nanomaterials-logo

Journal Browser

Journal Browser

Editor’s Choice Articles

Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal.

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 2177 KB  
Article
A Sweat Cortisol Sensor Based on Gold-Modified Molecularly Imprinted Polymer
by Ziyu Liu, Guangzhong Xie, Jing Li, Hong Yuan and Yuanjie Su
Nanomaterials 2025, 15(21), 1654; https://doi.org/10.3390/nano15211654 - 30 Oct 2025
Viewed by 688
Abstract
Approximately 3.8% of the global population suffers from depressive disorders, posing a substantial public health challenge exacerbated by the COVID-19 pandemic due to widespread unemployment and prolonged social isolation. The difficulty in objectively quantifying psychological states underscores the need for effective stress assessment [...] Read more.
Approximately 3.8% of the global population suffers from depressive disorders, posing a substantial public health challenge exacerbated by the COVID-19 pandemic due to widespread unemployment and prolonged social isolation. The difficulty in objectively quantifying psychological states underscores the need for effective stress assessment methods. Herein, we developed a portable electrochemical cortisol sensor (PECS) for accurate mental stress assessment. The PECS consists of a screen-printed carbon electrode decorated with gold nanoparticles and a molecularly imprinted polymer (MIP) synthesized via electropolymerization. The as-prepared PECS demonstrates a wide and linear detection range from 1 fM to 1 μM, an ultra-low detection limit of 0.4112 fM and a high sensitivity of 15.518 nA∙lg(nM−1)∙cm−2. This work provides new possibility of developing soft bioelectronics for non-invasive and real-time mental health monitoring. Full article
(This article belongs to the Special Issue Application of Nanoscale Smart Textiles in Wearable Sensors)
Show Figures

Figure 1

26 pages, 5510 KB  
Article
One-Step Synthesized Folic Acid-Based Carbon Dots: A Biocompatible Nanomaterial for the Treatment of Bacterial Infections in Lung Pathologies
by Gennaro Longobardo, Francesca Della Sala, Giuseppe Marino, Marco Barretta, Mario Forte, Rubina Paradiso, Giorgia Borriello and Assunta Borzacchiello
Nanomaterials 2025, 15(21), 1657; https://doi.org/10.3390/nano15211657 - 30 Oct 2025
Viewed by 674
Abstract
Bacterial infections are a major complication in chronic obstructive pulmonary disease (COPD) and acute respiratory distress syndrome (ARDS), where mucus accumulation and pH fluctuations further hinder treatment. Nanostructured systems such as carbon dots (CDs) are increasingly investigated as antimicrobial agents due to their [...] Read more.
Bacterial infections are a major complication in chronic obstructive pulmonary disease (COPD) and acute respiratory distress syndrome (ARDS), where mucus accumulation and pH fluctuations further hinder treatment. Nanostructured systems such as carbon dots (CDs) are increasingly investigated as antimicrobial agents due to their scalability, low cost, and biocompatibility, compared to conventional antibiotics. Here, CDs were synthesized by a one-step microwave-assisted method at three reaction temperatures (130 °C, 170 °C, and 185 °C, named LT-CDs, MT-CDs, HT-CDs, respectively) to explore the effect of carbonization on their structure and function. TEM, Raman, and FTIR analyses were employed to investigate the size and distribution of carbon groups. UV–vis confirmed distinct pH-dependent spectral responses, and mucoadhesion studies revealed stronger and more stable interactions for MT-CDs. Biological assays demonstrated high biocompatibility across all samples on lung fibroblasts, while antimicrobial tests highlighted a selective effect against Staphylococcus aureus, due to ROS generation. Overall, MT-CDs represented the best compromise in terms of size, functionalization, biocompatibility, mucoadhesion, and antimicrobial activity, emerging as promising nanoplatforms for respiratory infection management in COPD and ARDS. Full article
(This article belongs to the Section Biology and Medicines)
Show Figures

Figure 1

23 pages, 5468 KB  
Article
Thermal, Structural, and Morphological Analysis of ZnFe2O4 Embedded and Non-Embedded in a SiO2 Matrix for Magnetic and Photocatalytic Applications
by Thomas Dippong, Anamaria-Magdalena Savolszki-Madaras, Raul Marius Reiz, Ioan Petean and Oana Cadar
Nanomaterials 2025, 15(21), 1644; https://doi.org/10.3390/nano15211644 - 28 Oct 2025
Viewed by 519
Abstract
This study compares the structural, morphological, magnetic, and photocatalytic properties of a pure SiO2 matrix, a ZnFe2O4-doped SiO2 nanocomposite (both synthesized via the sol-gel method), and bulk ZnFe2O4 produced by thermal decomposition. Thermogravimetric analysis [...] Read more.
This study compares the structural, morphological, magnetic, and photocatalytic properties of a pure SiO2 matrix, a ZnFe2O4-doped SiO2 nanocomposite (both synthesized via the sol-gel method), and bulk ZnFe2O4 produced by thermal decomposition. Thermogravimetric analysis (TGA) reveals that metal oxalates form below 200 °C and decompose into metal oxides, which subsequently form ferrite. Fourier-transform infrared (FTIR) spectroscopy confirms the embedding of both undoped and ZnFe2O4-doped nanoparticles into the SiO2 matrix at all investigated annealing temperatures. X-ray diffraction (XRD) consistently reveals the formation of crystalline ZnFe2O4, with the crystallite size increasing from 48 to 93 nm upon annealing. Atomic force microscopy (AFM) shows spherical ferrite nanoparticles surrounded by an amorphous layer, with particle growth observed at higher temperatures. Structural parameters derived from XRD (e.g., crystallite size, density, porosity, lattice constant, unit cell volume) and AFM (e.g., particle size, coating thickness) as well as magnetic parameters (saturation magnetization, remanence, anisotropy, coercivity) demonstrate clear dependence on both dopant presence and annealing temperature. Magnetic measurements reveal enhanced properties with increasing ferrite content and heat treatment, with a transition from superparamagnetic behavior at 700 °C to ferrimagnetic behavior above 1000 °C. Scavenger experiments confirmed the involvement of holes, hydroxyl radicals, and superoxide radicals in the photocatalytic process. The photocatalytic efficiency, as evaluated by the Rhodamine B degradation under visible light, highlights the promising potential of the obtained nanocomposite for advanced environmental and technological applications. Full article
Show Figures

Figure 1

13 pages, 1798 KB  
Article
Direct Synthesis of Single-Crystalline Bilayer Graphene on Dielectric Substrate
by Zuoquan Tan, Xianqin Xing, Yimei Fang, Le Huang, Shunqing Wu, Zhiyong Zhang, Le Wang, Xiangping Chen and Shanshan Chen
Nanomaterials 2025, 15(21), 1629; https://doi.org/10.3390/nano15211629 - 25 Oct 2025
Viewed by 583
Abstract
Direct growth of high-quality, Bernal-stacked bilayer graphene (BLG) on dielectric substrates is crucial for electronic and optoelectronic devices, yet it remains hindered by poor film quality, uncontrollable thickness, and high-density grain boundaries. In this work, a facile, catalyst-assisted method to grow high-quality, single-crystalline [...] Read more.
Direct growth of high-quality, Bernal-stacked bilayer graphene (BLG) on dielectric substrates is crucial for electronic and optoelectronic devices, yet it remains hindered by poor film quality, uncontrollable thickness, and high-density grain boundaries. In this work, a facile, catalyst-assisted method to grow high-quality, single-crystalline BLG directly on dielectric substrates (SiO2/Si, sapphire, and quartz) was demonstrated. A single-crystal monolayer graphene template was first employed as a seed layer to facilitate the homoepitaxial synthesis of single-crystalline BLG directly on insulating substrates. Nanostructure Cu powders were used as the remote catalysis to provide long-lasting catalytic activity during the graphene growth. Transmission electron microscopy confirms the single-crystalline nature of the resulting BLG domains, which validates the superiority of the homoepitaxial growth technique. Raman spectroscopy and electrical measurement results indicate that the quality of the as-grown BLG is comparable to that on metal substrate surfaces. Field-effect transistors fabricated directly on the as-grown BLG/SiO2/Si showed a room temperature carrier mobility as high as 2297 ± 3 cm2 V−1 s−1, which is comparable to BLG grown on Cu and much higher than that reported on in-sulators. Full article
Show Figures

Graphical abstract

13 pages, 2821 KB  
Article
Magnet-Free Nonreciprocal Edge Plasmons in Optically Pumped Bilayer Graphene
by Seongjin Ahn
Nanomaterials 2025, 15(21), 1622; https://doi.org/10.3390/nano15211622 - 24 Oct 2025
Viewed by 368
Abstract
Recent theoretical studies have shown that gapped Dirac materials (such as gapped monolayer graphene) optically pumped with circularly polarized light can host edge-localized plasmon modes with nonreciprocal dispersions driven by valley population imbalance. Here, we extend this framework to Bernal-stacked bilayer graphene. Using [...] Read more.
Recent theoretical studies have shown that gapped Dirac materials (such as gapped monolayer graphene) optically pumped with circularly polarized light can host edge-localized plasmon modes with nonreciprocal dispersions driven by valley population imbalance. Here, we extend this framework to Bernal-stacked bilayer graphene. Using the Wiener–Hopf method, we compute the exact edge plasmon dispersion, confinement length, and electric potential. Our results show that bilayer graphene exhibits stronger nonreciprocity in edge plasmons, requiring approximately one order of magnitude lower pump amplitude to achieve splitting compared with monolayer Dirac systems. Furthermore, the gate-tunable energy gap of bilayer graphene provides an additional degree of control, positioning optically pumped bilayer graphene as a versatile platform for magnet-free nonreciprocal plasmonics. Full article
(This article belongs to the Section 2D and Carbon Nanomaterials)
Show Figures

Figure 1

8 pages, 2022 KB  
Article
Fabrications of Fully Transparent Gallium Oxide Solar-Blind Photodetectors
by Li-Wen Wang, Tai-Yu Wu and Sheng-Yuan Chu
Nanomaterials 2025, 15(21), 1614; https://doi.org/10.3390/nano15211614 - 23 Oct 2025
Viewed by 440
Abstract
This article presents a remarkable achievement: a gallium oxide-based, non-metallic, fully transparent, and self-powered solar-blind ultraviolet photodetector. We have replaced the traditional metal electrode with gallium-doped zinc oxide (GZO), a transparent conductive oxide, for this transparent purpose. Gallium oxide, a wide-bandgap material suitable [...] Read more.
This article presents a remarkable achievement: a gallium oxide-based, non-metallic, fully transparent, and self-powered solar-blind ultraviolet photodetector. We have replaced the traditional metal electrode with gallium-doped zinc oxide (GZO), a transparent conductive oxide, for this transparent purpose. Gallium oxide, a wide-bandgap material suitable for solar-blind detection, is used as the active layer. Glass and natural mica are used for the transparent substrate. The gallium oxide thin film is deposited by RF sputtering at room temperature, with polycrystalline orientation, and the top integrated GZO electrode is also prepared at room temperature using the same technique. This simple two-layer structure device maintains a transmittance of over 88% in the visible spectrum for both substrates, a truly impressive performance. Both glass and mica substrates exhibit self-powered photoresponsivity at 265 nm with responsivities of 8.8 × 10−9 and 4.4 × 10−7 (A/W), operating with an externally applied voltage of 1 V and boasting a responsivity of around two orders of magnitude with rise/fall times less than 10 s. An X-ray diffractometer, ultraviolet–visible spectroscopy, semiconductor analysis, and a semiconductor electron microscope are used for material analysis and device performance. This article presents a transparent gallium oxide solar-blind photodetector with a simple structure. Our research explains the exceptional transmittance of non-metal electrodes with gallium oxide solar-blind photodetectors, setting a new standard in the field. Full article
(This article belongs to the Special Issue Graphene and 2D Material-Based Photodetectors)
Show Figures

