Editor’s Choice Articles

Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal.

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 6204 KiB  
Article
Sustainable Antibacterial Chitin Nanofiber/ZnO Nanohybrid Materials: Ex Situ and In Situ Synthesis, Characterization and Evaluation
by Caroline Piffet, Jean-Michel Thomassin, Emilie Stierlin, Job Tchoumtchoua, Claudio Fernández, Marta Mateo, Leyre Hernández, Kyriaki Marina Lyra, Aggeliki Papavasiliou, Elias Sakellis, Fotios K. Katsaros, Zili Sideratou and Dimitris Tsiourvas
Nanomaterials 2025, 15(11), 809; https://doi.org/10.3390/nano15110809 - 28 May 2025
Viewed by 425
Abstract
Diseases caused by infection are a threat to human health and the world economy, with bacterial infections being responsible for a large portion of hospitalizations, morbidity, and mortality, which necessitates the quest for advanced medications and/or sustainable antibacterial strategies. This study aims to [...] Read more.
Diseases caused by infection are a threat to human health and the world economy, with bacterial infections being responsible for a large portion of hospitalizations, morbidity, and mortality, which necessitates the quest for advanced medications and/or sustainable antibacterial strategies. This study aims to develop bioderived chitin nanofibers (ChNFs) and ZnO nanoparticles to produce non-toxic nanohybrid materials with improved aqueous stability and enhanced antibacterial properties. These nanohybrids were formed via either (i) an ex situ route by mixing the ChNFs with ZnO nanoparticles prepared by flame spray pyrolysis or (ii) an in situ route resulting in ZnO nanoparticles being formed and embedded into ChNFs by a simple aqueous hydrothermal process, utilizing a low-cost Zn inorganic precursor. The ChNFs, the ZnO nanoparticles, and the nanohybrids were physicochemically characterized for their size, morphology, charge and stability. Their antibacterial activity was evaluated against Gram (−) E. coli and Gram (+) S. aureus bacteria, while their cytocompatibility was assessed against mammalian cell lines. The obtained results reveal a balance between antibacterial activity and cytocompatibility, as both nanohybrids exhibited satisfactory antibacterial activity (MIC 200–300 μg/mL) combined with low cytotoxicity against mammalian cell lines (cell viability 80–100%), indicating that their further application as safe and effective antibacterial agents is promising. Full article
Show Figures

Graphical abstract

13 pages, 1291 KiB  
Article
Preparation of Cellulose-Activated Carbon Gel with High Activated Carbon Content and Its Adsorption of Methylene Blue
by Ung-Jin Kim
Nanomaterials 2025, 15(11), 799; https://doi.org/10.3390/nano15110799 - 26 May 2025
Viewed by 368
Abstract
Activated carbon is a useful adsorbent for the removal of pollutants from the aqueous phase. In this study, an easy method to overcome the difficulty in separating activated carbon from a solution after adsorption has been developed. Cellulose-activated carbon gels with a high [...] Read more.
Activated carbon is a useful adsorbent for the removal of pollutants from the aqueous phase. In this study, an easy method to overcome the difficulty in separating activated carbon from a solution after adsorption has been developed. Cellulose-activated carbon gels with a high activated carbon content up to 70% in the total solids were successfully prepared via the dissolution–regeneration process of cellulose using a LiBr aqueous solution. Activated carbon suspended in a cellulose solution dissolved by heating with a LiBr aqueous solution was embedded into a gel directly formed by lowering the temperature of the cellulose solution. The cellulose-activated carbon gels exhibited large specific surface areas and sufficient mechanical properties. The adsorption capacity of methylene blue onto the cellulose-activated carbon gels proportionally increased with the increasing content of activated carbon. The cellulose-activated carbon gels maintained a high adsorption capacity even after repeated adsorption–desorption cycles, demonstrating their potential as reusable adsorbents. Full article
Show Figures

Figure 1

15 pages, 2507 KiB  
Article
Selective Photothermal Therapy Using Antioxidant Nanoparticles Encapsulating Novel Near-Infrared-Absorbing Platinum(II) Complexes
by Ryota Sawamura, Hiromi Kurokawa, Atsushi Taninaka, Takuto Toriumi, Yukio Nagasaki, Hidemi Shigekawa, Hirofumi Matsui and Nobuhiko Iki
Nanomaterials 2025, 15(11), 796; https://doi.org/10.3390/nano15110796 - 25 May 2025
Viewed by 529
Abstract
Photothermal therapy (PTT) is a promising approach for cancer treatment that has minimal side effects. It locally heats tumors using agents that convert near-infrared (NIR) light energy into heat. We previously reported that the NIR-absorbing hydrophobic diradical-platinum(II) complex PtL2 (L = 3,5-dibromo-1,2-diiminobenzosemiquinonato [...] Read more.
Photothermal therapy (PTT) is a promising approach for cancer treatment that has minimal side effects. It locally heats tumors using agents that convert near-infrared (NIR) light energy into heat. We previously reported that the NIR-absorbing hydrophobic diradical-platinum(II) complex PtL2 (L = 3,5-dibromo-1,2-diiminobenzosemiquinonato radical) can kill cancer cells through its photothermal conversion ability. In this study, we developed PtL2-loading nanoparticles (PtL2@RNPs) for the delivery of the complex to tumors based on the enhanced permeability and retention effect using an amphiphilic block copolymer that can scavenge reactive oxygen species. PtL2@RNPs exhibited particle diameters of 20–30 nm, an encapsulation efficiency exceeding 90%, and loading capacities of up to 12%. Under NIR laser irradiation, PtL2@RNPs stably generated heat with almost 100% photothermal conversion efficiency. Although the particles were not modified for cancer cell targeting, their uptake by cancer cells was approximately double that by normal cells. PtL2@RNPs exhibited NIR absorption and effectively killed cancer cells at a low irradiation power (0.15 W). Normal cells treated with PtL2@RNPs remained largely undamaged under identical irradiation conditions, demonstrating a cancer-cell-specific photothermal killing effect. These findings can provide insights for future basic studies on cancer cells and the development of effective cancer treatment modalities. Full article
(This article belongs to the Section Biology and Medicines)
Show Figures

Graphical abstract

14 pages, 3264 KiB  
Article
Thickness and Wavelength Optimizations of a High-Performance SPR Sensor Employing a Silver Layer and Black Phosphorus in Principal Directions
by Jakub Chylek, Dalibor Ciprian and Petr Hlubina
Nanomaterials 2025, 15(11), 790; https://doi.org/10.3390/nano15110790 - 24 May 2025
Viewed by 452
Abstract
In this paper, we propose an innovative approach based on the wavelength optimization of a light source for a simple, high-performance surface plasmon resonance (SPR) sensor utilizing comprehensive reflectance analysis in the angular domain. The proposed structure consists of a glass substrate, an [...] Read more.
In this paper, we propose an innovative approach based on the wavelength optimization of a light source for a simple, high-performance surface plasmon resonance (SPR) sensor utilizing comprehensive reflectance analysis in the angular domain. The proposed structure consists of a glass substrate, an adhesion layer of titanium dioxide, a silver plasmonic layer, and a 2D material. Analysis is performed in the Kretschmann configuration for liquid analyte sensing. Sensing parameters such as the refractive index (RI) sensitivity, the reflectance minimum, and the figure of merit (FOM) are investigated in the first step of this study as a function of the thickness of the silver layer together with the RI of a coupling prism. Next, utilizing the results offering a fused silica prism, the thickness of the silver layer and the wavelength of the light source are optimized for the structure with the addition of a 2D material, black phosphorus (BP), which is studied along different principal directions, the zigzag and armchair directions. In addition, a new approach of adjusting the source wavelength using a one-dimensional photonic crystal combined with an LED, is presented. Based on this analysis, for the reference structure at a wavelength of 632.8 nm, the optimized silver layer thickness is 50 nm, and the achieved RI sensitivity ranges from 193.9 to 251.5 degrees per RI unit (deg/RIU), with the highest FOM reaching 52.3 RIU−1. In addition, for the modified structure with BP, the achieved RI sensitivity varies in the range of 269.1–351.2 deg/RIU at the optimized wavelength of 628 nm, with the highest FOM reaching 44.7 RIU−1 for the zigzag direction. Due to the optimization and adjusting the wavelength of the source, the results obtained for the proposed SPR structure could have significant implications for the development of more sensitive and efficient sensors employing a simple plasmonic structure. Full article
(This article belongs to the Section 2D and Carbon Nanomaterials)
Show Figures

Figure 1

24 pages, 4777 KiB  
Review
Photostability of Perovskite Solar Cells: Challenges and Strategies
by Ruohan Liu, Runnan Yu and Zhan’ao Tan
Nanomaterials 2025, 15(11), 786; https://doi.org/10.3390/nano15110786 - 23 May 2025
Viewed by 446
Abstract
Perovskite solar cells (PSCs) have been regarded as a revolutionary technology in the photovoltaic field, offering a promising pathway for efficient and cost-effective solar energy conversion and demonstrating broad prospects for future green energy technologies. However, critical stability challenges, specifically degradation induced by [...] Read more.
Perovskite solar cells (PSCs) have been regarded as a revolutionary technology in the photovoltaic field, offering a promising pathway for efficient and cost-effective solar energy conversion and demonstrating broad prospects for future green energy technologies. However, critical stability challenges, specifically degradation induced by humidity, light, or heat, severely hinder the commercialization of this technology. Specifically, ultraviolet (UV) radiation in the solar spectrum is a major factor leading to the degradation of perovskite materials. This review focuses on the challenges and strategies for addressing the photostability issues of PSCs. A variety of strategies have been explored, which can be classified as external protection (such as UV-blocking encapsulation technologies) and internal optimization approaches (including precise compositional tuning, the incorporation of functional additives, interface engineering, and improvements to charge transport layers). Finally, this review delves into the key scientific challenges and technological bottlenecks currently faced in addressing the UV stability of PSCs and proposes future directions for solving UV stability issues. It also provides an outlook on the future development prospects of these technologies. Full article
(This article belongs to the Section Solar Energy and Solar Cells)
Show Figures

