a two-step ablation process with square flattop beams of femtosecond (fs) laser pulses. The Gaussian beam output from a ytterbium fs laser system was converted to a square flattop beam by a refractive beam [...] Read more.
We report on the formation of homogeneous nanostructures using a two-step ablation process with square flattop beams of femtosecond (fs) laser pulses. The Gaussian beam output from a ytterbium fs laser system was converted to a square flattop beam by a refractive beam shaper and a square mask. This beam was split into two with a diffraction optical element, and then the downsized beams were spatially and temporally superimposed on a titanium surface. In the first step, the interference fringes of these two beams formed grooves with a period of 1.9 µm through ablation. Next, the surface was irradiated at normal incidence by a single beam to form a homogeneous line-like nanostructure with a period of 490 nm in a 53 μm square area. This nanostructure had a constant period and was formed over 95% of the laser-processed area, indicating that the ratio between the nanostructure and modification area was over six times larger than that for a Gaussian beam. Full article
(This article belongs to the Special Issue Laser-Based Nano Fabrication and Nano Lithography: Second Edition)
Show Figures

Figure 1

27 pages, 8066 KiB  
Article
Tetrahedrite Nanocomposites for High Performance Thermoelectrics
by Rodrigo Coelho, Duarte Moço, Ana I. de Sá, Paulo P. da Luz, Filipe Neves, Maria de Fátima Cerqueira, Elsa B. Lopes, Francisco P. Brito, Panagiotis Mangelis, Theodora Kyratsi and António P. Gonçalves
Nanomaterials 2025, 15(5), 351; https://doi.org/10.3390/nano15050351 - 24 Feb 2025
Viewed by 688
Abstract
Thermoelectric (TE) materials offer a promising solution to reduce green gas emissions, decrease energy consumption, and improve energy management due to their ability to directly convert heat into electricity and vice versa. Despite their potential, integrating new TE materials into bulk TE devices [...] Read more.
Thermoelectric (TE) materials offer a promising solution to reduce green gas emissions, decrease energy consumption, and improve energy management due to their ability to directly convert heat into electricity and vice versa. Despite their potential, integrating new TE materials into bulk TE devices remains a challenge. To change this paradigm, the preparation of highly efficient tetrahedrite nanocomposites is proposed. Tetrahedrites were first prepared by solid state reaction, followed by the addition of MoS2 nanoparticles (NPs) and hot-pressing at 848 K with 56 MPa for a duration of 90 min to obtain nanocomposites. The materials were characterized by XRD, SEM-EDS, and Raman spectroscopy to evaluate the composites’ matrix and NP distribution. To complement the results, lattice thermal conductivity and the weighted mobility were evaluated. The NPs’ addition to the tetrahedrites resulted in an increase of 36% of the maximum figure of merit (zT) comparatively with the base material. This increase is explained by the reduction of the material’s lattice thermal conductivity while maintaining its mobility. Such results highlight the potential of nanocomposites to contribute to the development of a new generation of TE devices based on more affordable and efficient materials. Full article
Show Figures