Figure 1

19 pages, 4246 KB  
Article
Development of a Machine Learning Interatomic Potential for Zirconium and Its Verification in Molecular Dynamics
by Yuxuan Wan, Xuan Zhang and Liang Zhang
Nanomaterials 2025, 15(21), 1611; https://doi.org/10.3390/nano15211611 - 22 Oct 2025
Viewed by 816
Abstract
Molecular dynamics (MD) can dynamically reveal the structural evolution and mechanical response of Zirconium (Zr) at the atomic scale under complex service conditions such as high temperature, stress, and irradiation. However, traditional empirical potentials are limited by their fixed function forms and parameters, [...] Read more.
Molecular dynamics (MD) can dynamically reveal the structural evolution and mechanical response of Zirconium (Zr) at the atomic scale under complex service conditions such as high temperature, stress, and irradiation. However, traditional empirical potentials are limited by their fixed function forms and parameters, making it difficult to accurately describe the multi-body interactions of Zr under conditions such as multi-phase structures and strong nonlinear deformation, thereby limiting the accuracy and generalization ability of simulation results. This paper combines high-throughput first-principles calculations (DFT) with the machine learning method to develop the Deep Potential (DP) for Zr. The developed DP of Zr was verified by performing molecular dynamic simulations on lattice constants, surface energies, grain boundary energies, melting point, elastic constants, and tensile responses. The results show that the DP model achieves high consistency with DFT in predicting multiple key physical properties, such as lattice constants and melting point. Also, it can accurately capture atomic migration, local structural evolution, and crystal structural transformations of Zr under thermal excitation. In addition, the DP model can accurately capture plastic deformation and stress softening behavior in Zr under large strains, reproducing the characteristics of yielding and structural rearrangement during tensile loading, as well as the stress-induced phase transition of Zr from HCP to FCC, demonstrating its strong physical fidelity and numerical stability. Full article
(This article belongs to the Section Theory and Simulation of Nanostructures)
Show Figures

Figure 1

11 pages, 2467 KB  
Article
Scatterers of Non-Electric-Dipole Radiation
by Yafei Li, Zhihui Liu, Shuanglong Cheng, Mansha Li, Jianchao Meng, Tao Jiang, Jiani Li, Zhuangzhuang Xu, Xike Qian, Meng Wang and Ze Li
Nanomaterials 2025, 15(20), 1584; https://doi.org/10.3390/nano15201584 - 17 Oct 2025
Viewed by 419
Abstract
We theoretically demonstrate that nonmagnetic silicon nanodisk dimers, under plane-wave illumination, can achieve electric dipole mode-free by suppressing electric dipole responses at magnetic resonance frequencies through structural parameter tuning. This is enabled by the anapole mode, where destructive interference between Cartesian electric and [...] Read more.
We theoretically demonstrate that nonmagnetic silicon nanodisk dimers, under plane-wave illumination, can achieve electric dipole mode-free by suppressing electric dipole responses at magnetic resonance frequencies through structural parameter tuning. This is enabled by the anapole mode, where destructive interference between Cartesian electric and toroidal dipole moments results in low spherical electric dipole scattering. Furthermore, the magnetic resonance responses in this nanostructure are tunable within the visible spectrum and compatible with current nanofabrication technology. Full article
(This article belongs to the Section Physical Chemistry at Nanoscale)
Show Figures

Figure 1

15 pages, 4211 KB  
Article
Reusable BiOI-Modified CuWO4 Heterojunction Films and Their Excellent Photocatalytic Oxidation Activity of Nanoplastics and Methylene Blue
by Te Hu, Liang Hao, Xiaohui Zhao, Sujun Guan and Yun Lu
Nanomaterials 2025, 15(20), 1579; https://doi.org/10.3390/nano15201579 - 16 Oct 2025
Viewed by 366
Abstract
CuWO4 films were prepared on FTO glass substrates by the hydrothermal method. To improve their photocatalytic activity, the CuWO4 films were further modified with BiOI using the successive ionic layer adsorption and reaction (SILAR) method. Characterization results indicate that BiOI and [...] Read more.
CuWO4 films were prepared on FTO glass substrates by the hydrothermal method. To improve their photocatalytic activity, the CuWO4 films were further modified with BiOI using the successive ionic layer adsorption and reaction (SILAR) method. Characterization results indicate that BiOI and CuWO4 achieved nanoscale mixing and formed a Type II p-n heterojunction. The heterojunction formation not only extends the light absorption threshold of CuWO4 from 530 nm to 660 nm but also enhances the light absorption capacity across the entire solar spectrum. More importantly, the heterojunction formation facilitates the separation and transfer of photogenerated carriers and inhibits the recombination of photogenerated electrons and holes, which is evidenced by the results of PL spectra, photocurrent density, and EIS spectra. Compared with individual CuWO4 films, the photocatalytic activity of BiOI/CuWO4 heterojunction films in degrading the organic dye MB is increased by up to 1.17 times. Additionally, BiOI/CuWO4 heterojunction films exhibit certain activity in the photocatalytic degradation of polystyrene (PS) nanoplastics and are capable of reducing the average particle size of nanoplastics from 425 nm to 325 nm within 80 h. Full article
Show Figures

Graphical abstract

13 pages, 3465 KB  
Article
Raman and Infrared Signatures of Layered Boron Nitride Polytypes: A First-Principles Study
by Priyanka Mishra and Nevill Gonzalez Szwacki
Nanomaterials 2025, 15(20), 1567; https://doi.org/10.3390/nano15201567 - 15 Oct 2025
Viewed by 451
Abstract
We present a study based on first-principles calculations of the vibrational and spectroscopic properties of four types of layered boron nitride (BN) polymorphs: e-BN (AA), h-BN (AA), r-BN (ABC), and b-BN (AB). By using density functional [...] Read more.
We present a study based on first-principles calculations of the vibrational and spectroscopic properties of four types of layered boron nitride (BN) polymorphs: e-BN (AA), h-BN (AA), r-BN (ABC), and b-BN (AB). By using density functional perturbation theory with van der Waals corrections, we calculate phonon frequencies and Raman/infrared (IR) activities at the Γ point and extract specific spectral fingerprints for each stack. In e-BN, we observe a sharp, isolated high-frequency E mode at 1420.9cm1 that is active in both Raman and IR. For h-BN, the characteristic Raman E2g line occurs at 1415.5cm1. The out-of-plane IR-active A2u branch shows a mid-frequency TO/LO pair at 673.5/806.6cm1, which closely matches experimental results. Rhombohedral r-BN has a strong, coincident Raman/IR high-frequency feature (E) at 1418.5cm1, along with a large IR LO partner at 1647.3cm1, consistent with observed Raman and IR signatures. Bernal b-BN displays the most complicated pattern. It combines a robust mid-frequency A2 pair (TO/LO at 697.9/803.5cm1) with multiple high-frequency E modes (TO near 1416.9 and 1428.1cm1, each with LO counterparts). These stack-dependent Raman and IR fingerprints match existing experimental data for h-BN and r-BN and provide clear predictions for e-BN and b-BN. The results offer a consistent framework for identifying and interpreting vibrational spectra in layered sp2 boron nitride and related materials. Full article
(This article belongs to the Special Issue Structure–Property Correlation Studies of Low-Dimensional Materials)
Show Figures

Figure 1

35 pages, 5860 KB  
Review
Preparation Technology, Reactivity and Applications of Nano-Aluminum in Explosives and Propellants: A Review
by Huili Guo, Weipeng Zhang and Weiqiang Pang
Nanomaterials 2025, 15(20), 1564; https://doi.org/10.3390/nano15201564 - 14 Oct 2025
Viewed by 616
Abstract
Aluminum powder is the most commonly used metal fuel in the industry of explosives and propellants. The research progress in preparation technology, reactivity and application of nano-aluminum in explosives and propellants is systematically reviewed in this paper. The preparation technology of nano-aluminum powder [...] Read more.
Aluminum powder is the most commonly used metal fuel in the industry of explosives and propellants. The research progress in preparation technology, reactivity and application of nano-aluminum in explosives and propellants is systematically reviewed in this paper. The preparation technology of nano-aluminum powder includes mechanical pulverization technology (such as the ball milling method and ultrasonic ablation method, etc.), evaporation condensation technology (such as the laser induction composite heating method, high-frequency induction method, arc method, pulsed laser ablation method, resistance heating condensation method, gas-phase pyrolysis method, wire explosion pulverization method, etc.), chemical reduction technology (such as the solid-phase reduction method, solution reduction method, etc.) and the ionic liquid electrodeposition method, each of which has its own advantages. Some new preparation methods have emerged, providing important reference value for the large-scale production of high-purity, high-quality nano-aluminum powder. The reactivity differences between nano-aluminum powder and micro-aluminum powder are compared in the thesis. It is clear that the reactivity of nano-aluminum powder is much higher than that of micro-aluminum powder in terms of ignition performance, combustion performance and reaction completeness, and it has a stronger influence on the detonation performance of mixed explosives and the combustion performance of propellants. Nano-aluminum powder is highly prone to oxidation, which seriously affects its application efficiency. In addition, when aluminum powder oxidizes or burns, a surface oxide layer will be formed, which hinders the continued reaction of internal aluminum powder. In addition, nano-aluminum powder may deteriorate the preparation process of explosives or propellants. To improve these shortcomings, appropriate coating or modification treatment is required. The application of nano-aluminum powder in mixed explosives can improve many properties of mixed explosives, such as detonation velocity, detonation heat, peak value of shock wave overpressure, etc. Applying nano-aluminum powder to propellants can significantly increase the burning rate and improve the properties of combustion products. It is pointed out that the high reactivity of nano-aluminum powder makes the preparation and storage of high-purity nano-aluminum powder extremely difficult. It is recommended to increase research on the preparation and storage technology of high-purity nano-aluminum powder. Full article
Show Figures

Figure 1

16 pages, 2022 KB  
Article
Assessing the Chronic Environmental Risk of Graphene Oxide Using a Multimarker Approach Across Three Trophic Levels of the Aquatic Ecosystem
by Ildikó Fekete-Kertész, Krisztina László, Anna Bulátkó, Benjámin Gyarmati, Zoltán Molnár and Mónika Molnár
Nanomaterials 2025, 15(20), 1553; https://doi.org/10.3390/nano15201553 - 12 Oct 2025
Viewed by 620
Abstract
With the rapid increase in the synthesis and application of graphene oxide (GO), questions have emerged about its inadvertent entry into aquatic habitats and the ecological consequences associated with such exposure While several studies have addressed the acute effects of GO, knowledge on [...] Read more.
With the rapid increase in the synthesis and application of graphene oxide (GO), questions have emerged about its inadvertent entry into aquatic habitats and the ecological consequences associated with such exposure While several studies have addressed the acute effects of GO, knowledge on its chronic impacts across multiple trophic levels remains limited. In this study, we assessed the chronic toxicity of a well-characterized GO product using model organisms representing three trophic levels: the bioluminescent marine bacterium Aliivibrio fischeri, unicellular green algae (Chlamydomonas reinhardtii, Chlorella vulgaris, Desmodesmus subspicatus), the cyanobacterium Synechococcus elongatus, and the freshwater cladoceran Daphnia magna. Endpoints included bioluminescence inhibition in bacteria, growth inhibition in photosynthetic primary producers, and reproduction and refined physiological parameters (heart rate, feeding activity) in D. magna. Our results demonstrated clear concentration-dependent chronic effects of GO, with A. fischeri, the applied photosynthetic primary producers and D. magna exhibiting significant inhibition of bioluminescence, growth, delayed onset of reproduction, and reduced fitness parameters, respectively. Based on the collected data, a comprehensive ecotoxicological risk assessment was carried out, revealing that pristine GO may pose negligible hazard to aquatic ecosystems under environmentally relevant exposure scenarios. The outcomes clearly demonstrate the relevance of incorporating chronic and multi-trophic effects when evaluating the ecological risks of emerging nanomaterials such as GO. Full article
(This article belongs to the Special Issue Progress of Emerging Nanomaterials in Ecotoxicity and Biotoxicity)
Show Figures

Figure 1

15 pages, 2457 KB  
Article
Efficient Tuning of the Third-Order Nonlinear Optical Properties of Some Functionalized Boron-Dipyrromethene Dyes
by Ioannis Orfanos, Panagiotis Aloukos, Antonia Kaloudi-Chantzea, George Pistolis and Stelios Couris
Nanomaterials 2025, 15(20), 1549; https://doi.org/10.3390/nano15201549 - 11 Oct 2025
Viewed by 428
Abstract
In the present work, the third-order nonlinear optical (NLO) response of some recently synthesized, functionally substituted Boron–Dipyrromethene (BODIPY) derivatives is studied, and their nonlinear optical properties are investigated using the Z-scan technique, employing 4 ns, visible (532 nm) and near-infrared (1064 nm) laser [...] Read more.
In the present work, the third-order nonlinear optical (NLO) response of some recently synthesized, functionally substituted Boron–Dipyrromethene (BODIPY) derivatives is studied, and their nonlinear optical properties are investigated using the Z-scan technique, employing 4 ns, visible (532 nm) and near-infrared (1064 nm) laser excitation. The present findings demonstrate the importance of functionalization of the BODIPY core and the versatility it offers for the modification of the photophysical properties of these chromophores, allowing for the very efficient tuning of both the magnitude and the sign of the nonlinear absorption and refraction of the BODIPYs, making them very promising materials for several optoelectronic applications. The obtained results are discussed and compared with the results of other similar BODIPYs reported in the literature. Full article
(This article belongs to the Special Issue Nonlinear Optics in Low-Dimensional Nanomaterials (Second Edition))
Show Figures