Graphical abstract

31 pages, 6550 KiB  
Review
Surface Modification, Toxicity, and Applications of Carbon Dots to Cancer Theranosis: A Review
by Tirusew Tegafaw, Endale Mulugeta, Dejun Zhao, Ying Liu, Xiaoran Chen, Ahrum Baek, Jihyun Kim, Yongmin Chang and Gang Ho Lee
Nanomaterials 2025, 15(11), 781; https://doi.org/10.3390/nano15110781 - 22 May 2025
Viewed by 439
Abstract
Cancer remains one of the leading causes of death worldwide, prompting extensive research into novel theranostic (combined word of diagnostic and therapeutic) strategies. Nanomedicine has emerged as a potential breakthrough in cancer theranosis, overcoming limitations of conventional approaches. Among such approaches, carbon dots [...] Read more.
Cancer remains one of the leading causes of death worldwide, prompting extensive research into novel theranostic (combined word of diagnostic and therapeutic) strategies. Nanomedicine has emerged as a potential breakthrough in cancer theranosis, overcoming limitations of conventional approaches. Among such approaches, carbon dots (CDs) with a size smaller than 10 nm have garnered significant attention for their potential use in cancer theranosis, owing to their low toxicity, good water solubility, easy synthesis, facile surface modification, and unique optical and photothermal and photodynamic properties. Researchers have demonstrated that surface functionalization of CDs with diverse hydrophilic groups can be easily achieved by choosing proper carbon precursors in synthesis, and further surface modification of CDs with cancer-targeting ligands, photosensitizers, anticancer drugs, and genes can also be easily achieved using various methods, thereby establishing a versatile approach for cancer theranosis. This review described the various surface modification methods of CDs, in vitro and in vivo toxicity of CDs, and various cancer theranostic methods such as drug delivery, photodynamic therapy, photothermal therapy, gene therapy, sonodynamic therapy, and gas therapy. Therefore, CDs can serve as various mono and combined theranostic modalities, offering us new methods for cancer theranosis. Full article
(This article belongs to the Section 2D and Carbon Nanomaterials)
Show Figures

Graphical abstract

21 pages, 1496 KiB  
Review
Research Status of Agricultural Nanotechnology and Its Application in Horticultural Crops
by Xiaobin Wen, Zhihao Lin, Bin Sheng, Xueling Ye, Yiming Zhao, Guangyang Liu, Ge Chen, Lin Qin, Xinyan Liu and Donghui Xu
Nanomaterials 2025, 15(10), 765; https://doi.org/10.3390/nano15100765 - 20 May 2025
Viewed by 414
Abstract
Global food security is facing numerous severe challenges. Population growth, climate change, and irrational agricultural inputs have led to a reduction in available arable land, a decline in soil fertility, and difficulties in increasing crop yields. As a result, the supply of food [...] Read more.
Global food security is facing numerous severe challenges. Population growth, climate change, and irrational agricultural inputs have led to a reduction in available arable land, a decline in soil fertility, and difficulties in increasing crop yields. As a result, the supply of food and agricultural products is under serious threat. Against this backdrop, the development of new technologies to increase the production of food and agricultural products and ensure their supply is extremely urgent. Agricultural nanotechnology, as an emerging technology, mainly utilizes the characteristics of nanomaterials such as small size, large specific surface area, and surface effects. It plays a role in gene delivery, regulating crop growth, adsorbing environmental pollutants, detecting the quality of agricultural products, and preserving fruits and vegetables, providing important technical support for ensuring the global supply of food and agricultural products. Currently, the research focus of agricultural nanotechnology is concentrated on the design and preparation of nanomaterials, the regulation of their properties, and the optimization of their application effects in the agricultural field. In terms of the research status, certain progress has been made in the research of nano-fertilizers, nano-pesticides, nano-sensors, nano-preservation materials, and nano-gene delivery vectors. However, it also faces problems such as complex processes and incomplete safety evaluations. This review focuses on the horticultural industry, comprehensively expounding the research status and application progress of agricultural nanotechnology in aspects such as the growth regulation of horticultural crops and the quality detection and preservation of horticultural products. It also deeply analyzes the opportunities and challenges faced by the application of nanomaterials in the horticultural field. The aim is to provide a reference for the further development of agricultural nanotechnology in the horticultural industry, promote its broader and more efficient application, contribute to solving the global food security problem, and achieve sustainable agricultural development. Full article
(This article belongs to the Section Environmental Nanoscience and Nanotechnology)
Show Figures

Graphical abstract

16 pages, 4092 KiB  
Article
Observation of Thickness-Modulated Out-of-Plane Spin–Orbit Torque in Polycrystalline Few-Layer Td-WTe2 Film
by Mingkun Zheng, Wancheng Zhang, You Lv, Yong Liu, Rui Xiong, Zhenhua Zhang and Zhihong Lu
Nanomaterials 2025, 15(10), 762; https://doi.org/10.3390/nano15100762 - 19 May 2025
Viewed by 424
Abstract
The low-symmetry Weyl semimetallic Td-phase WTe2 exhibits both a distinct out-of-plane damping torque (τDL) and exceptional charge–spin interconversion efficiency enabled by strong spin-orbit coupling, positioning it as a prime candidate for spin–orbit torque (SOT) applications in two-dimensional transition metal [...] Read more.
The low-symmetry Weyl semimetallic Td-phase WTe2 exhibits both a distinct out-of-plane damping torque (τDL) and exceptional charge–spin interconversion efficiency enabled by strong spin-orbit coupling, positioning it as a prime candidate for spin–orbit torque (SOT) applications in two-dimensional transition metal dichalcogenides. Herein, we report on thickness-dependent unconventional out-of-plane τDL in chemically vapor-deposited (CVD) polycrystalline Td-WTe2 (t)/Ni80Fe20/MgO/Ti (Td-WTN-t) heterostructures. Angle-resolved spin-torque ferromagnetic resonance measurements on the Td-WTN-12 structure showed significant spin Hall conductivities of σSH,y = 4.93 × 103 (ℏ/2e) Ω−1m−1 and σSH,z = 0.81 × 103 (ℏ/2e) Ω−1m−1, highlighting its potential for wafer-scale spin–orbit torque device applications. Additionally, a detailed examination of magnetotransport properties in polycrystalline few-layer Td-WTe2 films as a function of thickness revealed a marked amplification of the out-of-plane magnetoresistance, which can be ascribed to the anisotropic nature of charge carrier scattering mechanisms within the material. Spin pumping measurements in Td-WTN-t heterostructures further revealed thickness-dependent spin transport properties of Td-WTe2, with damping analysis yielding an out-of-plane spin diffusion length of λSD ≈ 14 nm. Full article
Show Figures

Figure 1

22 pages, 2259 KiB  
Article
Dynamical Characteristics of Isolated Donors, Acceptors, and Complex Defect Centers in Novel ZnO
by Devki N. Talwar and Piotr Becla
Nanomaterials 2025, 15(10), 749; https://doi.org/10.3390/nano15100749 - 16 May 2025
Viewed by 285
Abstract
Novel wide-bandgap ZnO, BeO, and ZnBeO materials have recently gained considerable interest due to their stellar optoelectronic properties. These semiconductors are being used in developing high-resolution, flexible, transparent nanoelectronics/photonics and achieving high-power radio frequency modules for sensors/biosensors, photodetectors/solar cells, and resistive random-access memory [...] Read more.
Novel wide-bandgap ZnO, BeO, and ZnBeO materials have recently gained considerable interest due to their stellar optoelectronic properties. These semiconductors are being used in developing high-resolution, flexible, transparent nanoelectronics/photonics and achieving high-power radio frequency modules for sensors/biosensors, photodetectors/solar cells, and resistive random-access memory applications. Despite earlier evidence of attaining p-type wz ZnO with N doping, the problem persists in achieving reproducible p-type conductivity. This issue is linked to charging compensation by intrinsic donors and/or background impurities. In ZnO: Al (Li), the vibrational features by infrared and Raman spectroscopy have been ascribed to the presence of isolated AlZn(LiZn) defects, nearest-neighbor (NN) [AlZnNO] pairs, and second NN [AlZnOLiZn;VZnOLiZn] complexes. However, no firm identification has been established. By integrating accurate perturbation models in a realistic Green’s function method, we have meticulously simulated the impurity vibrational modes of AlZn(LiZn) and their bonding to form complexes with dopants as well as intrinsic defects. We strongly feel that these phonon features in doped ZnO will encourage spectroscopists to perform similar measurements to check our theoretical conjectures. Full article
(This article belongs to the Section Physical Chemistry at Nanoscale)
Show Figures

Figure 1

21 pages, 6110 KiB  
Article
Thermoplasmonic Nano–Hybrid Core@Shell Ag@SiO2 Films Engineered via One–Step Flame Spray Pyrolysis
by Christos Dimitriou and Yiannis Deligiannakis
Nanomaterials 2025, 15(10), 743; https://doi.org/10.3390/nano15100743 - 15 May 2025
Viewed by 497
Abstract
Thermoplasmonic heat generation by silver (Ag) nanoparticles can harness visible light to efficiently produce localized heating. Flame spray pyrolysis (FSP) is a powerful one-step synthesis technology for fabricating plasmonic Ag-based nanostructures. In the present study, we employed FSP to engineer core@shell Ag@SiO2 [...] Read more.
Thermoplasmonic heat generation by silver (Ag) nanoparticles can harness visible light to efficiently produce localized heating. Flame spray pyrolysis (FSP) is a powerful one-step synthesis technology for fabricating plasmonic Ag-based nanostructures. In the present study, we employed FSP to engineer core@shell Ag@SiO2 nanoparticles coated with an ultrathin (1–2 nm) silica (SiO2) nanolayer in a single step in tandem with their deposition as films onto solid substrates. Accordingly, we engineered a library of Ag@SiO2 nanofilms with precisely controlled thicknesses in the range of 1–23 μm. A systematic study of the thermoplasmonic heat-generation efficiency (ΔT) of the films under visible-light irradiation (LED, λ = 405 nm) revealed that the films’ compactness and thickness are key parameters governing the heat-generation efficiency and thermal response rate. Moreover, we show that the substrate type can also play a key role; Ag@SiO2 films on glass-fiber filters (PGFFs) enabled faster temperature increase (dT/dt) and a higher maximum temperature gain (ΔTmax) compared with Ag@SiO2 films on glass substrates (PGSs). The photothermal conversion efficiencies were approximately 60%, with the highest efficiency (η = 65%) observed in the thinner impinged film. This study demonstrates that FSP-derived Ag@SiO2 nanofilms provide a versatile and scalable platform for thermoplasmonic heat generation applications with significant industrial potential. Full article
(This article belongs to the Section 2D and Carbon Nanomaterials)
Show Figures