Figure 1

17 pages, 5843 KiB  
Article
An In Situ Characterisation Method for 3-D Electrospun Foams
by Kyriakos Almpanidis, Chloe J. Howard and Vlad Stolojan
Nanomaterials 2025, 15(5), 339; https://doi.org/10.3390/nano15050339 - 22 Feb 2025
Viewed by 964
Abstract
Three-dimensional electrospun foams are emerging in a diversity of applications. However, their characterisation involves procedures to calculate fibre diameter and porosity, which take considerable time. Hence, in this paper, an in situ characterisation method is presented based on signal features of the grounding [...] Read more.
Three-dimensional electrospun foams are emerging in a diversity of applications. However, their characterisation involves procedures to calculate fibre diameter and porosity, which take considerable time. Hence, in this paper, an in situ characterisation method is presented based on signal features of the grounding voltage. These features are combined into the in situ evaluation parameter Sr for each run r. The L9 Taguchi method was utilised to minimise the total number of experiments. Moreover, to prove the accuracy of this method, the traditional post-fabrication analysis was conducted, and the post-fabrication evaluation parameter was retrieved Qr for each run r. The analysis shows that both parameters detected the same experiment run as the optimal one (with an adjusted R2 = 0.84) for polystyrene electrospun foams for two solution concentrations: 15%wv (run 3 with mean S3 = 54.49 and mean Q3 = 0.248) and 20%wv (mean S5 = 2.49 and Q5 = 0.248), respectively. Also, the statistical analysis shows low standard deviations for the optimal and near-optimal runs, proving the method’s repeatability. Furthermore, a theoretical explanation is provided for selecting signal features based on the Maxwellian equivalent circuit approach for the electrospun jet. Finally, this fast in situ evaluation method can replace the post-fabrication time-consuming one. It can be used as a fundamental step for an intelligent artificial intelligence tool that predicts optimal foam formation. Full article
(This article belongs to the Section Nanofabrication and Nanomanufacturing)
Show Figures

Figure 1

17 pages, 3109 KiB  
Article
Surface Grafting of Graphene Flakes with Fluorescent Dyes: A Tailored Functionalization Approach
by Ylea Vlamidis, Carmela Marinelli, Aldo Moscardini, Paolo Faraci, Stefan Heun and Stefano Veronesi
Nanomaterials 2025, 15(5), 329; https://doi.org/10.3390/nano15050329 - 20 Feb 2025
Viewed by 658
Abstract
The controlled functionalization of graphene is critical for tuning and enhancing its properties, thereby expanding its potential applications. Covalent functionalization offers a deeper tuning of the geometric and electronic structure of graphene compared to non-covalent methods; however, the existing techniques involve side reactions [...] Read more.
The controlled functionalization of graphene is critical for tuning and enhancing its properties, thereby expanding its potential applications. Covalent functionalization offers a deeper tuning of the geometric and electronic structure of graphene compared to non-covalent methods; however, the existing techniques involve side reactions and spatially uncontrolled functionalization, pushing research toward more selective and controlled methods. A promising approach is 1,3-dipolar cycloaddition, successfully utilized with carbon nanotubes. In the present work, this method has been extended to graphene flakes with low defect concentration. A key innovation is the use of a custom-synthesized ylide with a protected amine group (Boc), facilitating subsequent attachment of functional molecules. Indeed, after Boc cleavage, fluorescent dyes (Atto 425, 465, and 633) were covalently linked via NHS ester derivatization. This approach represents a highly selective method of minimizing structural damage. Successful functionalization was demonstrated by Raman spectroscopy, photoluminescence spectroscopy, and confocal microscopy, confirming the effectiveness of the method. This novel approach offers a versatile platform, enabling its use in biological imaging, sensing, and advanced nanodevices. The method paves the way for the development of sensors and devices capable of anchoring a wide range of molecules, including quantum dots and nanoparticles. Therefore, it represents a significant advancement in graphene-based technologies. Full article
Show Figures