Figure 1

12 pages, 4803 KB  
Article
Facile Green Synthesis of N-Type InP Thin-Film Photoanodes with Enhanced Photoelectrochemical Performance for Solar Hydrogen Generation
by Ying-Chu Chen, Heng-Yi Lin and Yu-Kuei Hsu
Nanomaterials 2025, 15(20), 1544; https://doi.org/10.3390/nano15201544 - 10 Oct 2025
Viewed by 457
Abstract
Indium phosphide (InP) is a promising photoactive material for solar-driven hydrogen production owing to its optimal bandgap, high carrier mobility, and broad solar absorption. However, conventional InP fabrication relies on costly wafers and toxic precursors, limiting its scalability and sustainability. Here, we demonstrate [...] Read more.
Indium phosphide (InP) is a promising photoactive material for solar-driven hydrogen production owing to its optimal bandgap, high carrier mobility, and broad solar absorption. However, conventional InP fabrication relies on costly wafers and toxic precursors, limiting its scalability and sustainability. Here, we demonstrate a simple and environmentally friendly route to synthesize n-type InP thin-film photoanodes by phosphidating indium films prepared via doctor blade coating on ITO substrates, using NaH2PO2 as a phosphorus source. Structural and spectroscopic analyses (XRD, Raman, XPS, PL) confirmed the successful formation of crystalline InP with optimum quality at 425 °C. Photoelectrochemical measurements revealed a significant photocurrent density of 1.8 mA·cm−2 under AM 1.5 illumination, with extended photoresponse into the near-infrared region. Mott–Schottky and EIS analyses indicated efficient charge separation, low transfer resistance, and unintentional n-type doping due to Sn diffusion from the ITO substrate. This facile and green synthesis route not only provides a scalable approach to III–V semiconductors but also highlights InP thin films as cost-effective and efficient photoanodes for sustainable solar hydrogen generation. Full article
(This article belongs to the Section Energy and Catalysis)
Show Figures

Figure 1

40 pages, 4694 KB  
Review
Review of the Current State of Optical Characterization and Design of Electronic States in Plasmonic Materials—From Noble Metals to Silverene and Goldene
by Rosen Todorov and Temenuga Hristova-Vasileva
Nanomaterials 2025, 15(20), 1548; https://doi.org/10.3390/nano15201548 - 10 Oct 2025
Viewed by 2401
Abstract
Materials’ plasmon activity is defined by their electronic structure. Nowadays, the application of plasmonic materials is increasingly determined by the possibilities to control the electronic processes in them. The electronic structure’s design is of particular importance for tuning the plasmon frequency and the [...] Read more.
Materials’ plasmon activity is defined by their electronic structure. Nowadays, the application of plasmonic materials is increasingly determined by the possibilities to control the electronic processes in them. The electronic structure’s design is of particular importance for tuning the plasmon frequency and the excitation of hot electrons, which are important parameters determining the interaction of the nanostructures with the environment. The effective control of these parameters is important for the improvement of the efficiency and sensitivity of various processes, diagnostic methods and technologies in the field of photocatalysis and surface enhancement spectroscopies. This review is focused on the characterization techniques and the approaches for tuning the electronic states of plasmonic media. The diversity of materials and their electronic structure determine the approach for the engineering of the electronic structure. In the case of noble metals, the possibility for tuning the energy for interband transitions from their d band is considered by using intermetallic alloys (between noble metals themselves and with an addition of post-transition metals in them), while in semiconductor materials—the effect of charge transfer is mainly used. Such knowledge is not only essential from a practical point of view, but also contributes to understanding the processes in the field of new materials such as 2D noble metals and intermetallics. Full article
(This article belongs to the Special Issue Optical Properties of Plasmonic Nanostructures)
Show Figures

Figure 1

45 pages, 2323 KB  
Review
Magnetic Hyperthermia with Iron Oxide Nanoparticles: From Toxicity Challenges to Cancer Applications
by Ioana Baldea, Cristian Iacoviță, Raul Andrei Gurgu, Alin Stefan Vizitiu, Vlad Râzniceanu and Daniela Rodica Mitrea
Nanomaterials 2025, 15(19), 1519; https://doi.org/10.3390/nano15191519 - 4 Oct 2025
Cited by 1 | Viewed by 3490
Abstract
Iron oxide nanoparticles (IONPs) have emerged as key materials in magnetic hyperthermia (MH), a minimally invasive cancer therapy capable of selectively inducing apoptosis, ferroptosis, and other cell death pathways while sparing surrounding healthy tissue. This review synthesizes advances in the design, functionalization, and [...] Read more.
Iron oxide nanoparticles (IONPs) have emerged as key materials in magnetic hyperthermia (MH), a minimally invasive cancer therapy capable of selectively inducing apoptosis, ferroptosis, and other cell death pathways while sparing surrounding healthy tissue. This review synthesizes advances in the design, functionalization, and biomedical application of magnetic nanoparticles (MNPs) for MH, highlighting strategies to optimize heating efficiency, biocompatibility, and tumor targeting. Key developments include tailoring particle size, shape, and composition; doping with metallic ions; engineering multicore nanostructures; and employing diverse surface coatings to improve colloidal stability, immune evasion, and multifunctionality. We discuss preclinical and clinical evidence for MH, its integration with chemotherapy, radiotherapy, and immunotherapy, and emerging theranostic applications enabling simultaneous imaging and therapy. Special attention is given to the role of MNPs in immunogenic cell death induction and metastasis prevention, as well as novel concepts for circulating tumor cell capture. Despite promising results in vitro and in vivo, clinical translation remains limited by insufficient tumor accumulation after systemic delivery, safety concerns, and a lack of standardized treatment protocols. Future progress will require interdisciplinary innovations in nanomaterial engineering, active targeting technologies, and real-time treatment monitoring to fully integrate MH into multimodal cancer therapy and improve patient outcomes. Full article
(This article belongs to the Section Biology and Medicines)
Show Figures

Graphical abstract

13 pages, 2339 KB  
Article
Preparation of Silk Fibroin–Carboxymethyl Cellulose Composite Binder and Its Application in Silicon-Based Anode for Lithium-Ion Batteries
by Shuai Huang, Ruyi Wang, Mingke Lei, Qingxuan Geng, Qingwei Li, Jiwei Zhang and Jingwei Zhang
Nanomaterials 2025, 15(19), 1509; https://doi.org/10.3390/nano15191509 - 2 Oct 2025
Viewed by 682
Abstract
The molecular structure and mechanical resilience of the binder are crucial for mitigating volume expansion, maintaining electrode structural integrity, and enhancing the cycling stability of silicon-based anode materials in lithium-ion batteries. In this study, from the perspective of binder molecular structural design, commercial [...] Read more.
The molecular structure and mechanical resilience of the binder are crucial for mitigating volume expansion, maintaining electrode structural integrity, and enhancing the cycling stability of silicon-based anode materials in lithium-ion batteries. In this study, from the perspective of binder molecular structural design, commercial carboxymethyl cellulose (CMC) was modified with silk protein (SF), which has good mechanical properties and abundant surface functional groups, to address issues such as high brittleness, poor compliance and easy cracking of the electrode structure during charge and discharge cycles, and to enhance the mechanical properties of the CMC-based binder and its interaction with silicon particles, so as to improve the cycle stability of silicon-based materials. The mechanical properties of the CMC binder were significantly improved and the interaction between the binder and the surface of the silicon particles was enhanced by the addition of SF. When the SF content was optimized at 6 wt%, the electrode exhibited the best electrochemical performance, delivering a specific capacity of 1182 mAh/g at a high current density of 5000 mA/g, and retaining a capacity of 1138 mAh/g after 50 cycles at 1000 mA/g, demonstrating excellent electrochemical durability. Full article
(This article belongs to the Section Energy and Catalysis)
Show Figures

Figure 1

15 pages, 2241 KB  
Article
Vertically Aligned Carbon Nanotubes Grown on Copper Foil as Electrodes for Electrochemical Double Layer Capacitors
by Chinaza E. Nwanno, Ram Chandra Gotame, John Watt, Winson Kuo and Wenzhi Li
Nanomaterials 2025, 15(19), 1506; https://doi.org/10.3390/nano15191506 - 1 Oct 2025
Viewed by 977
Abstract
This study reports a binder-free, catalyst-free method for fabricating vertically aligned carbon nanotubes (VACNTs) directly on copper (Cu) foil using plasma-enhanced chemical vapor deposition (PECVD) for electrochemical double-layer capacitor (EDLC) applications. This approach eliminates the need for catalyst layers, polymeric binders, or substrate [...] Read more.
This study reports a binder-free, catalyst-free method for fabricating vertically aligned carbon nanotubes (VACNTs) directly on copper (Cu) foil using plasma-enhanced chemical vapor deposition (PECVD) for electrochemical double-layer capacitor (EDLC) applications. This approach eliminates the need for catalyst layers, polymeric binders, or substrate pre-treatments, simplifying electrode design and enhancing electrical integration. The resulting VACNTs form a dense, uniform, and porous array with strong adhesion to the Cu substrate, minimizing contact resistance and improving conductivity. Electrochemical analysis shows gravimetric specific capacitance (Cgrav) and areal specific capacitance (Careal) of 8 F g−1 and 3.5 mF cm−2 at a scan rate of 5 mV/s, with low equivalent series resistance (3.70 Ω) and charge transfer resistance (0.48 Ω), enabling efficient electron transport and rapid ion diffusion. The electrode demonstrates excellent rate capability and retains 92% of its initial specific capacitance after 3000 charge–discharge cycles, indicating strong cycling stability. These results demonstrate the potential of directly grown VACNT-based electrodes for high-performance EDLCs, particularly in applications requiring rapid charge–discharge cycles and sustained energy delivery. Full article
Show Figures

Graphical abstract

45 pages, 10473 KB  
Review
Strategies for Enhancing BiVO4 Photoanodes for PEC Water Splitting: A State-of-the-Art Review
by Binh Duc Nguyen, In-Hee Choi and Jae-Yup Kim
Nanomaterials 2025, 15(19), 1494; https://doi.org/10.3390/nano15191494 - 30 Sep 2025
Viewed by 1600
Abstract
Bismuth vanadate (BiVO4) has attracted significant attention as a photoanode material for photoelectrochemical (PEC) water splitting due to its suitable bandgap (~2.4 eV), strong visible light absorption, chemical stability, and cost-effectiveness. Despite these advantages, its practical application remains constrained by intrinsic [...] Read more.
Bismuth vanadate (BiVO4) has attracted significant attention as a photoanode material for photoelectrochemical (PEC) water splitting due to its suitable bandgap (~2.4 eV), strong visible light absorption, chemical stability, and cost-effectiveness. Despite these advantages, its practical application remains constrained by intrinsic limitations, including poor charge carrier mobility, short diffusion length, and sluggish oxygen evolution reaction (OER) kinetics. This review critically summarizes recent advancements aimed at enhancing BiVO4 PEC performance, encompassing synthesis strategies, defect engineering, heterojunction formation, cocatalyst integration, light-harvesting optimization, and stability improvements. Key fabrication methods—such as solution-based, vapor-phase, and electrochemical approaches—along with targeted modifications, including metal/nonmetal doping, surface passivation, and incorporation of electron transport layers, are discussed. Emphasis is placed on strategies to improve light absorption, charge separation efficiency (ηsep), and charge transfer efficiency (ηtrans) through bandgap engineering, optical structure design, and catalytic interface optimization. Approaches to enhance stability via protective overlayers and electrolyte tuning are also reviewed, alongside emerging applications of BiVO4 in tandem PEC systems and selective solar-driven production of value-added chemicals, such as H2O2. Finally, critical challenges, including the scale-up of electrode fabrication and the elucidation of fundamental reaction mechanisms, are highlighted, providing perspectives for bridging the gap between laboratory performance and practical implementation. Full article
Show Figures