Graphical abstract

14 pages, 3552 KiB  
Article
Electrical Behavior of Combinatorial Thin-Film ZrxTa1−xOy
by Matthew Flynn-Hepford, Reece Emery, Steven J. Randolph, Scott T. Retterer, Gyula Eres, Bobby G. Sumpter, Anton V. Ievlev, Olga S. Ovchinnikova and Philip D. Rack
Nanomaterials 2025, 15(10), 732; https://doi.org/10.3390/nano15100732 - 14 May 2025
Viewed by 321
Abstract
Combinatorial magnetron sputtering and electrical characterization were used to systematically study the impact of compositional changes in the resistive switching of transition metal oxides, specifically the ZrxTa1−xOy system. Current-voltage behavior across a range of temperatures provided insights into [...] Read more.
Combinatorial magnetron sputtering and electrical characterization were used to systematically study the impact of compositional changes in the resistive switching of transition metal oxides, specifically the ZrxTa1−xOy system. Current-voltage behavior across a range of temperatures provided insights into the mechanisms that contribute to differences in the electrical conductivity of the pristine Ta2O5 and ZrO2, and mixed ZrxTa1−xOy devices. The underlying conductive mechanism was found to be a mixture of charge trapping and ionic motion, where charge trapping/emission dictated the short-term cycling behavior while ion motion contributed to changes in the conduction with increased cycling number. ToF-SIMS was used to identify the origin of the “wake-up” behavior of the devices, revealing an ionic motion contribution. This understanding of how cation concentration affects conduction in mixed valence systems helps provide a foundation for a new approach toward manipulating resistive switching in these active layer materials. Full article
(This article belongs to the Section Synthesis, Interfaces and Nanostructures)
Show Figures

Graphical abstract

21 pages, 4025 KiB  
Article
Proliferation of Human Cervical Cancer Cells Responds to Surface Properties of Bicomponent Polymer Coatings
by Emil Rosqvist, Erik Niemelä, Shujun Liang, John E. Eriksson, Xiaoju Wang and Jouko Peltonen
Nanomaterials 2025, 15(10), 716; https://doi.org/10.3390/nano15100716 - 9 May 2025
Viewed by 455
Abstract
The proliferation of human cervical cancer (Hela) cells was investigated on a series of nanostructured polymer latex surfaces. The physico-chemical properties of the surfaces, composed of mixtures of polystyrene and acrylonitrile butadiene styrene dispersions, were precisely controlled in the nanoscale range by adjusting [...] Read more.
The proliferation of human cervical cancer (Hela) cells was investigated on a series of nanostructured polymer latex surfaces. The physico-chemical properties of the surfaces, composed of mixtures of polystyrene and acrylonitrile butadiene styrene dispersions, were precisely controlled in the nanoscale range by adjusting the mixing ratio of the components and thermal treatment. In addition, the proliferation response of HeLa cells was compared to that of human dermal fibroblast (HDF) cells. A low dispersive surface energy and peak or valley dominance (Spk/Svk) were observed to increase the proliferation yield of the Hela cells. The HDF cells were less influenced by the surface chemistry and showed improved proliferation on surfaces without dominant peak or valley features (Spk and Svk). The observed changes in Hela cell behaviour underscored the critical role of material surface properties in influencing cellular responses, with more significant accumulation of nuclear patterning of filamentous actin (F-actin) on stiffer and smoother surfaces (e.g., borosilicate glass) due to higher mechanical stress. A more dynamic reorganisation of the cytoskeleton was observed for cells grown on polymer surfaces with moderate roughness and surface energy. These results emphasise the importance of characterising and tuning surface properties to accommodate the specific behaviours of different cell types. Full article
(This article belongs to the Section Synthesis, Interfaces and Nanostructures)
Show Figures

Graphical abstract

19 pages, 10642 KiB  
Article
Rose Bengal–Chitosan Nanocomposites for Oral Administration
by Sara Demartis, Camila J. Picco, Octavio E. Fandiño, Eneko Larrañeta, Ryan F. Donnelly, Paolo Giunchedi, Giovanna Rassu and Elisabetta Gavini
Nanomaterials 2025, 15(10), 706; https://doi.org/10.3390/nano15100706 - 8 May 2025
Viewed by 394
Abstract
Rose Bengal (RB) holds promise for therapeutic applications in the gastrointestinal (GI) tract but faces significant limitations due to poor bioavailability and stability in the GI environment. This in vitro proof-of-concept study aimed to develop an oral drug delivery system using self-assembled RB–chitosan [...] Read more.
Rose Bengal (RB) holds promise for therapeutic applications in the gastrointestinal (GI) tract but faces significant limitations due to poor bioavailability and stability in the GI environment. This in vitro proof-of-concept study aimed to develop an oral drug delivery system using self-assembled RB–chitosan (RBCS) nanocomposites formed via electrostatic interactions. RBCS nanocomposites exhibited high drug loading efficiency (87%) and a uniform particle size (~443 nm), with physicochemical analyses confirming molecular interactions and structural stability. However, in vitro studies revealed poor and highly variable drug release in simulated gastric fluids (SGFs), underlining the need for further optimization. To address these limitations, RBCS nanocomposites were encapsulated within well-established alginate beads (AlgBs). Among the tested systems, RBCS20-AlgBs were selected as the optimal one, forming a gastroresistant platform. Encapsulation mitigated burst release, enhanced structural integrity, and enabled sustained RB release under intestinal conditions. Swelling studies demonstrated that RBCS20-AlgBs maintained controlled hydration, preventing premature disintegration. Mathematical modeling indicated a matrix relaxation-driven release mechanism, with RBCS20-AlgBs demonstrating improved reproducibility compared to RB-loaded AlgBs (RB-AlgBs). Future studies should focus on evaluating in vivo performance to confirm the system’s efficacy for oral administration. Full article
(This article belongs to the Section Nanocomposite Materials)
Show Figures

Figure 1

11 pages, 3555 KiB  
Article
Atmospheric Flame Vapor Deposition of 1D and 2D Nanostructured Vanadium Pentoxide on Diverse Substrates
by Kai Zhou and Lili Cai
Nanomaterials 2025, 15(10), 709; https://doi.org/10.3390/nano15100709 - 8 May 2025
Viewed by 418
Abstract
Vanadium pentoxide (V2O5) has attracted considerable interest owing to its unique chemical and physical properties. However, traditional synthesis methods are often time-consuming, complex, and difficult to scale, limiting the broader applications of V2O5. Herein, we [...] Read more.
Vanadium pentoxide (V2O5) has attracted considerable interest owing to its unique chemical and physical properties. However, traditional synthesis methods are often time-consuming, complex, and difficult to scale, limiting the broader applications of V2O5. Herein, we present a flame vapor deposition (FVD) method to enable rapid, scalable, and one-step synthesis of various V2O5 nanostructures under ambient pressure conditions. By optimizing critical synthesis parameters, specifically, source temperature (840 °C) and substrate temperature (610 °C), we achieved highly crystalline, one-dimensional (1D) V2O5 nanorods on a variety of substrates, including silicon (Si), fluorine tin doped (FTO) glass, stainless steel, and silicon dioxide (SiO2). Moreover, we demonstrate the rapid growth of ultrathin, two-dimensional (2D) V2O5 nanoflakes with nanometer-scale thickness, as well as enhanced uniformity and coverage density with an externally applied electric field. This FVD method provides a simple, efficient, and scalable approach for synthesizing advanced V2O5 nanostructures, significantly expanding opportunities for their integration into various technological applications. Full article
(This article belongs to the Special Issue Nanomaterials for Chemical Engineering (3rd Edition))
Show Figures

Graphical abstract

23 pages, 6020 KiB  
Review
Poly(arylene ether nitrile) Based Dielectrics with High Energy Storage Properties: A Review
by Yongxian Liu, Guangjun Liu, Yayao Jiao, Zaixing Wang, Shumin Bao, Xiufu Hua, Lingling Wang, Bo Tang, Zhiyuan Xiong and Renbo Wei
Nanomaterials 2025, 15(9), 696; https://doi.org/10.3390/nano15090696 - 5 May 2025
Viewed by 500
Abstract
Polymer-based nanocomposites have demonstrated significant strategic value in dielectric energy storage systems due to their tunable high energy density and rapid charge–discharge efficiency. Poly(arylene ether nitrile) (PEN), owing to its superior thermal stability, high mechanical strength, chemical corrosion resistance, and outstanding dielectric properties, [...] Read more.
Polymer-based nanocomposites have demonstrated significant strategic value in dielectric energy storage systems due to their tunable high energy density and rapid charge–discharge efficiency. Poly(arylene ether nitrile) (PEN), owing to its superior thermal stability, high mechanical strength, chemical corrosion resistance, and outstanding dielectric properties, exhibits distinct advantages in the field of high-performance dielectric energy storage devices. This review focuses on key strategies for enhancing the dielectric energy storage performance of PEN-based composites, emphasizing molecular engineering approaches, microstructural design, the multiscale interface regulation mechanisms within composite systems, and the optimization of the dielectric constant (εr) and breakdown strength (Eb) through thermal stretching. Furthermore, the potential of PEN-based polymer composites in energy storage devices is highlighted, and future research directions are proposed, including the establishment of a dynamic balance mechanism between dielectric/insulating properties and the development of novel composite systems that offer both high energy storage density and stability. These advancements will provide the material foundation for the miniaturization and intellectualization of advanced pulse power equipment. Full article
(This article belongs to the Special Issue Colloid Chemistry and Applications of Nanomaterials)
Show Figures