Figure 1

20 pages, 6454 KiB  
Article
Variation in Nanocrystalline Phase Content on Mechanical Properties and Wear Resistance of FeCrMoWBRE Amorphous/Nanocrystalline Coating Deposited by High-Velocity Arc Spraying
by Hao Du, Wei Xin, Bo Wang, Ji’an Feng, Xingchuan Xia, Yujiang Wang and Shicheng Wei
Nanomaterials 2025, 15(4), 305; https://doi.org/10.3390/nano15040305 - 17 Feb 2025
Cited by 1 | Viewed by 591
Abstract
The incorporation of a homogeneously distributed nanocrystalline phase in Fe-based amorphous coatings is widely acknowledged to enhance wear resistance across various applications. In this study, FeCrMoWBRE amorphous/nanocrystalline composite coatings were fabricated on 45# steel substrates using high-velocity arc spraying (HVAS). The coatings were [...] Read more.
The incorporation of a homogeneously distributed nanocrystalline phase in Fe-based amorphous coatings is widely acknowledged to enhance wear resistance across various applications. In this study, FeCrMoWBRE amorphous/nanocrystalline composite coatings were fabricated on 45# steel substrates using high-velocity arc spraying (HVAS). The coatings were produced under varying spraying voltages, currents, and distances, following the Taguchi experimental design methodology. The microstructure, mechanical properties, and wear resistance of the coatings were systematically analyzed, with a particular focus on the relationship between nanocrystalline/amorphous phase content and key performance metrics, including microhardness, adhesive strength, and wear rate. A positive correlation was observed between the nanocrystalline phase content and both mechanical properties and wear resistance. The coating with optimized nanocrystalline phase content of 21.4% exhibits the lowest wear rate of 1.39 × 10−7 mm3·N−1·m−1 under a 100 N load and oil lubrication. These findings underscore the critical role of controlling the nanocrystalline phase content in Fe-based amorphous/nanocrystalline composite coatings to maximize wear resistance under oil-lubricated conditions. Full article
(This article belongs to the Special Issue Nano Surface Engineering: 2nd Edition)
Show Figures

Figure 1

11 pages, 2887 KiB  
Article
β-Ga2O3 Thin Films via an Inorganic Sol–Gel Spin Coating: Preparation and Characterization
by Hai Zhang, Dingyuan Niu, Junbiao Yang, Xiaoyang Zhang, Jun Zhu and Wencai Li
Nanomaterials 2025, 15(4), 277; https://doi.org/10.3390/nano15040277 - 12 Feb 2025
Viewed by 962
Abstract
β-Ga2O3 holds significant promise for use in ultraviolet (UV) detectors and high-power devices due to its ultra-wide bandgap. However, the cost-effective preparation of large-area thin films remains challenging. In this study, β-Ga2O3 thin films are prepared using [...] Read more.
β-Ga2O3 holds significant promise for use in ultraviolet (UV) detectors and high-power devices due to its ultra-wide bandgap. However, the cost-effective preparation of large-area thin films remains challenging. In this study, β-Ga2O3 thin films are prepared using an inorganic solution reaction spin-coating method followed by post-annealing. The structures, surface morphologies, and optical properties of the films are then characterized using X-ray diffraction, scanning electron microscopy, and ultraviolet–visible spectrophotometry. A low-cost Ga metal was used to produce NH4Ga(SO4)2, which was then converted into a precursor solution and spin-coated onto sapphire and quartz substrates. Ten cycles of spin coating produced smoother films, although higher annealing temperatures induced more cracks. The films on the (0001) sapphire subjected to spin-coating and preheating processes that were repeated for ten cycles, followed by annealing at 800 °C, had a preferred orientation in the [–201] direction. All the films showed high transmittances of 85% in ultraviolet–visible light with wavelengths above 400 nm. The films on the (0001) sapphire substrate that were annealed at 800 °C and 1000 °C exhibited bandgaps of 4.8 and 4.98 eV, respectively. The sapphire substrates demonstrated a superior compatibility for high-quality Ga2O3 film fabrication compared to quartz. This method offers a cost-effective and efficient approach for producing high-quality β-Ga2O3 films on high-temperature-resistant substrates with promising potential for optoelectronic applications. Full article
(This article belongs to the Special Issue Synthesis and Properties of Metal Oxide Thin Films)
Show Figures