Figure 1

22 pages, 10170 KB  
Review
Bio-Inspired Photocatalytic Nitrogen Fixation: From Nitrogenase Mimicry to Advanced Artificial Systems
by Wenpin Xia, Kaiyang Zhang, Jiewen Hou, Huaiyu Fu, Mingming Gao, Hui-Zi Huang, Liwei Chen, Suqin Han, Yen Leng Pak, Hongyu Mou, Xing Gao and Zhenbin Guo
Nanomaterials 2025, 15(19), 1485; https://doi.org/10.3390/nano15191485 - 29 Sep 2025
Viewed by 1047
Abstract
Photocatalytic nitrogen fixation under ambient conditions offers a sustainable alternative to the energy-intensive Haber–Bosch process, yet remains limited by the inertness of N≡N bonds and sluggish multi-electron/proton transfer kinetics. Nature’s nitrogenase enzymes, featuring the FeMo cofactor and ATP-driven electron cascades, inspire a new [...] Read more.
Photocatalytic nitrogen fixation under ambient conditions offers a sustainable alternative to the energy-intensive Haber–Bosch process, yet remains limited by the inertness of N≡N bonds and sluggish multi-electron/proton transfer kinetics. Nature’s nitrogenase enzymes, featuring the FeMo cofactor and ATP-driven electron cascades, inspire a new generation of artificial systems capable of mimicking their catalytic precision and selectivity. This review systematically summarizes recent advances in bio-inspired photocatalytic nitrogen reduction, focusing on six key strategies derived from enzymatic mechanisms: Fe–Mo–S active site reconstruction, hierarchical electron relay pathways, ATP-mimicking energy modules, defect-induced microenvironments, interfacial charge modulation, and spatial confinement engineering. While notable progress has been made in enhancing activity and selectivity, challenges remain in dynamic regulation, mechanistic elucidation, and system-level integration. Future efforts should prioritize operando characterization, adaptive interface design, and device-compatible catalyst platforms. By abstracting nature’s catalytic logic into synthetic architectures, biomimetic photocatalysis holds great promise for scalable, green ammonia production aligned with global decarbonization goals. Full article
Show Figures

Graphical abstract

25 pages, 8087 KB  
Review
Biochar-Based Remediation of Heavy Metal-Contaminated Soils: Mechanisms, Synergies, and Sustainable Prospects
by Yuxin Wei, Jingjing Ma, Kuankuan Liu, Shuai Zhang and Junqi Wang
Nanomaterials 2025, 15(19), 1487; https://doi.org/10.3390/nano15191487 - 29 Sep 2025
Viewed by 3036
Abstract
This study systematically explores the mechanisms and application potential of biochar in remediating heavy metal-contaminated soils. Particular emphasis is placed on the role of raw materials and pyrolysis conditions in modulating key physicochemical properties of biochar, including its aromatic structure, porosity, cation exchange [...] Read more.
This study systematically explores the mechanisms and application potential of biochar in remediating heavy metal-contaminated soils. Particular emphasis is placed on the role of raw materials and pyrolysis conditions in modulating key physicochemical properties of biochar, including its aromatic structure, porosity, cation exchange capacity, and ash content, which collectively enhance heavy metal immobilization. The direct remediation mechanisms are categorized into six pathways: physical adsorption, electrostatic interactions, precipitation, ion exchange, organic functional group complexation, and redox reactions, with particular emphasis on the reduction in toxic Cr6+ and the oxidation of mobile As3+. In addition to direct interactions, biochar indirectly facilitates remediation by enhancing soil carbon sequestration, improving soil physicochemical characteristics, stimulating microbial activity, and promoting plant growth, thereby generating synergistic effects. The study evaluates combined remediation strategies integrating biochar with phytoremediation and microbial remediation, highlighting their enhanced efficiency. Moreover, practical challenges related to the long-term stability, ecological risks, and economic feasibility in field applications are critically analyzed. By synthesizing recent theoretical advancements and practical findings, this research provides a scientific foundation for optimizing biochar-based soil remediation technologies. Full article
(This article belongs to the Section Environmental Nanoscience and Nanotechnology)
Show Figures

Graphical abstract

10 pages, 2707 KB  
Article
Crystalline Phase-Dependent Emissivity of MoSi2 Nanomembranes for Extreme Ultraviolet Pellicle Applications
by Haneul Kim, Young Woo Kang, Jungyeon Kim, Taeho Lee and Jinho Ahn
Nanomaterials 2025, 15(19), 1488; https://doi.org/10.3390/nano15191488 - 29 Sep 2025
Viewed by 545
Abstract
Extreme ultraviolet (EUV) pellicles must withstand intense thermal stress during exposure due to their limited heat dissipation, which results from their ultrathin geometry and the vacuum environment within EUV scanners. To address this challenge, we investigated the crystalline phase-dependent emissivity of nanometer-thick molybdenum [...] Read more.
Extreme ultraviolet (EUV) pellicles must withstand intense thermal stress during exposure due to their limited heat dissipation, which results from their ultrathin geometry and the vacuum environment within EUV scanners. To address this challenge, we investigated the crystalline phase-dependent emissivity of nanometer-thick molybdenum disilicide (MoSi2) membranes. Membranes exhibiting amorphous, hexagonal, and tetragonal phases were independently prepared via controlled annealing, and their thermal radiation properties were evaluated using heat-load testing under emulated EUV scanner conditions. The Hall effect measurements revealed distinct variations in carrier density and mobility across phases, which were theoretically correlated with emissivity using the Lorentz–Drude model. The results demonstrate that emissivity increases in the hexagonal phase due to increased carrier density and reduced scattering, offering improved thermal radiation performance. These findings establish the phase engineering of conductive silicides as a viable strategy for enhancing radiative cooling in EUV pellicles and offer a theoretical framework applicable to other high-temperature nanomaterials. Full article
(This article belongs to the Section Physical Chemistry at Nanoscale)
Show Figures

Figure 1

27 pages, 8301 KB  
Review
Recent Advances in Nano-Engineered Thermochemical Energy Storage Materials: Morphologies, Characteristics, and Performance
by Zhu Jiang, Wenye Li, Bohao Peng, Shifang Huang and Xiaosong Zhang
Nanomaterials 2025, 15(19), 1476; https://doi.org/10.3390/nano15191476 - 26 Sep 2025
Viewed by 1001
Abstract
Thermochemical energy storage (TCES) has gained significant attention as a high-capacity, long-duration solution for renewable energy integration, yet material-level challenges hinder its widespread adoption. This review for the first time systematically examines recent advancements in nano-engineered composite thermochemical materials (TCMs), focusing on their [...] Read more.
Thermochemical energy storage (TCES) has gained significant attention as a high-capacity, long-duration solution for renewable energy integration, yet material-level challenges hinder its widespread adoption. This review for the first time systematically examines recent advancements in nano-engineered composite thermochemical materials (TCMs), focusing on their ability to overcome intrinsic limitations of conventional systems. Sorption-based TCMs, especially salt hydrates, benefit from nano-engineering through carbon-based additives like CNTs and graphene, which enhance thermal conductivity and reaction kinetics while achieving volumetric energy densities exceeding 200 kWh/m3. For reversible reaction-based systems operating at higher temperatures (250–1000 °C), the strategies include (1) nanoparticle doping (e.g., SiO2, Al2O3, carbonaceous materials) for the mitigation of sintering and agglomeration; (2) flow-improving agents to enhance fluidization; and (3) nanosized structure engineering for an enlarged specific surface area. All these approaches show promising results to address the critical issues of sintering and agglomeration, slow kinetics, and poor cyclic stability for reversible reaction-based TCMs. While laboratory results are promising, challenges still persist in side reactions, scalability, cost reduction, and system integration. In general, while nano-engineered thermochemical materials (TCMs) demonstrate transformative potential for performance enhancement, significant research and development efforts remain imperative to bridge the gap between laboratory-scale achievements and industrial implementation. Full article
Show Figures

Figure 1

11 pages, 2075 KB  
Article
Highly Selective Isotropic Etching of Si to SiGe Using CF4/O2/N2 Plasma for Advanced GAA Nanosheet Transistor
by Jiayang Li, Xin Sun, Ziqiang Huang and David Wei Zhang
Nanomaterials 2025, 15(19), 1469; https://doi.org/10.3390/nano15191469 - 25 Sep 2025
Viewed by 1211
Abstract
The paradigm shift from FinFET to gate-all-around nanosheet (GAA-NS) transistor architectures necessitates fundamental innovations in channel material engineering. This work addresses the critical challenge of pFET performance degradation in GAA-NS technologies through the development of an advanced selective etching process for strain-engineered SiGe [...] Read more.
The paradigm shift from FinFET to gate-all-around nanosheet (GAA-NS) transistor architectures necessitates fundamental innovations in channel material engineering. This work addresses the critical challenge of pFET performance degradation in GAA-NS technologies through the development of an advanced selective etching process for strain-engineered SiGe channel formation. We present a systematic investigation of Si selective etching using CF4/O2/N2 gas mixture in a remote plasma source reactor. It is demonstrated that the addition of N2 to CF4/O2 plasmas significantly improves the selectivity of Si to SiGe (up to 58), by promoting NO* radical-induced passivation layer disruption on Si surfaces. Furthermore, an increase in the F:O ratio has been shown to mitigate stress-induced lateral micro-trenching (“Si-tip”), achieving near-zero tip length at high CF4 flow (500 sccm) while retaining selectivity (>40). Transmission electron microscopy and energy-dispersive X-ray spectroscopy confirm the complete removal of the Si sacrificial layer with minimal SiGe channel loss, validating the process for high-performance SiGe GAA-NS FET integration. These findings provide critical insights into strain-engineered SiGe channel fabrication, enabling balanced NFET/PFET performance in next-generation semiconductor technologies. Full article
(This article belongs to the Section Nanoelectronics, Nanosensors and Devices)
Show Figures

Figure 1

16 pages, 1418 KB  
Article
Mesoporous Silica Xerogels Prepared by p-toluenesulfonic Acid-Assisted Synthesis: Piperazine-Modification and CO2 Adsorption
by Stela Grozdanova, Ivalina Trendafilova, Agnes Szegedi, Pavletta Shestakova, Yavor Mitrev, Ivailo Slavchev, Svilen Simeonov and Margarita Popova
Nanomaterials 2025, 15(19), 1459; https://doi.org/10.3390/nano15191459 - 23 Sep 2025
Viewed by 506
Abstract
p-toluenesulfonic acid (pTSA) was used for the synthesis of porous silica xerogels while applying different synthesis conditions. Key parameters included acid concentration, drying temperature and the method of acid removal. The resulting organic–inorganic composites were investigated by nitrogen physisorption, X-ray powder diffraction [...] Read more.
p-toluenesulfonic acid (pTSA) was used for the synthesis of porous silica xerogels while applying different synthesis conditions. Key parameters included acid concentration, drying temperature and the method of acid removal. The resulting organic–inorganic composites were investigated by nitrogen physisorption, X-ray powder diffraction (XRD), solid-state NMR and thermal analysis. The results demonstrated that both the drying temperature and quantity of the pTSA significantly influenced the pore structure of the xerogels. The utilization of such strong acids like pTSA yielded high surface area and pore volume, as well as narrow pore size distribution. Environmentally friendly template removal by solvent extraction produced materials with superior textural properties compared to traditional calcination, enabling the recovery and reuse of pTSA with over 95% efficiency. A selected mesoporous silica xerogel was modified by a simple two-step post-synthesis procedure with 1-(2-Hydroxyethyl) piperazine (HEP). High CO2 adsorption capacity was determined for the HEP-modified material in dynamic conditions. The isosteric heat of adsorption revealed the stronger interaction between functional groups and CO2 molecules. Total CO2 desorption could be achieved at 60 °C. Leaching of the silica functional groups could not be detected even after four consecutive adsorption cycles. These findings provide valuable insights into the sustainable synthesis of tunable piperazine-modified mesoporous silica xerogels with potential applications in CO2 capture. Full article
Show Figures