Graphical abstract

19 pages, 3868 KiB  
Article
Tailoring Metal Phthalocyanine/Graphene Interfaces for Highly Sensitive Gas Sensors
by Daniele Perilli, Alberto Maria Rizzi and Cristiana Di Valentin
Nanomaterials 2025, 15(9), 691; https://doi.org/10.3390/nano15090691 - 3 May 2025
Cited by 1 | Viewed by 454
Abstract
Developing novel gas-sensing materials is critical for overcoming the limitations of current metal oxide semiconductor technologies, which, despite their widely commercial use, require high operating temperatures to achieve optimal performance. In this context, integrating graphene with molecular organic layers provides a promising platform [...] Read more.
Developing novel gas-sensing materials is critical for overcoming the limitations of current metal oxide semiconductor technologies, which, despite their widely commercial use, require high operating temperatures to achieve optimal performance. In this context, integrating graphene with molecular organic layers provides a promising platform for next-generation gas-sensing materials. In this work, we systematically explore the gas-sensing properties of metal phthalocyanine/graphene (MPc/Gr) interfaces using density functional theory calculations. Specifically, we examine the role of different MPcs (FePc, CoPc, NiPc, and CuPc) and Gr doping levels (p-doped, neutral, and n-doped) in the detection of NH3 and NO2 molecules, used as representative electron-donor and -acceptor testing gases, respectively. Our results reveal that a p-doped Gr is necessary for NH3 detection, while the choice of metal cation plays a crucial role in determining sensitivity, following the trend FePc/Gr > CoPc/Gr > NiPc/Gr, with CuPc/Gr exhibiting no response. Remarkably, FePc/Gr demonstrates sensitivity down to the limit of a single NH3 molecule per FePc. Conversely, NO2 detection is possible under both neutral and n-doped Gr, with the strongest response observed for n-doped FePc/Gr and CoPc/Gr. Crucially, we identify the dz2 orbital of the MPc as a key factor in mediating charge transfer between the gas molecule and Gr, governing the electronic interactions that drive the sensing response. These insights provide valuable guidelines for the rational design of high-sensitivity graphene-based gas sensors. Full article
(This article belongs to the Section Theory and Simulation of Nanostructures)
Show Figures

Graphical abstract

12 pages, 3451 KiB  
Article
Enhancing Silicon Anode Performance in Lithium-Ion Batteries Through Hybrid Artificial SEI Layer and Prelithiation
by Bo Peng, Weizhai Bao, Kaiwen Sun and Jin Xiao
Nanomaterials 2025, 15(9), 690; https://doi.org/10.3390/nano15090690 - 2 May 2025
Cited by 1 | Viewed by 1163
Abstract
Prelithiation has been widely accepted as one of the most promising strategies to compensate for the loss of active substance and to improve the initial Coulombic efficiency in silicon-based anodes for advanced high-energy-density batteries. But because of their unstable solid electrolyte interface (SEI) [...] Read more.
Prelithiation has been widely accepted as one of the most promising strategies to compensate for the loss of active substance and to improve the initial Coulombic efficiency in silicon-based anodes for advanced high-energy-density batteries. But because of their unstable solid electrolyte interface (SEI) layer and low initial Coulombic efficiency, they expand in volume during prelithiation and react with moisture, which makes commercialization a difficult process. Herein, we have developed a strategy using lithium bis(fluorosulfonyl)imide (LiFSI) treatment to eliminate redundant lithium and generate LiF-based inorganic compounds on the surface of the prelithiated electrode. Such method not only reduces the reactiveness of the prelithiated anode but also enhances the ionic conductivity of the SEI. The rich LiF surface works as an artificial SEI, and according to electrochemical evaluation, the initial Coulombic efficiency of the prelithiated silicon anode treated with LiFSI can reach 92.9%. This technique not only increases the battery’s energy density but also its cycle stability, resulting in superior capacity retention and a longer cycling life. Full article
Show Figures

Graphical abstract

32 pages, 6341 KiB  
Review
Catalytic Oxidative Removal of Volatile Organic Compounds (VOCs) by Perovskite Catalysts: A Review
by Tong Xu, Chenlong Wang, Yanfei Lv, Bin Zhu and Xiaomin Zhang
Nanomaterials 2025, 15(9), 685; https://doi.org/10.3390/nano15090685 - 30 Apr 2025
Viewed by 523
Abstract
Volatile organic compound (VOC) emissions have become a critical environmental concern due to their contributions to photochemical smog formation, secondary organic aerosol generation, and adverse human health impacts in the context of accelerated industrialization and urbanization. Catalytic oxidation over perovskite-type catalysts is an [...] Read more.
Volatile organic compound (VOC) emissions have become a critical environmental concern due to their contributions to photochemical smog formation, secondary organic aerosol generation, and adverse human health impacts in the context of accelerated industrialization and urbanization. Catalytic oxidation over perovskite-type catalysts is an attractive technological approach for efficient VOC abatement. This review systematically evaluates the advancements in perovskite-based catalysts for VOC oxidation, focusing on their crystal structure–activity relationships, electronic properties, synthetic methodologies, and nanostructure engineering. Emphasis is placed on metal ion doping strategies and supported catalyst configurations, which have been demonstrated to optimize catalytic performance through synergistic effects. The applications of perovskite catalysts in diverse oxidation systems, including photocatalysis, thermal catalysis, electrocatalysis, and plasma-assisted catalysis, are comprehensively discussed with critical analysis of their respective advantages and limitations. It summarizes the existing challenges, such as catalyst deactivation caused by carbon deposition, sulfur/chlorine poisoning, and thermal sintering, as well as issues like low energy utilization efficiency and the generation of secondary pollutants. By consolidating current knowledge and highlighting future research directions, this review provides a solid foundation for the rational design of next-generation perovskite catalysts for sustainable VOC management. Full article
Show Figures

Graphical abstract

15 pages, 4032 KiB  
Article
The Effect of Microstructural Changes Produced by Heat Treatment on the Electromagnetic Interference Shielding Properties of Ti-Based MXenes
by Xue Han, Jae Jeong Lee, Ji Soo Kyoung and Yun Sung Woo
Nanomaterials 2025, 15(9), 676; https://doi.org/10.3390/nano15090676 - 29 Apr 2025
Viewed by 413
Abstract
Ti-based MXenes such as Ti3C2TX and Ti2CTX have attracted considerable attention because of their superior electromagnetic interference (EMI) shielding effectiveness compared to other EMI shielding materials, especially for high electromagnetic (EM) wave absorption. In this [...] Read more.
Ti-based MXenes such as Ti3C2TX and Ti2CTX have attracted considerable attention because of their superior electromagnetic interference (EMI) shielding effectiveness compared to other EMI shielding materials, especially for high electromagnetic (EM) wave absorption. In this study, we investigated the microstructural changes produced by heat treatment and their effect on the EMI shielding properties of Ti-based MXenes. Ti3C2TX and Ti2CTX films were prepared using vacuum filtration and annealed at temperatures up to 300 °C. The microstructures and chemical bonding properties of these heat-treated Ti3C2TX and Ti2CTX films were analyzed, and the EMI shielding effectiveness was measured in the X-band and THz frequency range. The porous Ti3C2TX film showed higher EM absorption than that calculated using the transfer matrix method. On the other hand, the Ti2CTX films had a more densely stacked structure and lower EM absorption. As the heat treatment temperature increased, Ti3C2TX developed a more porous structure without significant changes in its chemical bonding. Its EM absorption per unit of thickness increased up to 6 dB/μm, while the reflectance remained constant at less than 1 dB/μm after heat treatment. This suggested that the heat treatment of Ti-based MXenes can increase the porosity of the film by removing residual organics without changing the chemical bonds, thereby increasing electromagnetic shielding through absorption. Full article
(This article belongs to the Section 2D and Carbon Nanomaterials)
Show Figures

Graphical abstract

21 pages, 5851 KiB  
Article
A Janus Amyloid-like Nanofilm Inhibits Colorectal Cancer Postoperative Recurrence and Abdominal Adhesion via Synergistic Enzyme Cascade
by Man Zhang, Junhao Kou, Zhenyi Song, Ling Qiu, Chunzhao Yang and Qi Xue
Nanomaterials 2025, 15(9), 670; https://doi.org/10.3390/nano15090670 - 28 Apr 2025
Viewed by 520
Abstract
Postoperative peritoneal adhesion and high recurrence rates are critical challenges in the clinical treatment of colorectal cancer. In this study, based on amyloid-like protein self-assembly technology, a novel Janus protein film was developed. The protein film encapsulates glucose oxidase (GOx) and catalase (CAT), [...] Read more.
Postoperative peritoneal adhesion and high recurrence rates are critical challenges in the clinical treatment of colorectal cancer. In this study, based on amyloid-like protein self-assembly technology, a novel Janus protein film was developed. The protein film encapsulates glucose oxidase (GOx) and catalase (CAT), which is named PTL@GC. Through a one-step method involving cysteine-reduced lysozyme-induced amyloid-like self-assembly, the film was co-loaded with GOx and CAT to achieve synergistic anti-adhesion and anti-tumor recurrence effects. The Janus film features a hydrophobic side that stably adheres to the intestinal surface without exogenous chemical modification and a hydrophilic side that prevents adhesion. The loaded GOx selectively induces disulfidptosis in SLC7A11-overexpressing tumor cells, while CAT degrades H2O2 to alleviate hypoxia and inhibit oxidative stress, significantly reducing adhesion-related fibrosis. The experimental results demonstrate that PTL@GC exhibited excellent mechanical properties, high enzyme activity retention (>90%), and controllable degradability (complete metabolism within 50 days). In animal models, PTL@GC reduced postoperative adhesion area by 22.77%, decreased local tumor burden to 28.42% of the control group, and achieved an inhibition rate of 58.49%, without inducing systemic toxicity. This study presents a biologically safe and functionally synergistic approach to addressing dual complications following colorectal cancer surgery, offering potential insights for future research on multifunctional Janus materials. Full article
(This article belongs to the Special Issue Design and Applications of Protein/Peptide Nanomaterials)
Show Figures