Figure 1

30 pages, 10965 KiB  
Review
Computational Modeling of Properties of Quantum Dots and Nanostructures: From First Principles to Artificial Intelligence (A Review)
by Grzegorz Matyszczak, Krzysztof Krawczyk and Albert Yedzikhanau
Nanomaterials 2025, 15(4), 272; https://doi.org/10.3390/nano15040272 - 11 Feb 2025
Viewed by 1072
Abstract
Nanomaterials, including quantum dots, have gained more and more attention in the past few decades due to their extraordinary properties that make them useful for many applications, ranging from catalysis, energy generation and storage, biotechnology, and medicine to quantum informatics. Mathematical descriptions of [...] Read more.
Nanomaterials, including quantum dots, have gained more and more attention in the past few decades due to their extraordinary properties that make them useful for many applications, ranging from catalysis, energy generation and storage, biotechnology, and medicine to quantum informatics. Mathematical descriptions of the phenomena in which nanostructures are involved are of great demand because they may be utilized for the purpose of controlling these phenomena (e.g., the growth of nanostructures with certain sizes, shapes, and other properties). Such models may be of distinct nature, including calculations from first principles, ordinary and partial differential equations, and machine learning models (including artificial intelligence) as well. The aim of this article is to review the most important and useful computational and mathematical approaches for the description and control of processes involving nanostructures. Full article
(This article belongs to the Section Synthesis, Interfaces and Nanostructures)
Show Figures

Figure 1

26 pages, 2988 KiB  
Article
Sustainable Bacterial Cellulose Production Using Low-Cost Fruit Wastewater Feedstocks
by Cláudia Mouro, Arlindo Gomes, Ana P. Gomes and Isabel C. Gouveia
Nanomaterials 2025, 15(4), 271; https://doi.org/10.3390/nano15040271 - 11 Feb 2025
Viewed by 856
Abstract
Bacterial cellulose (BC) is a versatile biopolymer prized for its remarkable water absorption, nanoscale fiber architecture, mechanical robustness, and biocompatibility, making it suitable for diverse applications. Despite its potential, the high cost of conventional fermentation media limits BC’s scalability and wider commercial use. [...] Read more.
Bacterial cellulose (BC) is a versatile biopolymer prized for its remarkable water absorption, nanoscale fiber architecture, mechanical robustness, and biocompatibility, making it suitable for diverse applications. Despite its potential, the high cost of conventional fermentation media limits BC’s scalability and wider commercial use. This study investigates an economical solution by utilizing fractions from fruit processing wastewater, refined through sequential membrane fractionation, as a supplement to commercial HS medium for BC production. BC films were thoroughly characterized using Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), X-ray diffraction (XRD), differential scanning calorimetry (DSC), and assessments of mechanical properties and water holding capacity (WHC). FTIR confirmed the BC structure, while TEM validated its nanofibrillar 3D network. XRD analysis revealed a slight increasing trend in crystallinity with the addition of wastewater fractions, and DSC revealed a slight increase in thermal stability for F#6. Adding these fractions notably improved the BC films’ tensile strength, Young’s modulus, and WHC. Overall, the results underscore that fruit processing wastewater fractions can serve as a cost-efficient, eco-friendly alternative to traditional fermentation media. This approach supports circular economy principles by lowering reliance on intensive wastewater treatments, promoting waste valorization, and advancing sustainable production methods for high-value biopolymers. Full article
Show Figures