Figure 1

14 pages, 6034 KB  
Article
Tuning Ag Loading and Particle Size in Ag@g-C3N4 Photocatalysts for Selective CO2 Conversion to CO and CH4
by Shicheng Liu, Na Li and Qulan Zhou
Nanomaterials 2025, 15(18), 1443; https://doi.org/10.3390/nano15181443 - 19 Sep 2025
Viewed by 521
Abstract
Elucidating the mechanisms of CO2 photocatalytic conversion systems is crucial for tackling the challenges of carbon neutrality. In this study, a series of Ag@g-C3N4 photocatalysts were constructed with metal particle size modulation as the core strategy to systematically reveal [...] Read more.
Elucidating the mechanisms of CO2 photocatalytic conversion systems is crucial for tackling the challenges of carbon neutrality. In this study, a series of Ag@g-C3N4 photocatalysts were constructed with metal particle size modulation as the core strategy to systematically reveal the modulation mechanism of Ag nanoparticles (Ag NPs) size variation on the selectivity of CO2 photoreduction products. Systematic characterizations revealed that increasing Ag size enhanced visible light absorption, promoted charge separation, and improved CH4 selectivity. Photocatalytic tests showed Ag3.0%@CN achieved optimal activity and electron utilization. Energy band analyses indicated that Ag modification preserved favorable conduction band positions while increasing donor capacity. Further density-functional theory (DFT) calculations reveal that Ag NPs size variations significantly affect the adsorption stability and conversion energy barriers of intermediates such as *COOH, CO and CHO, with small-sized Ag7 NPs favoring the CO pathway, while large-sized Ag NPs stabilize the key intermediates and drive the reaction towards the CH4 pathway evolution. The experimental and theoretical results corroborate each other and clarify the dominant role of Ag NPs size in regulating the reaction path between CO and CH4. This study provides mechanistic guidance for the selective regulation of the multi-electron reduction pathway, which is of great significance for the construction of efficient and highly selective CO2 photocatalytic systems. Full article
Show Figures

Figure 1

19 pages, 5259 KB  
Article
Epitaxial Growth Control of Crystalline Morphology and Electronic Transport in InSb Nanowires: Competition Between Axial and Radial Growth Modes
by Jiebin Zhong, Jian Lin, Miroslav Penchev, Mihrimah Ozkan and Cengiz S. Ozkan
Nanomaterials 2025, 15(18), 1436; https://doi.org/10.3390/nano15181436 - 18 Sep 2025
Viewed by 645
Abstract
This study investigates the morphological evolution of epitaxial indium antimonide (InSb) nanowires (NWs) grown via chemical vapor deposition (CVD). We systematically explored the influence of key growth parameters—temperature (300 °C to 480 °C), source material composition, gold (Au) nanoparticle catalyst size, and growth [...] Read more.
This study investigates the morphological evolution of epitaxial indium antimonide (InSb) nanowires (NWs) grown via chemical vapor deposition (CVD). We systematically explored the influence of key growth parameters—temperature (300 °C to 480 °C), source material composition, gold (Au) nanoparticle catalyst size, and growth duration—on the resulting NW morphology, specifically focusing on NW length and tapering. Our findings reveal that the competition between axial and radial growth modes, which are governed by different growth mechanisms, dictates the final nanowire shape. An optimal growth condition was identified that yields straight and minimally tapered InSb NWs. High-resolution transmission electron microscopy (TEM) confirmed that these nanowires grow preferentially along the <110> direction, and electrical characterization via field-effect transistor (NW-FET) measurements showed that they are n-type semiconductors. Full article
(This article belongs to the Section Nanofabrication and Nanomanufacturing)
Show Figures

Graphical abstract

21 pages, 3634 KB  
Article
Nanoscale Pore Refinement and Hydration Control in Anhydrite-Modified Supersulfated Cement: Role of Calcination-Induced Crystal Phase Transition
by Zeyuan Hu, Cheng Zhang, Yi Wan, Rui Ma, Chunping Gu, Xu Yang, Jianjun Dong and Dong Cui
Nanomaterials 2025, 15(18), 1432; https://doi.org/10.3390/nano15181432 - 18 Sep 2025
Viewed by 475
Abstract
Nanostructural optimization is key to enhancing the performance of low-carbon cements. Supersulfated cement (SSC) is an eco-friendly, low-carbon cement primarily composed of blast furnace slag and calcium sulfate. This study investigates the effects of two types of crystalline anhydrite on the hydration degree [...] Read more.
Nanostructural optimization is key to enhancing the performance of low-carbon cements. Supersulfated cement (SSC) is an eco-friendly, low-carbon cement primarily composed of blast furnace slag and calcium sulfate. This study investigates the effects of two types of crystalline anhydrite on the hydration degree and strength of SSC. The experiment used III CaSO4 (high solubility) and II-U CaSO4 (low solubility) as sulfate activators, evaluating the mechanical properties of anhydrite produced at different calcination temperatures through an analysis of pore structure, phase composition, reaction degree of mineral powder, and hydration heat. The results indicate that II-U anhydrite enhances slag hydration, reduces pore size, and significantly improves the compressive strength of SSC. This improvement is attributed to its impact on slag hydration: it reduces gypsum consumption rate, delays ettringite formation, promotes gel product formation, decreases the volume ratio of ettringite to calcium silicate hydrate (C-S-H) gel, fills pores, and decreases porosity. This study reveals the influence of calcined dihydrate gypsum phase changes on the macroscopic properties of SSC and the microstructure of hydration, elucidating the hydration mechanism of anhydrite-based SSC. This work provides a nanomaterial-based strategy for SSC design via crystal phase engineering. Full article
(This article belongs to the Section Nanofabrication and Nanomanufacturing)
Show Figures

Figure 1

13 pages, 6593 KB  
Article
Block Magnets with Uniform Core–Shell Microstructure Regenerated from NdFeB Grain Boundary Diffusion Sheet Magnets
by Xiangheng Zhuge, Shuhan Dong, Yuxin Jin, Qiong Wu, Ming Yue, Weiqiang Liu, Yuqing Li, Zhanjia Wang, Qingmei Lu, Yiming Qiu and Yanjie Tong
Nanomaterials 2025, 15(18), 1437; https://doi.org/10.3390/nano15181437 - 18 Sep 2025
Viewed by 681
Abstract
The grain boundary diffusion (GBD) process is currently the relatively effective method for utilizing heavy rare earth (HRE) elements in NdFeB magnets, especially for magnetic sheets. However, due to a highly uneven microstructure, the recovery of GBD magnets was considered difficult. In this [...] Read more.
The grain boundary diffusion (GBD) process is currently the relatively effective method for utilizing heavy rare earth (HRE) elements in NdFeB magnets, especially for magnetic sheets. However, due to a highly uneven microstructure, the recovery of GBD magnets was considered difficult. In this work, our study prioritized short-loop recycling of GBD NdFeB sheet magnets to prepare block magnets. A comparative investigation was conducted between GBD-processed NdFeB magnets and the conventional sintered magnets, with particular emphasis on their recyclability characteristics. Among them, the Tb content of GBD magnets of 0.4 wt.% was significantly lower than sintered magnets of 1.73 wt.%. When two waste magnets were supplemented with the same amount of rare earth, it was found that the coercivity of the block magnets regenerated from GBD sheet magnets was higher. Microstructural analysis revealed that the core–shell grains originally located in the surface layer of GBD magnets were uniformly mixed and diffused with the ordinary particles originally located inside during the regeneration sintering process. The regenerated GBD magnets exhibited a more uniform core–shell microstructure with submicron shells of Tb elements along with reduced areas of RE-rich phase enrichment which facilitated the formation of a continuous and uniform thin-layer grain boundary, thereby enhancing the magnetic isolation effect. Apart from the significance of recycling, these block magnets regenerated from GBD magnets also provides a new approach to solving the challenge of high coercivity and low HRE elements in bulk magnets. Full article
Show Figures

Figure 1

15 pages, 5432 KB  
Article
Nano-Heterojunction NO2 Gas Sensor Based on n-ZnO Nanorods/p-NiO Nanoparticles Under UV Illumination at Room Temperature
by Yoon-Seo Park, Sohyeon Kim, Junyoung Lee, Jae-Hoon Jeong, Sung-Yun Byun, Jiyoon Shin, Il-Kyu Park and Kyoung-Kook Kim
Nanomaterials 2025, 15(18), 1426; https://doi.org/10.3390/nano15181426 - 16 Sep 2025
Viewed by 734
Abstract
Room-temperature (RT) gas sensors for nitrogen dioxide (NO2) detection face persistent challenges, including reliance on high operating temperatures and inefficient charge carrier utilization under UV activation. To address these limitations, we engineered a p-n nano-heterojunction (NHJ) gas sensor by [...] Read more.
Room-temperature (RT) gas sensors for nitrogen dioxide (NO2) detection face persistent challenges, including reliance on high operating temperatures and inefficient charge carrier utilization under UV activation. To address these limitations, we engineered a p-n nano-heterojunction (NHJ) gas sensor by integrating p-type nickel oxide (NiO) nanoparticles onto n-type zinc oxide (ZnO) nanorods. This architecture leverages UV-driven carrier generation and interfacial electric fields at the NHJ to suppress recombination, enabling unprecedented RT performance. By optimizing thermal annealing conditions, we achieved a well-defined heterojunction with uniform NiO distribution on the top of the ZnO nanorods, validated through electron microscopy and X-ray photoelectron spectroscopy. The resulting sensor exhibits a 5.4-fold higher normalized response to 50 ppm NO2 under 365 nm UV illumination compared to pristine ZnO, alongside rapid recovery and stable cyclability. The synergistic combination of UV-assisted carrier generation and heterojunction-driven interfacial modulation offers a promising direction for next-generation RT gas sensors aimed at environmental monitoring. Full article
(This article belongs to the Special Issue Advanced Nanocomposites for Sensing Applications)
Show Figures

Graphical abstract

14 pages, 1848 KB  
Article
X-Ray Irradiation Improved WSe2 Optical–Electrical Synapse for Handwritten Digit Recognition
by Chuanwen Chen, Qi Sun, Yaxian Lu and Ping Chen
Nanomaterials 2025, 15(18), 1408; https://doi.org/10.3390/nano15181408 - 12 Sep 2025
Viewed by 564
Abstract
Two-dimensional (2D) materials are promising candidates for neuromorphic computing owing to their atomically thin structure and tunable optoelectronic properties. However, achieving controllable synaptic behavior via defect engineering remains challenging. In this work, we introduce X-ray irradiation as a facile strategy to modulate defect [...] Read more.
Two-dimensional (2D) materials are promising candidates for neuromorphic computing owing to their atomically thin structure and tunable optoelectronic properties. However, achieving controllable synaptic behavior via defect engineering remains challenging. In this work, we introduce X-ray irradiation as a facile strategy to modulate defect states and enhance synaptic plasticity in WSe2-based optoelectronic synapses. The introduction of selenium vacancies via irradiation significantly improved both electrical and optical responses. Under electrical stimulation, short-term potentiation (STP) exhibited enhanced excitatory postsynaptic current (EPSC) retention exceeding 10%, measured 20 s after the stimulation peak. In addition, the nonlinearity of long-term potentiation (LTP) and long-term depression (LTD) was reduced, and the signal decay time was extended. Under optical stimulation, STP showed more than 4% improvement in EPSC retention at 16 s with similar relaxation enhancement. These effects are attributed to irradiation-induced defect states that facilitate charge carrier trapping and extend signal persistence. Moreover, the reduced nonlinearity in synaptic weight modulation improved the recognition accuracy of handwritten digits in a CrossSim-simulated MNIST task, increasing from 88.5% to 93.75%. This study demonstrates that X-ray irradiation is an effective method for modulating synaptic weights in 2D materials, offering a universal strategy for defect engineering in neuromorphic device applications. Full article
(This article belongs to the Section Nanoelectronics, Nanosensors and Devices)
Show Figures

Graphical abstract

28 pages, 23013 KB  
Review
On-Chip OPA: Progress and Prospects in Liquid Crystal, Lithium Niobate, and Silicon Material Platforms
by Xiaobin Wang, Junliang Guo, Zixin Yang, Yuqiu Zhang, Jinyong Leng, Qiang Yu and Jian Wu
Nanomaterials 2025, 15(17), 1374; https://doi.org/10.3390/nano15171374 - 5 Sep 2025
Viewed by 1467
Abstract
Non-mechanical beam steering is required for holographic displays, free-space optical communication, and chip-scale LiDAR. Optical phased arrays (OPAs), which allow for inertia-free, high-speed beam control via electronic phase control, are an important research topic. The present study investigates the primary material platform for [...] Read more.
Non-mechanical beam steering is required for holographic displays, free-space optical communication, and chip-scale LiDAR. Optical phased arrays (OPAs), which allow for inertia-free, high-speed beam control via electronic phase control, are an important research topic. The present study investigates the primary material platform for on-chip OPAs: Liquid crystal OPAs (LC-OPAs) employ electrically tunable refractive indices for low-voltage operation; lithium niobate OPAs (LN-OPAs) utilize high electro-optic coefficients for high-speed, low-power consumption, and large-bandwidth operation; and silicon-based OPAs (Si-OPAs) apply mature photonic integration to achieve high integration density and GHz-range steering. The paper thoroughly examines OPA basics, recent material-specific advancements, performance benchmarks, outstanding issues, and future prospects. Full article
Show Figures