Figure 1

24 pages, 5526 KiB  
Review
Advancements in Ti3C2 MXene-Integrated Various Metal Hydrides for Hydrogen Energy Storage: A Review
by Adem Sreedhar and Jin-Seo Noh
Nanomaterials 2025, 15(9), 673; https://doi.org/10.3390/nano15090673 - 28 Apr 2025
Viewed by 514
Abstract
The current world is increasingly focusing on renewable energy sources with strong emphasis on the economically viable use of renewable energy to reduce carbon emissions and safeguard human health. Solid-state hydrogen (H2) storage materials offer a higher density compared to traditional [...] Read more.
The current world is increasingly focusing on renewable energy sources with strong emphasis on the economically viable use of renewable energy to reduce carbon emissions and safeguard human health. Solid-state hydrogen (H2) storage materials offer a higher density compared to traditional gaseous and liquid storage methods. In this context, this review evaluates recent advancements in binary, ternary, and complex metal hydrides integrated with 2D Ti3C2 MXene for enhancing H2 storage performance. This perspective highlights the progress made in H2 storage through the development of active sites, created by interactions between multilayers, few-layers, and internal edge sites of Ti3C2 MXene with metal hydrides. Specifically, the selective incorporation of Ti3C2 MXene content has significantly contributed to improvements in the H2 storage performance of various metal hydrides. Key benefits include low operating temperatures and enhanced H2 storage capacity observed in Ti3C2 MXene/metal hydride composites. The versatility of titanium multiple valence states (Ti0, Ti2+, Ti3+, and Ti4+) and Ti-C bonding in Ti3C2 plays a crucial role in optimizing the H2 absorption and desorption processes. Based on these promising developments, we emphasize the potential of solid-state Ti3C2 MXene interfaces with various metal hydrides for fuel cell applications. Overall, 2D Ti3C2 MXenes represent a significant advancement in realizing efficient H2 storage. Finally, we discuss the challenges and future directions for advancing 2D Ti3C2 MXenes toward commercial-scale H2 storage solutions. Full article
Show Figures

Graphical abstract

19 pages, 8907 KiB  
Article
Preparation of Polylactide/Halloysite-Nanoclay/Polytetrafluoro-Ethylene Composite Foam and Study of Properties and Morphology
by Silla George Raju, Hanieh Kargarzadeh and Andrzej Galeski
Nanomaterials 2025, 15(9), 667; https://doi.org/10.3390/nano15090667 - 27 Apr 2025
Viewed by 481
Abstract
Halloysite nanoclay (HNC) and as-polymerized polytetrafluoroethylene powder (PTFE) were introduced into biodegradable polylactic acid (PLA) via a melt mixing technique to enhance its mechanical, rheological properties and foaming ability. The synergetic effects of these fillers on the morphological, mechanical, thermal, and foaming properties [...] Read more.
Halloysite nanoclay (HNC) and as-polymerized polytetrafluoroethylene powder (PTFE) were introduced into biodegradable polylactic acid (PLA) via a melt mixing technique to enhance its mechanical, rheological properties and foaming ability. The synergetic effects of these fillers on the morphological, mechanical, thermal, and foaming properties of PLA were investigated. Results indicated that the tensile properties were improved in comparison to neat PLA. Differential Scanning Calorimetry (DSC) revealed a decrease in PLA crystallization time with increasing filler concentration, indicating a strong nucleating effect on PLA crystallization. Extensional flow tests showed that strain hardening in PLA composites is influenced by fillers, with PTFE particularly exhibiting a more pronounced effect, attributed to nanofibrillation and entanglement during melt processing. The addition of a dual-filler system improved the melt strength and viscosity of PLA, resulting in foams with decreased cell size and increased cell density. Full article
(This article belongs to the Section Nanocomposite Materials)
Show Figures

Graphical abstract

15 pages, 10381 KiB  
Article
Photocatalytic Response of Flash-Lamp-Annealed Titanium Oxide Films Produced by Oblique-Angle Deposition
by Raúl Gago, Slawomir Prucnal, Francisco Javier Palomares, Leopoldo Álvarez-Fraga, Ana Castellanos-Aliaga and David G. Calatayud
Nanomaterials 2025, 15(9), 662; https://doi.org/10.3390/nano15090662 - 26 Apr 2025
Viewed by 382
Abstract
We report the photocatalytic (PC) response of titanium oxide (TiOx) films grown by reactive DC magnetron sputtering under oblique-angle-deposition (OAD) and subjected to post-deposition flash-lamp-annealing (FLA). Under ballistic growth conditions, OAD yields TiOx films with either compact or inclined columnar [...] Read more.
We report the photocatalytic (PC) response of titanium oxide (TiOx) films grown by reactive DC magnetron sputtering under oblique-angle-deposition (OAD) and subjected to post-deposition flash-lamp-annealing (FLA). Under ballistic growth conditions, OAD yields TiOx films with either compact or inclined columnar structure as the deposition incidence angle (α) with respect to the substrate normal varies from zero to grazing. On the one hand, films produced for α ≤ 45° display a compact and opaque structure comprising the formation of nanocrystalline cubic titanium monoxide (c-TiO) phase. On the other hand, films grown at larger α (≥60°) display tilted columns with amorphous structure, yielding highly porous films and an increased transparency for α > 75°. For TiOx films grown at large α, FLA induces phase transformation to nanocrystalline anatase from the amorphous state. In contrast to as-grown samples, FLA samples display PC activity as assessed by bleaching of methyl orange dye. The best PC performance is attained for an intermediate situation (α = 60–75°) between compact and columnar structures. The obtained photoactivity is discussed in terms of the different microstructures obtained by OAD and posterior phase formation upon FLA. Full article
Show Figures

Graphical abstract

24 pages, 7274 KiB  
Article
Segmental Mobility, Interfacial Polymer, Crystallization and Conductivity Study in Polylactides Filled with Hybrid Lignin-CNT Particles
by Panagiotis A. Klonos, Rafail O. Ioannidis, Andreas Pitsavas, Nikolaos D. Bikiaris, Sofia P. Makri, Stefania Koutsourea, Alexios Grigoropoulos, Ioanna Deligkiozi, Alexandros Zoikis-Karathanasis, Apostolos Kyritsis and Dimitrios N. Bikiaris
Nanomaterials 2025, 15(9), 660; https://doi.org/10.3390/nano15090660 - 26 Apr 2025
Cited by 1 | Viewed by 472
Abstract
A newly developed series of polylactide (PLA)-based composites filled with hybrid lignin–carbon nanotube (CNTs) particles were studied using thermal and dielectric techniques. The low CNT content (up to 3 wt%) aimed to create conductive networks while enhancing particle–polymer adhesion. For comparison, PLA composites [...] Read more.
A newly developed series of polylactide (PLA)-based composites filled with hybrid lignin–carbon nanotube (CNTs) particles were studied using thermal and dielectric techniques. The low CNT content (up to 3 wt%) aimed to create conductive networks while enhancing particle–polymer adhesion. For comparison, PLA composites based on lignin and CNTs were also examined. Although infrared spectroscopy showed no significant interactions, calorimetry and dielectric spectroscopy revealed a rigid interfacial PLA layer exhibiting restricted mobility. The interfacial polymer amount was found to increase monotonically with the particle content. The hybrid-filled PLA composites exhibited electrical conductivity, whereas PLA/Lignin and PLA/CNTs remained insulators. The result was indicative of a synergistic effect between lignin and CNTs, leading to lowering of the percolation threshold to 3 wt%, being almost ideal for sustainable conductive printing inks. Despite the addition of lignin and CNTs at different loadings, the glass transition temperature of PLA (60 °C) decreased slightly (softer composites) by 1–2 K in the composites, while the melting temperature remained stable at ~175 °C, favoring efficient processing. Regarding crystallization, which is typically slow in PLA, the hybrid lignin/CNT particles promoted crystal nucleation without increasing the total crystallizable fraction. Overall, these findings highlight the potential of eco-friendly conductive PLA composites for new-generation applications, such as printed electronics. Full article
Show Figures

Graphical abstract

13 pages, 5903 KiB  
Article
Assembled Carbon Nanostructure Prepared by Spray Freeze Drying for Si-Based Anodes
by Wanxiong Zhu, Liewen Guo, Kairan Li, Mengxue Shen, Chang Lu, Zipeng Jiang, Huaihe Song and Ang Li
Nanomaterials 2025, 15(9), 661; https://doi.org/10.3390/nano15090661 - 26 Apr 2025
Viewed by 435
Abstract
Silicon-based materials provide a new pathway to break through the energy storage limits of battery systems but their industrialization process is still constrained by inherent diffusion hysteresis and unstable electrode structures. In this work, we propose a novel structural design strategy employing a [...] Read more.
Silicon-based materials provide a new pathway to break through the energy storage limits of battery systems but their industrialization process is still constrained by inherent diffusion hysteresis and unstable electrode structures. In this work, we propose a novel structural design strategy employing a modified spray freeze drying technique to construct multidimensional carbon nanostructures. The continuous morphological transition from carbon nanowires to carbon nanosheets was facilitated by the inducement of ultralow-temperature phase separation and the effect of polymer self-assembly. The unique wrinkled carbon nanosheet encapsulation effectively mitigated the stress concentration induced by the aggregation of silicon nanoparticles, while the open two-dimensional structure buffered the volume changes of silicon. As expected, the SSC-5M composite retained a reversible capacity of 1279 mAh g−1 after 100 cycles at 0.2 C (1 C = 1700 mAh g−1) and exhibited a capacity retention of 677.1 mAh g−1 after 400 cycles at 1 C, demonstrating excellent cycling stability. This study offers a new strategy for the development of silicon-based energy storage devices. Full article
(This article belongs to the Special Issue Nanoscale Carbon Materials for Advanced Energy-Related Applications)
Show Figures