Graphical abstract

47 pages, 10412 KiB  
Review
Magnetic–Plasmonic Core–Shell Nanoparticles: Properties, Synthesis and Applications for Cancer Detection and Treatment
by Alberto Luis Rodriguez-Nieves, Suprava Shah, Mitchell L. Taylor, Madhusudhan Alle and Xiaohua Huang
Nanomaterials 2025, 15(4), 264; https://doi.org/10.3390/nano15040264 - 10 Feb 2025
Viewed by 1772
Abstract
Nanoparticles have been widely used in cancer diagnostics and treatment research due to their unique properties. Magnetic nanoparticles are popular in imaging techniques due to their ability to alter the magnetization field around them. Plasmonic nanoparticles are mainly applied in cancer treatments like [...] Read more.
Nanoparticles have been widely used in cancer diagnostics and treatment research due to their unique properties. Magnetic nanoparticles are popular in imaging techniques due to their ability to alter the magnetization field around them. Plasmonic nanoparticles are mainly applied in cancer treatments like photothermal therapy due to their ability to convert light into heat. While these nanoparticles are popular among their respective fields, magnetic–plasmonic core–shell nanoparticles (MPNPs) have gained popularity in recent years due to the combined magnetic and optical properties from the core and shell. MPNPs have stood out in cancer theranostics as a multimodal platform capable of serving as a contrast agent for imaging, a guidable drug carrier, and causing cellular ablation through photothermal energy conversion. In this review, we summarize the different properties of MPNPs and the most common synthesis approaches. We particularly discuss applications of MPNPs in cancer diagnosis and treatment based on different mechanisms using the magnetic and optical properties of the particles. Lastly, we look into current challenges they face for clinical applications and future perspectives using MPNPs for cancer detection and therapy. Full article
Show Figures

Figure 1

15 pages, 31853 KiB  
Article
The Effect of Carbon Nanofibers on the Microstructure, Chemistry, and Pore Structure of Concrete Made with Fine Recycled Concrete Aggregates
by Nathanial Buettner, Gass Iyacu, Giovanni Dal Poggetto and Ange-Therese Akono
Nanomaterials 2025, 15(4), 253; https://doi.org/10.3390/nano15040253 - 7 Feb 2025
Cited by 1 | Viewed by 794
Abstract
Recycled aggregate concrete (RAC) is produced using recycled concrete aggregates (RCAs) obtained from crushed old concrete. Although RCAs offer a sustainable alternative to natural aggregates, the poor durability and mechanical performance of RAC limit its widespread application. This study investigated the enhancement of [...] Read more.
Recycled aggregate concrete (RAC) is produced using recycled concrete aggregates (RCAs) obtained from crushed old concrete. Although RCAs offer a sustainable alternative to natural aggregates, the poor durability and mechanical performance of RAC limit its widespread application. This study investigated the enhancement of RAC’s durability and performance through the incorporation of carbon nanofibers (CNFs). A novel processing method was developed to prepare high-slump CNF-modified RAC, and its chemistry, pore structure, and microstructure were analyzed using backscattered scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), X-ray powder diffraction (XRD), and mercury intrusion porosimetry (MIP). The results showed that CNFs significantly reduced the porosity and permeability, with a decrease in the porosity by 9.0 wt.% and a decrease in the water permeability by 39.3% at an optimal CNF dosage of 0.5% by weight. Furthermore, CNFs promoted the formation of calcium hydroxide and enhanced the densification of the calcium silicate hydrate (C-S-H) matrix, leading to improved resistance against environmental stressors. These findings provide a critical pathway for designing sustainable, high-durability RAC for structural applications. Full article
(This article belongs to the Section Physical Chemistry at Nanoscale)
Show Figures