Figure 1

16 pages, 1266 KB  
Article
Albumin-Coated Copper Oxide Nanoparticles for Radiosensitization of Human Glioblastoma Cells Under Clinically Relevant X-Ray Irradiation
by Chanyatip Suwannasing, Nittiya Suwannasom, Pattawat Iamcharoen, Rachan Dokkham, Panupong Maun, Pitchayuth Srisai, Hans Bäumler and Ausanai Prapan
Nanomaterials 2025, 15(17), 1376; https://doi.org/10.3390/nano15171376 - 5 Sep 2025
Viewed by 1242
Abstract
Glioblastoma (GBM) is the most aggressive and treatment-resistant primary brain tumor in adults. Despite current multimodal therapies, including surgery, radiation, and temozolomide chemotherapy, patient outcomes remain poor. Enhancing tumor radiosensitivity through biocompatible nanomaterials could provide a promising integrative strategy for improving therapeutic effectiveness. [...] Read more.
Glioblastoma (GBM) is the most aggressive and treatment-resistant primary brain tumor in adults. Despite current multimodal therapies, including surgery, radiation, and temozolomide chemotherapy, patient outcomes remain poor. Enhancing tumor radiosensitivity through biocompatible nanomaterials could provide a promising integrative strategy for improving therapeutic effectiveness. This study aims to evaluate the potential of bovine serum albumin-coated copper oxide nanoparticles (BSA@CuO-NPs) to enhance radiosensitivity in U87-MG cells under clinically relevant X-ray irradiation. In brief, BSA@CuO-NPs were synthesized via carbodiimide crosslinking and characterized by DLS, SEM, and zeta potential analysis. U87-MG cells were treated with BSA@CuO-NPs alone or in combination with X-ray irradiation (2 Gy). Cytotoxicity was assessed using the MTT assay, while radiosensitization was evaluated through clonogenic survival analysis. Apoptosis induction and DNA damage were analyzed via Annexin V staining and γ-H2AX immunofluorescence, respectively. The results revealed that BSA@CuO-NPs showed good colloidal stability and biocompatibility compared with uncoated CuO-NPs. When combined with irradiation, BSA@CuO-NPs significantly decreased clonogenic survival (p < 0.05) and increased apoptotic cell death compared to irradiation alone. Immunofluorescence demonstrated increased γ-H2AX focus formation, indicating higher DNA double-strand breaks in the combination group. In conclusion, BSA@CuO-NPs enhance the effects of ionizing radiation by increasing DNA damage and apoptosis in U87-MG cells, indicating their potential as combined radiosensitizers. These results support further research into albumin-coated metal oxide nanoparticles as adjuncts to standard radiotherapy for the management of GBM. One challenge in this context is the effective delivery of nanoparticles to GBM. However, the stability of BSA@CuO-NPs in physiological solutions could help overcome this obstacle. Full article
(This article belongs to the Section Biology and Medicines)
Show Figures

Figure 1

20 pages, 2242 KB  
Review
The Use of Computational Approaches to Design Nanodelivery Systems
by Abedalrahman Abughalia, Mairead Flynn, Paul F. A. Clarke, Darren Fayne and Oliviero L. Gobbo
Nanomaterials 2025, 15(17), 1354; https://doi.org/10.3390/nano15171354 - 3 Sep 2025
Viewed by 1408
Abstract
Nano-based drug delivery systems present a promising approach to improve the efficacy and safety of therapeutics by enabling targeted drug transport and controlled release. In parallel, computational approaches—particularly Molecular Dynamics (MD) simulations and Artificial Intelligence (AI)—have emerged as transformative tools to accelerate nanocarrier [...] Read more.
Nano-based drug delivery systems present a promising approach to improve the efficacy and safety of therapeutics by enabling targeted drug transport and controlled release. In parallel, computational approaches—particularly Molecular Dynamics (MD) simulations and Artificial Intelligence (AI)—have emerged as transformative tools to accelerate nanocarrier design and optimise their properties. MD simulations provide atomic-to-mesoscale insights into nanoparticle interactions with biological membranes, elucidating how factors such as surface charge density, ligand functionalisation and nanoparticle size affect cellular uptake and stability. Complementing MD simulations, AI-driven models accelerate the discovery of lipid-based nanoparticle formulations by analysing vast chemical datasets and predicting optimal structures for gene delivery and vaccine development. By harnessing these computational approaches, researchers can rapidly refine nanoparticle composition to improve biocompatibility, reduce toxicity and achieve more precise drug targeting. This review synthesises key advances in MD simulations and AI for two leading nanoparticle platforms (gold and lipid nanoparticles) and highlights their role in enhancing therapeutic performance. We evaluate how in silico models guide experimental validation, inform rational design strategies and ultimately streamline the transition from bench to bedside. Finally, we address key challenges such as data scarcity and complex in vivo dynamics and propose future directions for integrating computational insights into next generation nanodelivery systems. Full article
(This article belongs to the Section Theory and Simulation of Nanostructures)
Show Figures

Graphical abstract

32 pages, 6274 KB  
Review
Current Status and Future Aspects of Gadolinium Oxide Nanoparticles as Positive Magnetic Resonance Imaging Contrast Agents
by Endale Mulugeta, Tirusew Tegafaw, Ying Liu, Dejun Zhao, Xiaoran Chen, Ahrum Baek, Jihyun Kim, Yongmin Chang and Gang Ho Lee
Nanomaterials 2025, 15(17), 1340; https://doi.org/10.3390/nano15171340 - 1 Sep 2025
Cited by 3 | Viewed by 1826
Abstract
Although numerous studies have investigated gadolinium oxide (Gd2O3) nanoparticles (NPs) as positive (T1) magnetic resonance imaging (MRI) contrast agents (CAs), comprehensive reviews on this topic remain scarce. Therefore, it is essential to evaluate their current status and [...] Read more.
Although numerous studies have investigated gadolinium oxide (Gd2O3) nanoparticles (NPs) as positive (T1) magnetic resonance imaging (MRI) contrast agents (CAs), comprehensive reviews on this topic remain scarce. Therefore, it is essential to evaluate their current status and outline prospects. Despite promising physicochemical properties such as considerably higher relaxivities compared to 3–5 s−1mM−1 of clinically approved Gd(III)-chelate contrast agents and encouraging results from in vivo animal studies such as highly improved contrast enhancements, drug loading, and tumor targeting, extensive in vivo toxicity assessments including long-term toxicity and formulation advancements suitable for renal excretion (d < ~3 nm) are still required for clinical translation. This review summarizes the synthesis, characterization, in vitro and in vivo toxicity, and in vivo MRI applications of surface-modified Gd2O3 NPs as T1 MRI CAs. Finally, future perspectives on the development of surface-modified Gd2O3 NPs as potential next-generation T1 MRI CAs are discussed. Full article
(This article belongs to the Special Issue Advanced Nanomaterials for Bioimaging: 2nd Edition)
Show Figures

Graphical abstract

12 pages, 7860 KB  
Article
In Situ Synthesis of RMB6-TMB2 Composite Nanopowders via One-Step Solid-State Reduction
by Xiaogang Guo, Linyan Wang, Hang Zhou, Jun Xu, An Liu, Mengdong Ma, Rongxin Sun, Weidong Qin, Yufei Gao, Bing Liu, Baozhong Li, Lei Sun and Dongli Yu
Nanomaterials 2025, 15(17), 1341; https://doi.org/10.3390/nano15171341 - 1 Sep 2025
Viewed by 708
Abstract
RMB6-TMB2 (RM = rare earth elements, TM = transition metal elements) composites retain superior field emission properties of RMB6 while addressing its inherent mechanical limitations by constructing a eutectic structure with TMB2. Herein, an in situ route [...] Read more.
RMB6-TMB2 (RM = rare earth elements, TM = transition metal elements) composites retain superior field emission properties of RMB6 while addressing its inherent mechanical limitations by constructing a eutectic structure with TMB2. Herein, an in situ route for synthesizing RMB6-TMB2 composite nanopowders with homogeneous phase distribution using reduction reactions was proposed. The LaB6-ZrB2 composite nanopowders were synthesized in situ for the first time using sodium borohydride (NaBH4) as both a reducing agent and boron source, with lanthanum oxide (La2O3) and zirconium dioxide (ZrO2) serving as metal sources. The effects of the synthesis temperature on phase compositions and microstructure of the composites were systematically investigated. The LaB6-ZrB2 system with a eutectic weight ratio exhibited an accelerated reaction rate, achieving a complete reaction at 1000 °C, 300 °C lower than that of single-phase ZrB2 synthesis. The composite phases were uniformly distributed even at nanoscale. The composite powder displayed an average particle size of ~170 nm when synthesized at 1300 °C. With the benefit of the in situ synthesis method, LaB6-TiB2, CeB6-ZrB2, and CeB6-TiB2 composite powders were successfully synthesized. This process effectively addresses phase separation and contamination issues typically associated with traditional mixing methods, providing a scalable precursor for high-performance RMB6-TMB2 composites. Full article
(This article belongs to the Special Issue Synthesis, Characterization and Upscaling of Nanomaterials)
Show Figures

Figure 1

10 pages, 2618 KB  
Article
Effects of Carrier Trapping and Noise in Triangular-Shaped GaN Nanowire Wrap-Gate Transistor
by Siva Pratap Reddy Mallem, Peddathimula Puneetha, Yeojin Choi, Mikiyas Mekete Mesheha, Manal Zafer, Kab-Seok Kang, Dong-Yeon Lee, Jaesool Shim, Ki-Sik Im and Sung Jin An
Nanomaterials 2025, 15(17), 1336; https://doi.org/10.3390/nano15171336 - 30 Aug 2025
Viewed by 840
Abstract
The most widely used nanowire channel architecture for creating state-of-the-art high-performance transistors is the nanowire wrap-gate transistor, which offers low power consumption, high carrier mobility, large electrostatic control, and high-speed switching. The frequency-dependent capacitance and conductance measurements of triangular-shaped GaN nanowire wrap-gate transistors [...] Read more.
The most widely used nanowire channel architecture for creating state-of-the-art high-performance transistors is the nanowire wrap-gate transistor, which offers low power consumption, high carrier mobility, large electrostatic control, and high-speed switching. The frequency-dependent capacitance and conductance measurements of triangular-shaped GaN nanowire wrap-gate transistors are measured in the frequency range of 1 kHz–1 MHz at room temperature to investigate carrier trapping effects in the core and at the surface. The performance of such a low-dimensional device is greatly influenced by its surface traps. With increasing applied frequency, the calculated trap density promptly decreases, from 1.01 × 1013 cm−2 eV−1 at 1 kHz to 8.56 × 1012 cm−2eV−1 at 1 MHz, respectively. The 1/f-noise features show that the noise spectral density rises with applied gate bias and shows 1/f-noise behavior in the accumulation regime. The fabricated device is controlled by 1/f-noise at lower frequencies and 1/f2-noise at frequencies greater than ~ 0.2 kHz in the surface depletion regime. Further generation–recombination (G-R) is responsible for the 1/f2-noise characteristics. This process is primarily brought on by electron trapping and detrapping via deep traps situated on the nanowire’s surface depletion regime. When the device works in the deep-subthreshold regime, the cut-off frequency for the 1/f2-noise characteristics further drops to a lower frequency of 30 Hz–104 Hz. Full article
(This article belongs to the Section Nanophotonics Materials and Devices)
Show Figures