Figure 1

16 pages, 16663 KiB  
Article
Mechanical Response of FeNiCrCoAl High-Entropy Alloys at the Nanoscale: Predictions from Molecular Dynamics
by Ernesto Amaro, Joaly Delgado-Alvarez, Jairo Andrés Martínez-Uribe and Sergio Mejía-Rosales
Nanomaterials 2025, 15(9), 652; https://doi.org/10.3390/nano15090652 - 25 Apr 2025
Viewed by 515
Abstract
The mechanical response of high-entropy alloys (HEAs), specifically the FeNiCrCoAl HEA, was studied at both bulk and nanoparticle scales using molecular dynamics simulations. These simulations were performed using the LAMMPS software with an Embedded Atom Method (EAM) potential. The results show that Bulk [...] Read more.
The mechanical response of high-entropy alloys (HEAs), specifically the FeNiCrCoAl HEA, was studied at both bulk and nanoparticle scales using molecular dynamics simulations. These simulations were performed using the LAMMPS software with an Embedded Atom Method (EAM) potential. The results show that Bulk HEAs exhibited enhanced hardening and plasticity, while in nanoparticles, distinct deformation patterns were observed, including nanotwin formation, V-shaped stacking fault planes, and intermittent dislocation activity due to free surface effects. The crystallographic orientation with respect to the compression significantly affected the deformation mechanisms, with the [100] direction favoring progressive hardening, while the [110] and [111] directions exhibited different stacking fault and dislocation dynamics. A detailed analysis using von Mises stress and dislocation analysis provided insights into the effects of scale on mechanical properties. Full article
(This article belongs to the Special Issue Modeling, Simulation and Optimization of Nanomaterials)
Show Figures

Graphical abstract

15 pages, 4751 KiB  
Article
SnO Nanosheet Transistor with Remarkably High Hole Effective Mobility and More than Six Orders of Magnitude On-Current/Off-Current
by Kuan-Chieh Chen, Jiancheng Wu, Pheiroijam Pooja and Albert Chin
Nanomaterials 2025, 15(9), 640; https://doi.org/10.3390/nano15090640 - 23 Apr 2025
Viewed by 626
Abstract
Using novel SiO2 surface passivation and ultraviolet (UV) light anneal, a 12 nm thick SnO p-type FET (pFET) shows hole effective mobilities (µeff) of more than 100 cm2/V·s and 31.1 cm2/V·s at hole densities (Qh [...] Read more.
Using novel SiO2 surface passivation and ultraviolet (UV) light anneal, a 12 nm thick SnO p-type FET (pFET) shows hole effective mobilities (µeff) of more than 100 cm2/V·s and 31.1 cm2/V·s at hole densities (Qh) of 1 × 1011 and 5 × 1012 cm−2, respectively. To further improve the on-current/off-current (ION/IOFF), an ultra-thin 7 nm thick SnO nanosheet pFET shows a record-breaking ION/IOFF of 6.9 × 106 and remarkable µeff values of ~70 cm2/V·s and 20.7 cm2/V·s at Qh of 1 × 1011 cm−2 and 5 × 1012 cm−2, respectively. This is the first report of an oxide semiconductor transistor achieving a hole effective mobility µeff that reaches 20% of that in single-crystal Si pFETs at an ultra-thin body thickness of 7 nm. In sharp contrast, the control SnO nanosheet pFET without surface passivation or UV anneal exhibits a small ION/IOFF of 1.8 × 104 and a µeff of only 6.1 cm2/V·s at 5 × 1012 cm−2 Qh. The enhanced SnO pFET performance is attributed to reduced defects and improved quality in the SnO channel, as confirmed by decreased charges related to sub-threshold swing (SS) and threshold voltage (Vth) shift. Such a large improvement is further supported by the increased Sn2+ after passivation and UV anneal, as evidenced by X-ray photoelectron spectroscopy (XPS) analysis. The ION/IOFF ratio exceeding six orders of magnitude, remarkably high hole µeff, and excellent two-month stability demonstrate that this pFET is a strong candidate for integration with SnON nFETs in next-generation ultra-high-definition displays and monolithic three-dimensional integrated circuits (3D ICs). Full article
(This article belongs to the Special Issue Integrated Circuit Research for Nanoscale Field-Effect Transistors)
Show Figures

Figure 1

55 pages, 12018 KiB  
Review
Antimicrobial Nanotubes: From Synthesis and Promising Antimicrobial Upshots to Unanticipated Toxicities, Strategies to Limit Them, and Regulatory Issues
by Silvana Alfei and Gian Carlo Schito
Nanomaterials 2025, 15(8), 633; https://doi.org/10.3390/nano15080633 - 21 Apr 2025
Cited by 2 | Viewed by 553
Abstract
Nanotubes (NTs) are nanosized tube-like structured materials made from various substances such as carbon, boron, or silicon. Carbon nanomaterials (CNMs), including carbon nanotubes (CNTs), graphene/graphene oxide (G/GO), and fullerenes, have good interatomic interactions and possess special characteristics, exploitable in several applications because of [...] Read more.
Nanotubes (NTs) are nanosized tube-like structured materials made from various substances such as carbon, boron, or silicon. Carbon nanomaterials (CNMs), including carbon nanotubes (CNTs), graphene/graphene oxide (G/GO), and fullerenes, have good interatomic interactions and possess special characteristics, exploitable in several applications because of the presence of sp2 and sp3 bonds. Among NTs, CNTs are the most studied compounds due to their nonpareil electrical, mechanical, optical, and biomedical properties. Moreover, single-walled carbon nanotubes (SWNTs) have, in particular, demonstrated high ability as drug delivery systems and in transporting a wide range of chemicals across membranes and into living cells. Therefore, SWNTs, more than other NT structures, have generated interest in medicinal applications, such as target delivery, improved imaging, tissue regeneration, medication, and gene delivery, which provide nanosized devices with higher efficacy and fewer side effects. SWNTs and multi-walled CNTs (MWCNTs) have recently gained a great deal of attention for their antibacterial effects. Unfortunately, numerous recent studies have revealed unanticipated toxicities caused by CNTs. However, contradictory opinions exist regarding these findings. Moreover, the problem of controlling CNT-based products has become particularly evident, especially in relation to their large-scale production and the nanosized forms of the carbon that constitute them. Important directive rules have been approved over the years, but further research and regulatory measures should be introduced for a safer production and utilization of CNTs. Against this background, and after an overview of CNMs and CNTs, the antimicrobial properties of pristine and modified SWNTs and MWCNTs as well as the most relevant in vitro and in vivo studies on their possible toxicity, have been reported. Strategies and preventive behaviour to limit CNT risks have been provided. Finally, a debate on regulatory issues has also been included. Full article
Show Figures

Graphical abstract

17 pages, 4524 KiB  
Article
Resultant Incidence Angle: A Unique Criterion for Controlling the Inclined Columnar Nanostructure of Metallic Films
by Aurélien Besnard, Hamidreza Gerami, Marina Raschetti and Nicolas Martin
Nanomaterials 2025, 15(8), 620; https://doi.org/10.3390/nano15080620 - 18 Apr 2025
Viewed by 550
Abstract
The original Glancing Angle Deposition (GLAD) technique was developed using the evaporation process, i.e., in high vacuum, with a nearly punctual source, and with the substrate aligned with the source axis. In this specific case, the substrate tilt angle can be assumed to [...] Read more.
The original Glancing Angle Deposition (GLAD) technique was developed using the evaporation process, i.e., in high vacuum, with a nearly punctual source, and with the substrate aligned with the source axis. In this specific case, the substrate tilt angle can be assumed to be equal to the impinging incidence angle of evaporated atoms. With the sputtering process, the deposition pressure is higher, sources are larger, and substrates are not intrinsically aligned with the source. As a result, deviations from the growth models applied for evaporation are reported, and the substrate tilt angle is no longer relevant for describing the impinging atomic flux. To control the inclined nanostructure of metallic films, a relevant description of the atomic flux is required, applicable across all deposition configurations. In this work, transport simulation is used to determine the resultant incidence angle, a unique criterion relevant to each specific deposition condition. The different representations of the flux are described and discussed, and some typical examples of the resultant angles are presented. Ten elements are investigated: three hcp transition metals (Ti, Zr, and Hf), six bcc transition metals (V, Nb, Ta, Cr, Mo, and W), and one fcc post-transition metal (Al). Full article
Show Figures