Figure 1

19 pages, 2959 KiB  
Review
Nanoimprinted Materials for Nanoparticle Sensing and Removal
by Lavinia Doveri, Azhar Mahmood and Piersandro Pallavicini
Nanomaterials 2025, 15(3), 243; https://doi.org/10.3390/nano15030243 - 5 Feb 2025
Viewed by 676
Abstract
The booming expansion of nanotechnology poses the problem of environmental pollution by nanoparticles (NPs). The available methods for sensing and removing NPs from the environment are typically lengthy and instrumentally demanding. The recent introduction of NP-imprinted polymers (NPIPs), either as films or bulk [...] Read more.
The booming expansion of nanotechnology poses the problem of environmental pollution by nanoparticles (NPs). The available methods for sensing and removing NPs from the environment are typically lengthy and instrumentally demanding. The recent introduction of NP-imprinted polymers (NPIPs), either as films or bulk materials, is an important step toward the simple and fast sensing and removal of NPs from water and air. Similarly to the well-established molecularly imprinted polymers, in NPIPs, an organic or inorganic polymeric material is first obtained with embedded NPs. Then, the NPs are chemically or physically removed by acting as a template, i.e., leaving a polymeric matrix with cavities of the same shape and dimensions. After the first examples were published in 2014, the literature has so far reported an increasing number of NPIPs that are capable of reuptaking NPs from water (or, more rarely, air), with remarkable size and shape selectivity. By laying an NPIP layer on a reporter (typically an electrode), devices are obtained that are capable of sensing NPs. On the other hand, bulk NPIPs can reuptake massive amounts of NPs and have been used for the quantitative removal of NPs from water. This review begins with an overview of NP-imprinted hollow capsules, which can be considered the ancestors of NPIPs, both as conception and as preparative methods. Then, the literature on NPIPs is reviewed. Finally, the possible evolutions of NPIPs are highlighted from the perspective of stepping toward their real-life, field use. Full article
Show Figures

Figure 1

19 pages, 7331 KiB  
Article
Protective Effect of Carbon Dots Derived from Salvia miltiorrhiza Pretreatment in Acute Myocardial Infarction in Rats
by Liyang Dong, Menghan Li, Tianyou Cao, Yafang Zhao, Shuxian Wang, Peng Zou, Yue Zhang, Huihua Qu, Yan Zhao and Hui Kong
Nanomaterials 2025, 15(3), 242; https://doi.org/10.3390/nano15030242 - 5 Feb 2025
Viewed by 877
Abstract
Acute myocardial infarction is an ischemic injury of the myocardium caused by an imbalance in the blood supply to myocardial tissues, which poses a serious threat to human life and health. Oxidative stress has been recognized as a significant contributor to acute myocardial [...] Read more.
Acute myocardial infarction is an ischemic injury of the myocardium caused by an imbalance in the blood supply to myocardial tissues, which poses a serious threat to human life and health. Oxidative stress has been recognized as a significant contributor to acute myocardial infarction. Salvia miltiorrhiza Carbonisata (SMC) is among the most frequently employed herbal remedies for the treatment of acute myocardial infarction; however, the exact identity of its principal active constituents is not well defined. Research indicates that carbon dots (CDs) exhibit significant biological properties. Consequently, we initially synthesized carbon dots (CDs) from Salvia miltiorrhiza Carbonisata, with the objective of exploring how SMC-CDs mitigate isoproterenol (ISO)-induced myocardial infarction (MI) in rats. The results showed that the pretreatment with SMC-CDs markedly enhanced compromised cardiac function, mitigated myocardial fibrosis and the infiltration of inflammatory cells, decreased the size of the infarct, and suppressed cardiomyocyte apoptosis. Furthermore, the antioxidant properties of myocardial tissue were enhanced, and oxidative stress caused by free radicals was effectively mitigated by SMC-CDs, which succeeded in reducing levels of myocardial enzymes and elevating the activity of relevant ATPases. This implies that SMC-CDs could be a potential candidate for novel nanomedicine strategies designed to address cardiovascular ailments. Full article
(This article belongs to the Section Biology and Medicines)
Show Figures