Figure 1

33 pages, 7310 KB  
Review
Advances in Architectural Design, Propulsion Mechanisms, and Applications of Asymmetric Nanomotors
by Yanming Chen, Meijie Jia, Haihan Fan, Jiayi Duan and Jianye Fu
Nanomaterials 2025, 15(17), 1333; https://doi.org/10.3390/nano15171333 - 29 Aug 2025
Viewed by 1048
Abstract
Asymmetric nanomotors are a class of self-propelled nanoparticles that exhibit asymmetries in shape, composition, or surface properties. Their unique asymmetry, combined with nanoscale dimensions, endows them with significant potential in environmental and biomedical fields. For instance, glutathione (GSH) induced chemotactic nanomotors can respond [...] Read more.
Asymmetric nanomotors are a class of self-propelled nanoparticles that exhibit asymmetries in shape, composition, or surface properties. Their unique asymmetry, combined with nanoscale dimensions, endows them with significant potential in environmental and biomedical fields. For instance, glutathione (GSH) induced chemotactic nanomotors can respond to the overexpressed glutathione gradient in the tumor microenvironment to achieve autonomous chemotactic movement, thereby enhancing deep tumor penetration and drug delivery for efficient induction of ferroptosis in cancer cells. Moreover, self-assembled spearhead-like silica nanomotors reduce fluidic resistance owing to their streamlined architecture, enabling ultra-efficient catalytic degradation of lipid substrates via high loading of lipase. This review focuses on three core areas of asymmetric nanomotors: scalable fabrication (covering synthetic methods such as template-assisted synthesis, physical vapor deposition, and Pickering emulsion self-assembly), propulsion mechanisms (chemical/photo/biocatalytic, ultrasound propelled, and multimodal driving), and functional applications (environmental remediation, targeted biomedicine, and microelectronic repair). Representative nanomotors were reviewed through the framework of structure–activity relationship. By systematically analyzing the intrinsic correlations between structural asymmetry, energy conversion efficiency, and ultimate functional efficacy, this framework provides critical guidance for understanding and designing high-performance asymmetric nanomotors. Despite notable progress, the prevailing challenges primarily reside in the biocompatibility limitations of metallic catalysts, insufficient navigation stability within dynamic physiological environments, and the inherent trade-off between propulsion efficiency and biocompatibility. Future efforts will address these issues through interdisciplinary synthesis strategies. Full article
(This article belongs to the Section Nanofabrication and Nanomanufacturing)
Show Figures

Figure 1

23 pages, 2146 KB  
Review
Lipid-Based Drug Delivery Systems: Concepts and Recent Advances in Transdermal Applications
by Lefkothea Antonara, Efstathia Triantafyllopoulou, Maria Chountoulesi, Natassa Pippa, Paraskevas P. Dallas and Dimitrios M. Rekkas
Nanomaterials 2025, 15(17), 1326; https://doi.org/10.3390/nano15171326 - 28 Aug 2025
Viewed by 2830
Abstract
Lipid-based nanocarriers are ideal drug delivery systems for transdermal administration due to their biocompatibility and biodegradability. Their lipophilicity and/or similarity to the natural lipids of the epidermis enable intermolecular interactions with the lipid membrane and therefore result in effective passage through the skin. [...] Read more.
Lipid-based nanocarriers are ideal drug delivery systems for transdermal administration due to their biocompatibility and biodegradability. Their lipophilicity and/or similarity to the natural lipids of the epidermis enable intermolecular interactions with the lipid membrane and therefore result in effective passage through the skin. The purpose of this review is to focus on lipid-based drug delivery nanoplatforms administered via the transdermal route by summarizing the most recent developments with the intention of fast clinical translation. Liposomes, solid lipid nanoparticles (SLNs), nanostructured lipid carriers (NLCs), ethosomes, and transfersomes exhibit ideal physicochemical characteristics and encapsulation efficiency to enhance the effectiveness of the incorporated Active Pharmaceutical Ingredients (APIs). The state of the art for fabricating transcutaneous lipid drug delivery nanoparticles and the strategies for overcoming the current obstacles, as well as the added value of novel formulations, will be discussed within the scope of Quality by Design applications. The limitations and challenges that still exist will also be considered. Full article
(This article belongs to the Special Issue Nanomaterials for Biomedical and Environmental Applications)
Show Figures

Graphical abstract

17 pages, 3417 KB  
Article
Graphene/Zirconia Composites for Components in Solid Oxide Fuel Cells: Microstructure and Electrical Conductivity
by Francisco J. Coto-Ruiz, Ana de la Cruz-Blanco, Rocío Moriche, Ana Morales-Rodríguez and Rosalía Poyato
Nanomaterials 2025, 15(17), 1314; https://doi.org/10.3390/nano15171314 - 26 Aug 2025
Viewed by 936
Abstract
In this paper, 8 mol% yttria cubic stabilized zirconia (8YCSZ) composites with reduced graphene oxide (rGO) contents up to 10 vol% were consolidated by spark plasma sintering (SPS) at two different temperatures with the aim of evaluating the relationship of their electrical properties [...] Read more.
In this paper, 8 mol% yttria cubic stabilized zirconia (8YCSZ) composites with reduced graphene oxide (rGO) contents up to 10 vol% were consolidated by spark plasma sintering (SPS) at two different temperatures with the aim of evaluating the relationship of their electrical properties with the graphene content, the rGO crystallinity, and the microstructural features. Successful in situ reduction of GO was accomplished during SPS, and highly densified composites with homogeneous rGO distribution, even at the highest contents, were obtained. The electrical properties were analyzed using impedance spectroscopy. Measurements were taken up to 700 °C, revealing an inductive response for the composites with 5 and 10 vol% rGO and a capacitive response for the composites with 1 and 2.5 vol% rGO. The results indicate that, along with the ionic conduction typical of zirconia, there are additional polarization mechanisms associated with the presence of graphene at ceramic grain boundaries that substantially modify the impedance response. A minor electronic conductivity contribution was identified in the composites below the percolation threshold. These characteristics make the 8YCSZ composites promising candidates for application as SOFC components, as ceramic interconnects when the graphene content is above the percolation threshold, or as electrolytes when the graphene content is below this limit. Full article
Show Figures

Figure 1

16 pages, 3508 KB  
Article
Tensile Strength and Electromagnetic Wave Absorption Properties of B-Doped SiC Nanowire/Silicone Composites
by Yiwei Wang, Qin Qin, Jingyue Chen, Xiang Lu, Jialu Yin, Ranhao Liu, Peijie Jiang, Jianlei Kuang and Wenbin Cao
Nanomaterials 2025, 15(17), 1298; https://doi.org/10.3390/nano15171298 - 22 Aug 2025
Viewed by 1050
Abstract
To investigate the synthesis route and electromagnetic wave absorption performance of SiC nanowires (SiC-NWs), boron was simultaneously employed as both a catalyst and a dopant, and the doped nanowires were embedded into a silicone matrix to fabricate SiC-NW/silicone composites with enhanced mechanical properties [...] Read more.
To investigate the synthesis route and electromagnetic wave absorption performance of SiC nanowires (SiC-NWs), boron was simultaneously employed as both a catalyst and a dopant, and the doped nanowires were embedded into a silicone matrix to fabricate SiC-NW/silicone composites with enhanced mechanical properties and microwave attenuation. Boric acid significantly increased the yield of SiC-NWs, while boron doping enhanced both conductive and relaxation losses. The subsequent nanowire pull-out mechanism improved the tensile strength of the composites by 185%, reaching 5.7 MPa at a filler loading of 5 wt%. The three-dimensional SiC-NW network provided synergistic dielectric and conductive losses, along with good impedance matching, achieving a minimum reflection loss of −35 dB at a thickness of 3.5 mm and an effective absorption bandwidth of 4.2 GHz within the 8.2–12.4 GHz range, with a nanowire content of only 5 wt%. Full article
(This article belongs to the Special Issue Nanowires: Growth, Properties, and Applications)
Show Figures

Figure 1

11 pages, 1896 KB  
Article
Real-Time Cell Gap Estimation in LC-Filled Devices Using Lightweight Neural Networks for Edge Deployment
by Chi-Yen Huang, You-Lun Zhang, Su-Yu Liao, Wen-Chun Huang, Jiann-Heng Chen, Bo-Chang Dong, Che-Ju Hsu and Chun-Ying Huang
Nanomaterials 2025, 15(16), 1289; https://doi.org/10.3390/nano15161289 - 21 Aug 2025
Viewed by 924
Abstract
Accurate determination of the liquid crystal (LC) cell gap after filling is essential for ensuring device performance in LC-based optical applications. However, the introduction of birefringent materials significantly distorts the transmission spectrum, complicating traditional optical analysis. In this work, we propose a lightweight [...] Read more.
Accurate determination of the liquid crystal (LC) cell gap after filling is essential for ensuring device performance in LC-based optical applications. However, the introduction of birefringent materials significantly distorts the transmission spectrum, complicating traditional optical analysis. In this work, we propose a lightweight machine learning framework using a shallow multilayer perceptron (MLP) to estimate the cell gap directly from the transmission spectrum of filled LC cells. The model was trained on experimentally acquired spectra with peak-to-peak interferometry-derived ground truth values. We systematically evaluated different optimization algorithms, activation functions, and hidden neuron configurations to identify an optimal model setting that balances prediction accuracy and computational simplicity. The best-performing model, using exponential activation with eight hidden units and BFGS optimization, achieved a correlation coefficient near 1 and an RMSE below 0.1 μm across multiple random seeds and training–test splits. The model was successfully deployed on a Raspberry Pi 4, demonstrating real-time inference with low latency, memory usage, and power consumption. These results validate the feasibility of portable, edge-based LC inspection systems for in situ diagnostics and quality control. Full article
Show Figures

Figure 1

51 pages, 5029 KB  
Review
A Review of Chitosan-Based Electrospun Nanofibers for Food Packaging: From Fabrication to Function and Modeling Insights
by Ji Yang, Haoyu Wang, Lihua Lou and Zhaoxu Meng
Nanomaterials 2025, 15(16), 1274; https://doi.org/10.3390/nano15161274 - 18 Aug 2025
Cited by 1 | Viewed by 3838
Abstract
Food is fundamental to human survival, health, culture, and well-being. In response to the increasing demand for sustainable food preservation, chitosan (CS)-based electrospun nanofibers have emerged as promising materials due to their biodegradability, biocompatibility, and inherent antimicrobial properties. When combined with other biopolymers [...] Read more.
Food is fundamental to human survival, health, culture, and well-being. In response to the increasing demand for sustainable food preservation, chitosan (CS)-based electrospun nanofibers have emerged as promising materials due to their biodegradability, biocompatibility, and inherent antimicrobial properties. When combined with other biopolymers or bioactive compounds, CS-based nanofibers offer enhanced functionality for applications in food packaging, preservation, and additives. This review summarizes recent advances in the fabrication and performance of CS-polymer and CS-inorganic composite nanofibers, with a focus on their mechanical strength, thermal stability, barrier properties, and antimicrobial efficacy. The use of these nanofibers across a range of food categories—including vegetables, fruits, fresh-cut produce, dairy products, meat, seafood, and nuts—is examined. Beyond experimental approaches, the review also explores the growing role of computational simulations in predicting the mechanical strength, barrier performance, antimicrobial activity, and biodegradability of CS-based nanofibers. Key modeling techniques and simulation tools are summarized. Finally, current challenges and future research directions are discussed, underscoring the potential of CS-based electrospun nanofibers as sustainable and multifunctional solutions for modern food packaging. By integrating experimental advancements with computational insights, this review provides a comprehensive and forward-looking perspective on CS-based electrospun nanofibers for food packaging. Full article
(This article belongs to the Section Theory and Simulation of Nanostructures)
Show Figures

Figure 1

18 pages, 5626 KB  
Review
Reactions of Surface-Confined Terminal Alkynes Mediated by Diverse Regulation Strategies
by Yun Wu, Lei Xu, Junxi Li and Chi Zhang
Nanomaterials 2025, 15(16), 1271; https://doi.org/10.3390/nano15161271 - 18 Aug 2025
Viewed by 1258
Abstract
Terminal alkynes, characterized by sp-hybridized carbon atoms at the molecular termini, possess high electron density and exceptional chemical reactivity. These properties make them ideal candidates for the synthesis of one-dimensional molecular wires and two-dimensional networks. Advances in nanoscale characterization techniques, such as [...] Read more.
Terminal alkynes, characterized by sp-hybridized carbon atoms at the molecular termini, possess high electron density and exceptional chemical reactivity. These properties make them ideal candidates for the synthesis of one-dimensional molecular wires and two-dimensional networks. Advances in nanoscale characterization techniques, such as scanning tunneling microscopy and atomic force microscopy, have enabled the real-space visualization of molecular assembly and chemical reactions of terminal alkynes and in situ atomic-level manipulations under surface-confined conditions. In addition, through the combination of spectroscopic measurements, physicochemical properties of and information about resulting nanostructures have been achieved. Moreover, density functional theory calculations provide deeper insights into the underlying reaction pathways and mechanisms. From this perspective, this review summarizes recent progress in the assembly and chemical transformations of terminal alkynes on noble metal surfaces. It discusses strategies for structural modulation and reaction selectivity control, including direct incorporation of heteroatoms or functional groups into precursors, the selection of metal surfaces, the introduction of extrinsic components into molecular systems, and atomic-scale manipulations using scanning probes. Full article
(This article belongs to the Section Synthesis, Interfaces and Nanostructures)
Show Figures