Graphical abstract

17 pages, 2896 KiB  
Article
Individual ZnO–Ag Hybrid Nanorods for Synergistic Fluorescence Enhancement Towards Highly Sensitive and Miniaturized Biodetection
by Marion Ryan C. Sytu and Jong-in Hahm
Nanomaterials 2025, 15(8), 617; https://doi.org/10.3390/nano15080617 - 17 Apr 2025
Viewed by 512
Abstract
Hybrid nanostructures can be engineered to exhibit superior functionality beyond the level attainable from each of the constituent nanomaterials by synergistically integrating their unique properties. In this work, we designed individual hybrid nanorods (NRs) of ZnO–Ag in different heterojunction configurations where each hybrid [...] Read more.
Hybrid nanostructures can be engineered to exhibit superior functionality beyond the level attainable from each of the constituent nanomaterials by synergistically integrating their unique properties. In this work, we designed individual hybrid nanorods (NRs) of ZnO–Ag in different heterojunction configurations where each hybrid NR consists of a single ZnO NR forming a junction with a single Ag NR. We subsequently employed the ZnO–Ag hybrid NRs in the fluorescence detection of the model chemical and biological analytes, rhodamine 6G (R6G), and tumor necrosis factor-α (TNF-α), that undergo simple as well as more complex immunoreaction steps on the hybrid NRs. We determine how parameters such as the analyte concentration, ZnO–Ag heterojunction configuration, and NR length can influence the fluorescence signals, enhancement factors (EFs), as well as changes in EFs (%EFs) at different positions on the hybrid NRs. We provide much needed insights into the fluorescence enhancement capability of single hybrid NR systems using a signal source located external to the NRs. Moreover, we identify key consideration factors that are critical to the design and optimization of a hybrid NR platform for achieving high signal enhancements. We show that higher EFs are consistently observed from the junction relative to other positions in a given hybrid NR, from the end–end relative to other heterojunction configurations, and from longer than shorter ZnO NRs. Our research efforts demonstrate that the synergistic interplay of the two component NRs of ZnO and Ag escalates the fluorescence detection capability of the ZnO–Ag hybrid NR. A superior enhancement level surpassing those attainable by each component NR alone can be obtained from the hybrid NR. Hence, our work further substantiates the potential utility of individual semiconductor-metal hybrid NRs for highly miniaturized and ultra-trace level detection, especially by leveraging the critical consideration factors to achieve a higher detection capability. Full article
Show Figures

Figure 1

20 pages, 5035 KiB  
Article
Magnetic, Electronic Structure and Micromagnetic Properties of Ferrimagnetic DyCo3 as a Platform for Ferrimagnetic Skyrmions
by Radu George Hategan, Andrei Aldea, Razvan Dan Miclea, Razvan Hirian, Ioan Botiz, Roxana Dudric, Lokesh Rasabathina, Olav Hellwig, Georgeta Salvan, Dietrich R. T. Zahn, Romulus Tetean and Coriolan Tiusan
Nanomaterials 2025, 15(8), 606; https://doi.org/10.3390/nano15080606 - 15 Apr 2025
Viewed by 669
Abstract
We demonstrate tunable ferrimagnetic properties in both bulk and thin film ferrimagnetic DyCo3 compatible with the hosting of topological magnetic chiral textures, namely skyrmions suitable for integration into spintronic applications with classic, neuromorphic and quantum functionalities. The bulk samples were prepared by [...] Read more.
We demonstrate tunable ferrimagnetic properties in both bulk and thin film ferrimagnetic DyCo3 compatible with the hosting of topological magnetic chiral textures, namely skyrmions suitable for integration into spintronic applications with classic, neuromorphic and quantum functionalities. The bulk samples were prepared by arc-melting of stoichiometric mixtures under purified argon atmosphere and the thin films by Ultra-High-Vacuum magnetron sputtering from a stoichiometric target. Magnetometry allows us to extract the main magnetic properties of bulk and thin films: the saturation magnetization, the magnetic anisotropy and their variation with temperature. These results are successfully complemented by band structure ab initio DFT calculations. Based on the critical magnetic parameters extracted from experiments, we performed micromagnetic simulations that reveal the skyrmionic potential of our samples in both continuous thin film and nano-patterned architectures. Full article
(This article belongs to the Special Issue Nanoscale Spintronics and Magnetism: From Fundamentals to Devices)
Show Figures

Graphical abstract

22 pages, 5693 KiB  
Article
Graphene Nanoplatelet Distribution Governs Thermal Conductivity and Stability of Paraffin-Based PCMs
by Levina E. A. Wijkhuijs, Pauline Schmit, Ingeborg Schreur-Piet, Henk Huinink, Remco Tuinier and Heiner Friedrich
Nanomaterials 2025, 15(8), 587; https://doi.org/10.3390/nano15080587 - 11 Apr 2025
Viewed by 480
Abstract
Materials for heat storage are important to fully utilize renewable energy sources and to realize a constant, on-demand supply. Organic phase change materials (PCMs) can play a crucial role in heat storage, as they have many advantages; however, their widespread commercial adoption is [...] Read more.
Materials for heat storage are important to fully utilize renewable energy sources and to realize a constant, on-demand supply. Organic phase change materials (PCMs) can play a crucial role in heat storage, as they have many advantages; however, their widespread commercial adoption is hindered by their low thermal conductivity and lack of cyclic stability. To enhance performance, highly thermally conductive fillers such as graphene nanoplatelets (GNPs) have been used; however, the role of the filler network has not been investigated. Here, we present, from a colloidal perspective, an in-depth study of GNP networks in paraffin PCMs. We investigate how GNP size, aspect ratio, and network topology determine thermal conductivity and cyclic stability of the composite. Our results show that the best-performing GNP network is random, with an optimized GNP aspect ratio. Filler fractions should be such that overlap between GNPs is guaranteed, which prevents leakage of paraffin from the composite, ensuring cyclic stability. These results not only contribute valuable insights into the design of new PCM composites but also emphasize the significance of considering filler geometry and network topology alongside filler type and fraction for optimizing thermal performance and cyclic stability. Full article
(This article belongs to the Section 2D and Carbon Nanomaterials)
Show Figures

Graphical abstract

45 pages, 10295 KiB  
Review
Holistic Molecular Design of Ionic Surfaces for Tailored Water Wettability and Technical Applications
by Huiyun Wang, Chongling Cheng and Dayang Wang
Nanomaterials 2025, 15(8), 591; https://doi.org/10.3390/nano15080591 - 11 Apr 2025
Viewed by 933
Abstract
This comprehensive review systematically explores the molecular design and functional applications of nano-smooth hydrophilic ionic polymer surfaces. Beginning with advanced fabrication strategies—including plasma treatment, surface grafting, and layer-by-layer assembly—we critically evaluate their efficacy in eliminating surface irregularities and tailoring wettability. Central to this [...] Read more.
This comprehensive review systematically explores the molecular design and functional applications of nano-smooth hydrophilic ionic polymer surfaces. Beginning with advanced fabrication strategies—including plasma treatment, surface grafting, and layer-by-layer assembly—we critically evaluate their efficacy in eliminating surface irregularities and tailoring wettability. Central to this discussion are the types of ionic groups, molecular configurations, and counterion hydration effects, which collectively govern macroscopic hydrophilicity through electrostatic interactions, hydrogen bonding, and molecular reorganization. By bridging molecular-level insights with application-driven design, we highlight breakthroughs in oil–water separation, anti-fogging, anti-icing, and anti-waxing technologies, where precise control over ionic group density, the hydration layer’s stability, and the degree of perfection enable exceptional performance. Case studies demonstrate how zwitterionic architectures, pH-responsive coatings, and biomimetic interfaces address real-world challenges in industrial and biomedical settings. In conclusion, we synthesize the molecular mechanisms governing hydrophilic ionic surfaces and identify key research directions to address future material challenges. This review bridges critical gaps in the current understanding of molecular-level determinants of wettability while providing actionable design principles for engineered hydrophilic surfaces. Full article
(This article belongs to the Special Issue Advances in Polymer Nanocomposite Films:2nd Edition)
Show Figures

Figure 1

15 pages, 27251 KiB  
Article
Single-Frame Vignetting Correction for Post-Stitched-Tile Imaging Using VISTAmap
by Anthony A. Fung, Ashley H. Fung, Zhi Li and Lingyan Shi
Nanomaterials 2025, 15(7), 563; https://doi.org/10.3390/nano15070563 - 7 Apr 2025
Cited by 1 | Viewed by 559
Abstract
Stimulated Raman Scattering (SRS) nanoscopy imaging offers unprecedented insights into tissue molecular architecture but often requires stitching multiple high-resolution tiles to capture large fields of view. This process is time-consuming and frequently introduces vignetting artifacts—grid-like intensity fluctuations that degrade image quality and hinder [...] Read more.
Stimulated Raman Scattering (SRS) nanoscopy imaging offers unprecedented insights into tissue molecular architecture but often requires stitching multiple high-resolution tiles to capture large fields of view. This process is time-consuming and frequently introduces vignetting artifacts—grid-like intensity fluctuations that degrade image quality and hinder downstream quantitative analyses and processing such as super-resolution deconvolution. We present VIgnetted Stitched-Tile Adjustment using Morphological Adaptive Processing (VISTAmap), a simple tool that corrects these shading artifacts directly on the final stitched image. VISTAmap automatically detects the tile grid configuration by analyzing intensity frequency variations and then applies sequential morphological operations to homogenize the image. In contrast to conventional approaches that require increased tile overlap or pre-acquisition background sampling, VISTAmap offers a pragmatic, post-processing solution without the need for separate individual tile images. This work addresses pressing concerns by delivering a robust, efficient strategy for enhancing mosaic image uniformity in modern nanoscopy, where the smallest details make tremendous impacts. Full article
(This article belongs to the Special Issue New Advances in Applications of Nanoscale Imaging and Nanoscopy)
Show Figures