Figure 1

17 pages, 8357 KiB  
Article
Aluminum–Silica Core–Shell Nanoparticles via Nonthermal Plasma Synthesis
by Thomas Cameron, Bailey Klause, Kristine Q. Loh and Uwe R. Kortshagen
Nanomaterials 2025, 15(3), 237; https://doi.org/10.3390/nano15030237 - 4 Feb 2025
Viewed by 903
Abstract
Aluminum nanoparticles (Al NPs) are interesting for energetic and plasmonic applications due to their enhanced size-dependent properties. Passivating the surface of these particles is necessary to avoid forming a native oxide layer, which can degrade energetic and optical characteristics. This work utilized a [...] Read more.
Aluminum nanoparticles (Al NPs) are interesting for energetic and plasmonic applications due to their enhanced size-dependent properties. Passivating the surface of these particles is necessary to avoid forming a native oxide layer, which can degrade energetic and optical characteristics. This work utilized a radiofrequency (RF)-driven capacitively coupled argon/hydrogen plasma to form surface-modified Al NPs from aluminum trichloride (AlCl3) vapor and 5% silane in argon (dilute SiH4). Varying the power and dilute SiH4 flow rate in the afterglow of the plasma led to the formation of varying nanoparticle morphologies: Al–SiO2 core–shell, Si–Al2O3 core–shell, and Al–Si Janus particles. Scanning transmission electron microscopy with a high-angle annular dark-field detector (STEM-HAADF) and energy-dispersive X-ray spectroscopy (EDS) were employed for characterization. The surfaces of the nanoparticles and sample composition were characterized and found to be sensitive to changes in RF power input and dilute SiH4 flow rate. This work demonstrates a tunable range of Al–SiO2 core–shell nanoparticles where the Al-to-Si ratio could be varied by changing the plasma parameters. Thermal analysis measurements performed on plasma-synthesized Al, crystalline Si, and Al–SiO2 samples are compared to those from a commercially available 80 nm Al nanopowder. Core–shell particles exhibit an increase in oxidation temperature from 535 °C for Al to 585 °C for Al–SiO2. This all-gas-phase synthesis approach offers a simple preparation method to produce high-purity heterostructured Al NPs. Full article
(This article belongs to the Section Synthesis, Interfaces and Nanostructures)
Show Figures

Graphical abstract

21 pages, 4668 KiB  
Article
Growth of ZnO Nanoparticles Using Microwave Hydrothermal Method—Search for Defect-Free Particles
by Julita Rosowska, Jarosław Kaszewski, Marcin Krajewski, Artur Małolepszy, Bartłomiej S. Witkowski, Łukasz Wachnicki, Lev-Ivan Bulyk, Piotr Sybilski, Marek Godlewski and Michał M. Godlewski
Nanomaterials 2025, 15(3), 230; https://doi.org/10.3390/nano15030230 - 31 Jan 2025
Viewed by 1130
Abstract
This study investigated the influence of chemical reagent selection on the properties of ZnO nanoparticles synthesized using the microwave-assisted hydrothermal method to control the intensities of near-band-edge (NBE) and defect-related deep-level (DLE) emissions. Two zinc precursors—zinc nitrate and zinc chloride—along with three different [...] Read more.
This study investigated the influence of chemical reagent selection on the properties of ZnO nanoparticles synthesized using the microwave-assisted hydrothermal method to control the intensities of near-band-edge (NBE) and defect-related deep-level (DLE) emissions. Two zinc precursors—zinc nitrate and zinc chloride—along with three different precipitating agents (NaOH, KOH, and NH4OH) were used. ZnO nanoparticles from the ZnCl2 precursor exhibited two orders of magnitude higher NBE/DLE intensity ratio compared to those obtained from zinc nitrate characterized by a higher contribution from defect-related emissions. Chlorine ions in ZnO nanoparticles play a key role in passivating defects by forming V0-Cl2 complexes, quenching luminescence associated with oxygen vacancies (V0). Thermal treatment in a nitrogen atmosphere enhanced defect-related luminescence, possibly due to chlorine atom diffusion. This study highlights a successful synthesis of ZnO nanoparticles with low defect-related luminescence (DLE) achieved via the microwave-assisted hydrothermal method, a result rarely reported in the literature. The results emphasize the importance of reagent selection in controlling the morphology and optical properties, especially the defect density of ZnO nanoparticles. Optimizing these properties is crucial for biomedical applications such as bioimaging, antibacterial treatments, and photocatalysis. Full article
(This article belongs to the Section Synthesis, Interfaces and Nanostructures)
Show Figures

Figure 1

Back to TopTop