Graphical abstract

25 pages, 1218 KB  
Article
Enhancing the Selectivity of Nitroso-R-Salt for the Determination of Co(II) in Lithium Bioleaching Recovery of Smartphone Batteries Using a Combinatorial Methodology Approach
by David Ricart, Antonio David Dorado, Mireia Baeza and Conxita Lao-Luque
Nanomaterials 2025, 15(16), 1264; https://doi.org/10.3390/nano15161264 - 16 Aug 2025
Viewed by 925
Abstract
The selectivity of the colorimetric method for Co(II) determination using the nitroso-R-salt (NRS) in samples with complex matrices has been improved. Interferences caused by Cu(II), Fe(II), Fe(III), Mn(II), Al(III) and Ni(II) ions, which were present in the bioleach ate of lithium-ion batteries, have [...] Read more.
The selectivity of the colorimetric method for Co(II) determination using the nitroso-R-salt (NRS) in samples with complex matrices has been improved. Interferences caused by Cu(II), Fe(II), Fe(III), Mn(II), Al(III) and Ni(II) ions, which were present in the bioleach ate of lithium-ion batteries, have been solved through the sequential addition of masking agents: acetate, fluoride, ethylenediaminetetraacetic acid (EDTA), and strong acids (H2SO4). The absorbance of the NRS-Co(II) complex was typically measured at 525 nm, but it was also studied at 550 nm due to minimal interferences observed at 550 nm. The sequence of the masking agent’s addition showed a significant influence on the interference effect. The optimal sequence was sample, acetate–acetic acid buffer solution with dissolved fluoride, NRS, EDTA and H2SO4. The proposed method demonstrated robust performance at 550 nm, with a relative standard deviation (RSD) around 2%, and good accuracy (RV% around 100%). The limit of detection (LoD) was 0.1 mg L−1 and the limit of quantification (LoQ) was 0.3 mg L−1. The linear range extended up to 15 mg L−1 (R2 = 0.998). Real samples analyzed using the optimized method showed no significant differences when compared to results from atomic absorption spectroscopy, confirming its reliability. Full article
(This article belongs to the Section 2D and Carbon Nanomaterials)
Show Figures

Graphical abstract

19 pages, 3620 KB  
Article
Multifaceted Nanocomposites Combining Phosphorylated PVA, MXene, and Cholesteric Liquid Crystal: Design and Application Insights
by Tăchiță Vlad-Bubulac, Diana Serbezeanu, Elena Perju, Dana Mihaela Suflet, Daniela Rusu, Gabriela Lisa, Tudor-Alexandru Filip and Marius-Andrei Olariu
Nanomaterials 2025, 15(16), 1251; https://doi.org/10.3390/nano15161251 - 14 Aug 2025
Cited by 1 | Viewed by 835
Abstract
In this study, composite films based on phosphorylated polyvinyl alcohol (PVA-P), Ti3C2Tx MXene, and cholesteryl acetate (ChLC) were designed and characterized to explore their potential in flexible electronic applications. The incorporation of phosphate groups and ChLC enhanced intermolecular [...] Read more.
In this study, composite films based on phosphorylated polyvinyl alcohol (PVA-P), Ti3C2Tx MXene, and cholesteryl acetate (ChLC) were designed and characterized to explore their potential in flexible electronic applications. The incorporation of phosphate groups and ChLC enhanced intermolecular interactions, as confirmed with FTIR spectroscopy. Morphological and optical analyses revealed a transition from homogeneous to phase-separated structures with birefringent textures in ChLC-rich films. Thermal studies demonstrated improved stability and increased glass transition and melting temperatures, particularly in samples with higher ChLC content. Mechanical and dielectric evaluations highlighted the tunability of stiffness, flexibility, permittivity, and dielectric losses depending on MXene and ChLC ratios. These multifunctional films exhibit flame-retardant behavior and show promise for use in stimuli-responsive, sustainable electronic devices such as flexible displays and sensors. Full article
Show Figures

Figure 1

23 pages, 6275 KB  
Article
Effects of Hydrolysis Reaction and Abrasive Drag Force Accelerator on Enhancing Si-Wafer Polishing Rate and Improving Si-Wafer Surface Roughness
by Min-Uk Jeon, Pil-Su Kim, Man-Hyup Han, Se-Hui Lee, Hye-Min Lee, Su-Bin Kim, Jin-Hyung Park, Kyoo-Chul Cho, Jinsub Park and Jea-Gun Park
Nanomaterials 2025, 15(16), 1248; https://doi.org/10.3390/nano15161248 - 14 Aug 2025
Viewed by 982
Abstract
To satisfy the superior surface quality requirements in the fabrication of HBM (High-Bandwidth Memory) and 3D NAND Flash Memory, high-efficiency Si chemical mechanical planarization (CMP) is essential. In this study, a colloidal silica abrasive-based Si-wafer CMP slurry was developed to simultaneously achieve a [...] Read more.
To satisfy the superior surface quality requirements in the fabrication of HBM (High-Bandwidth Memory) and 3D NAND Flash Memory, high-efficiency Si chemical mechanical planarization (CMP) is essential. In this study, a colloidal silica abrasive-based Si-wafer CMP slurry was developed to simultaneously achieve a high polishing rate (≥10 nm/min) and low surface roughness (≤0.2 nm) without inducing CMP-induced scratches. The proposed Si-wafer CMP slurry incorporates two functional components: triammonium phosphate (TAP) as a hydrolysis reaction accelerator and hydroxyethyl cellulose (HEC) as an abrasive drag force accelerator. The polishing rate enhancement mechanism of TAP was analyzed by monitoring the OH mol concentration, surface adsorption behavior, and XPS spectra. The results showed that increasing the TAP concentration raised the OH mol concentration and converted Si–Si and Si–O–Si bonds to Si–OH via a hydrolysis reaction, thereby increasing the polishing rate. However, excessive hydrolysis also led to increased surface roughness. On the other hand, HEC influenced slurry viscosity, abrasive dispersibility, and drag force. At low HEC concentrations, increased abrasive drag force improved the polishing rate. At high concentrations, however, HEC formed a hindrance layer on the Si surface via hydrogen bonding and condensation reactions, reducing the effective contact area of abrasives and thus decreasing the polishing rate. By optimizing the concentrations of TAP (0.0037 wt%) and HEC (≤0.0024 wt%), the proposed slurry formulation achieved high-performance Si-wafer CMP, satisfying both surface roughness and polishing rate targets required for advanced memory packaging applications. Full article
(This article belongs to the Section Nanocomposite Materials)
Show Figures

Figure 1

16 pages, 4111 KB  
Article
Fabrication of High-Quality MoS2/Graphene Lateral Heterostructure Memristors
by Claudia Mihai, Iosif-Daniel Simandan, Florinel Sava, Teddy Tite, Amelia Bocirnea, Mirela Vaduva, Mohamed Yassine Zaki, Mihaela Baibarac and Alin Velea
Nanomaterials 2025, 15(16), 1239; https://doi.org/10.3390/nano15161239 - 13 Aug 2025
Viewed by 1233
Abstract
Integrating two-dimensional transition-metal dichalcogenides with graphene is attractive for low-power memory and neuromorphic hardware, yet sequential wet transfer leaves polymer residues and high contact resistance. We demonstrate a complementary metal–oxide–semiconductor (CMOS)-compatible, transfer-free route in which an atomically thin amorphous MoS2 precursor is [...] Read more.
Integrating two-dimensional transition-metal dichalcogenides with graphene is attractive for low-power memory and neuromorphic hardware, yet sequential wet transfer leaves polymer residues and high contact resistance. We demonstrate a complementary metal–oxide–semiconductor (CMOS)-compatible, transfer-free route in which an atomically thin amorphous MoS2 precursor is RF-sputtered directly onto chemical vapor-deposited few-layer graphene and crystallized by confined-space sulfurization at 800 °C. Grazing-incidence X-ray reflectivity, Raman spectroscopy, and X-ray photoelectron spectroscopy confirm the formation of residue-free, three-to-four-layer 2H-MoS2 (roughness: 0.8–0.9 nm) over 1.5 cm × 2 cm coupons. Lateral MoS2/graphene devices exhibit reproducible non-volatile resistive switching with a set transition (SET) near +6 V and an analogue ON/OFF ≈2.1, attributable to vacancy-induced Schottky-barrier modulation. The single-furnace magnetron sputtering + sulfurization sequence avoids toxic H2S, polymer transfer steps, and high-resistance contacts, offering a cost-effective pathway toward wafer-scale 2D memristors compatible with back-end CMOS temperatures. Full article
Show Figures

Figure 1

14 pages, 3808 KB  
Article
Defect-Engineered Elastic CNC/Chitosan-Based Carbon Aerogel with Wideband Microwave Absorption
by Weikai Zhan, Yijie Hu, Liangjun Li, Yonggang Jiang, Junzong Feng and Jian Feng
Nanomaterials 2025, 15(16), 1233; https://doi.org/10.3390/nano15161233 - 13 Aug 2025
Viewed by 773
Abstract
The burgeoning electromagnetic pollution from 5G/6G technologies demands lightweight, broadband, and mechanically robust electromagnetic microwave absorbers (EMWAs). Conventional carbon aerogels suffer from structural fragility and inadequate electromagnetic dissipation. Herein, we propose a defect-engineering strategy through precise optimization of the chitosan (CS)/cellulose nanocrystal (CNC) [...] Read more.
The burgeoning electromagnetic pollution from 5G/6G technologies demands lightweight, broadband, and mechanically robust electromagnetic microwave absorbers (EMWAs). Conventional carbon aerogels suffer from structural fragility and inadequate electromagnetic dissipation. Herein, we propose a defect-engineering strategy through precise optimization of the chitosan (CS)/cellulose nanocrystal (CNC) ratio to fabricate elastic boron nitride nanosheet (BNNS)-embedded carbon aerogels. By fixing BNNS content for optimal impedance matching and modulating the CS/CNC ratio of the aerogel, we achieve synergistic control over hierarchical microstructure, defect topology, and electromagnetic response. The aerogel exhibits a wide effective absorption bandwidth (EAB) of 8.3 GHz at a thickness of 3.6 mm and an excellent reflection loss of −52.79 dB (>99.999% attenuation), surpassing most biomass-derived EMWAs. The performance stems from CNC-derived topological defects enabling novel polarization pathways and BNNS-triggered interfacial polarization, while optimal graphitization (ID/IG = 1.08) balances conductive loss. Simultaneously, the optimal CS/CNC ratio facilitates the formation of a stable and flexible framework. The long-range ordered micro-arch lamellar structure endows the aerogel with promising elasticity, which retains 82% height after 1000 cyclic compression at 50% strain. This work paves the way for biomass-derived carbon aerogels as next-generation wearable and conformal EMWAs with broadband absorption. Full article
Show Figures

Graphical abstract

18 pages, 6820 KB  
Article
Carbon Restrains the Precipitation of Cu-Rich Nanoparticles in CuFeMnNi HEAs
by Mingze Wang, Mengyuan He, Yongfeng Shen, Wenying Xue and Zhijian Fan
Nanomaterials 2025, 15(16), 1223; https://doi.org/10.3390/nano15161223 - 11 Aug 2025
Viewed by 661
Abstract
In this study, we report a strategy to suppress the formation of large Cu-rich particles by adding excessive interstitial carbon into CuFeMnNi high-entropy alloys. With the increase in C contents in the CuFeMnNi HEAs annealed at 1000 °C, the size and area fraction [...] Read more.
In this study, we report a strategy to suppress the formation of large Cu-rich particles by adding excessive interstitial carbon into CuFeMnNi high-entropy alloys. With the increase in C contents in the CuFeMnNi HEAs annealed at 1000 °C, the size and area fraction of the submicron Cu-rich particles markedly decreased. Of note, the CuFeMnNi 1.5 at. %C alloy containing nanosized Cu-rich particles (13 nm) displayed excellent strength–ductility synergy, with yield strength of 695 ± 10 MPa, ultimate tensile strength of 925 ± 20 MPa, and ductility of 21.5%. This is because the addition of carbon significantly increases the diffusion speed of Cu atoms, thereby restraining the growth of Cu-rich nanoparticles. As a result, the comprehensive mechanical properties of the prepared HEAs were significantly enhanced. Additionally, the active diffusion channels induced by high-temperature short-time annealing significantly inhibited the grain growth, which improved the ductility. This work creates a new strategy for solving the dilemma caused by the large Cu-rich particles in the Cu-containing HEAs. Full article
Show Figures

Figure 1

Back to TopTop