Figure 1

12 pages, 4609 KiB  
Article
Reduction of Interface State Density in 4H-SiC MOS Capacitors Modified by ALD-Deposited Interlayers
by Zhenyu Wang, Zhaopeng Bai, Yunduo Guo, Chengxi Ding, Qimin Huang, Lin Gu, Yi Shen, Qingchun Zhang and Hongping Ma
Nanomaterials 2025, 15(7), 555; https://doi.org/10.3390/nano15070555 - 5 Apr 2025
Viewed by 622
Abstract
This study proposed an innovative method for growing gate oxide on silicon carbide (SiC), where silicon oxide (SiO2) was fabricated on a deposited Al2O3 layer, achieving high quality gate oxide. A thin Al2O3 passivation layer [...] Read more.
This study proposed an innovative method for growing gate oxide on silicon carbide (SiC), where silicon oxide (SiO2) was fabricated on a deposited Al2O3 layer, achieving high quality gate oxide. A thin Al2O3 passivation layer was deposited via atomic layer deposition (ALD), followed by Si deposition and reoxidation to fabricate a MOS structure. The effects of different ALD growth cycles on the interface chemical composition, trap density, breakdown characteristics, and bias stress stability of the MOS capacitors were systematically investigated. X-ray photoelectron spectroscopy (XPS) analyses revealed that an ALD Al2O3 passivation layer with 10 growth cycles effectively suppresses the formation of the proportion of Si-OxCy bonds. Additionally, the SiO2/Al2O3/SiC gate stack with 10 ALD growth cycles exhibited optimal electrical properties, including a minimum interface state density (Dit) value of 3 × 1011 cm−2 eV−1 and a breakdown field (Ebd) of 10.9 MV/cm. We also systematically analyzed the bias stress stability of the capacitors at room temperature and elevated temperatures. Analysis of flat-band voltage (ΔVfb) and midgap voltage (ΔVmg) hysteresis after high-temperature positive and negative bias stress demonstrated that incorporating a thin Al2O3 layer at the interface is the key factor in enhancing the stability of Vfb and midgap voltage Vmg. Full article
(This article belongs to the Section Nanoelectronics, Nanosensors and Devices)
Show Figures

Graphical abstract

7 pages, 4310 KiB  
Communication
Controlled Vapor-Phase Synthesis of VSe2 via Selenium-Driven Gradual Transformation of Single-Crystalline V2O5 Nanosheets
by Gangtae Jin
Nanomaterials 2025, 15(7), 548; https://doi.org/10.3390/nano15070548 - 4 Apr 2025
Viewed by 466
Abstract
We report a gas-phase precursor modulation strategy for the controlled synthesis of 1T-phase vanadium diselenide (VSe2) from vanadium pentoxide (V2O5) nanosheets by systematically adjusting the vapor pressure of selenium. By controlling the selenium vapor pressure, selenium-free vapor [...] Read more.
We report a gas-phase precursor modulation strategy for the controlled synthesis of 1T-phase vanadium diselenide (VSe2) from vanadium pentoxide (V2O5) nanosheets by systematically adjusting the vapor pressure of selenium. By controlling the selenium vapor pressure, selenium-free vapor transport of vanadium dioxide led to the spontaneous oxidation and formation of tens-of-micrometer-sized rectangular V2O5 crystals, while moderate selenium introduction produced intermediate oxygen-rich phases with trapezoidal crystal facets, and a highly selenium-rich environment yielded trigonal VSe2 crystals. Raman scattering measurements confirmed the stepwise transformation from V2O5 to VSe2, and atomic force microscopy revealed well-defined layered morphologies and distinct conformation within an atomically thin regime. Additionally, high-resolution transmission electron microscopy validated the orthorhombic and trigonal crystal structures of V2O5 and VSe2, respectively. This work demonstrates the versatility of fine-tuned vapor-phase growth conditions in vanadium-based layered compounds, providing useful platforms to optimize structural composition with atomic precision. Full article
(This article belongs to the Section Synthesis, Interfaces and Nanostructures)
Show Figures

Figure 1

25 pages, 30610 KiB  
Review
Synthesis, Characterization, Magnetic Properties, and Applications of Carbon Dots as Diamagnetic Chemical Exchange Saturation Transfer Magnetic Resonance Imaging Contrast Agents: A Review
by Endale Mulugeta, Tirusew Tegafaw, Ying Liu, Dejun Zhao, Ahrum Baek, Jihyun Kim, Yongmin Chang and Gang Ho Lee
Nanomaterials 2025, 15(7), 542; https://doi.org/10.3390/nano15070542 - 2 Apr 2025
Viewed by 740
Abstract
Carbon dots (CDs) are metal-free carbon-based nanoparticles. They possess excellent photoluminescent properties, various physical properties, good chemical stability, high water solubility, high biocompatibility, and tunable surface functionalities, suitable for biomedical applications. Their properties are subject to synthetic conditions such as pH, reaction time, [...] Read more.
Carbon dots (CDs) are metal-free carbon-based nanoparticles. They possess excellent photoluminescent properties, various physical properties, good chemical stability, high water solubility, high biocompatibility, and tunable surface functionalities, suitable for biomedical applications. Their properties are subject to synthetic conditions such as pH, reaction time, temperature, precursor, and solvent. Until now, a large number of articles on the synthesis and biomedical applications of CDs using their photoluminescent properties have been reported. However, their research on magnetic properties and especially, diamagnetic chemical exchange saturation transfer (diaCEST) in magnetic resonance imaging (MRI) is very poor. The diaCEST MRI contrast agents are based on exchangeable protons of materials with bulk water protons and thus, different from conventional MRI contrast agents, which are based on enhancements of proton spin relaxations of bulk water and tissue. In this review, various syntheses, characterizations, magnetic properties, and potential applications of CDs as diaCEST MRI contrast agents are reviewed. Finally, future perspectives of CDs as the next-generation diaCEST MRI contrast agents are discussed. Full article
(This article belongs to the Section Physical Chemistry at Nanoscale)
Show Figures

Graphical abstract

14 pages, 3265 KiB  
Article
Graphene/PtSe2/Ultra-Thin SiO2/Si Broadband Photodetector with Large Responsivity and Fast Response Time
by Qing-Hai Zhu, Jian Chai, Shi-Yu Wei, Jia-Bao Sun, Yi-Jun Sun, Daisuke Kiriya and Ming-Sheng Xu
Nanomaterials 2025, 15(7), 519; https://doi.org/10.3390/nano15070519 - 29 Mar 2025
Cited by 1 | Viewed by 672
Abstract
Burgeoning two-dimensional (2D) materials provide more opportunities to overcome the shortcomings of silicon-based photodetectors. However, the inevitable carrier loss in the 2D material/Si heterojunction has seriously hindered further improvement in responsivity and detection speed. Here, we propose a graphene/PtSe2/ultra-thin SiO2 [...] Read more.
Burgeoning two-dimensional (2D) materials provide more opportunities to overcome the shortcomings of silicon-based photodetectors. However, the inevitable carrier loss in the 2D material/Si heterojunction has seriously hindered further improvement in responsivity and detection speed. Here, we propose a graphene/PtSe2/ultra-thin SiO2/Si photodetector (PD) with multiple optimization mechanisms. Due to the fact that photo-generated carriers can travel in the graphene plane toward the Au electrode, the introduction of a top graphene contact with low sheet resistance provides a carrier collection path in the vertical direction and further restricts the carrier recombination behavior at the lateral grain boundary of PtSe2 film. The ultra-thin SiO2 passivation layer reduces the defects at the PtSe2/Si heterojunction interface. As compared to the counterpart device without the graphene top contact, the responsivity, specific detectivity, and response speed of graphene/PtSe2/ultra-thin SiO2/Si PD under 808 nm illumination are improved to 0.572 A/W, 1.50 × 1011 Jones, and 17.3/38.8 µs, respectively. The device can detect broad-spectrum optical signals as measured from 375 nm to 1550 nm under zero bias. The PD line array with 16-pixel units shows good near-infrared imaging ability at room temperature. Our study will provide guiding significance for how to improve the comprehensive properties of PDs based on 2D/Si heterostructure for practical applications. Full article
(This article belongs to the Section Nanoelectronics, Nanosensors and Devices)
Show Figures

Figure 1

12 pages, 4145 KiB  
Article
The Effect of Al2O3 Nanoparticles on Hexagonal Boron Nitride Films Resulting from High-Temperature Annealing
by Qiang Li, Kangkang Liu, Ransheng Chen, Wannian Fang, Zhihao Zhang, Youwei Chen, Haifeng Liu, Ziyan Lin, Yuhuai Liu and Tao Wang
Nanomaterials 2025, 15(7), 484; https://doi.org/10.3390/nano15070484 - 24 Mar 2025
Viewed by 483
Abstract
A simple two-step approach was proposed to obtain hBN thin films with high crystalline quality, meaning that the films were initially prepared by using an RF magnetron sputtering technique and subsequently followed by a post-annealing process at a high temperature. In the case [...] Read more.
A simple two-step approach was proposed to obtain hBN thin films with high crystalline quality, meaning that the films were initially prepared by using an RF magnetron sputtering technique and subsequently followed by a post-annealing process at a high temperature. In the case of introducing Al2O3 nanoparticles, the effects of annealing temperature from 1000 °C to 1300 °C and annealing time from 0.5 h to 1.5 h on the recrystallization process of the grown hBN films were systematically studied by using XRD and SEM technologies. The introduction of Al2O3 impurities during the annealing process successfully reduced the transition temperature of hexagonal phase BN by more than 300 °C. The crystalline quality of hBN films grown by RF magnetron sputtering could be effectively enhanced under annealing at 1100 °C for 1 h. The DUV detectors were prepared using the hBN films before and after annealing, and showed a notable improvement in detector performance by using annealed films. It has significant application value in further enhancing the performance of DUV photodetectors based on high-quality hBN films. Full article
(This article belongs to the Special Issue Trends and Prospects in Nanoscale Thin Films and Coatings)
Show Figures

Figure 1

22 pages, 11419 KiB  
Article
A Modified Model Dielectric Function for Analyzing Optical Spectra of InGaN Nanofilms on Sapphire Substrates
by Devki N. Talwar, Hao-Hsiung Lin and Jason T. Haraldsen
Nanomaterials 2025, 15(7), 485; https://doi.org/10.3390/nano15070485 - 24 Mar 2025
Viewed by 384
Abstract
Due to a lower InN bandgap energy Eg~0.7 eV, InxGa1xN/Sapphire epifilms are considered valuable [...] Read more.
Due to a lower InN bandgap energy Eg~0.7 eV, InxGa1xN/Sapphire epifilms are considered valuable in the development of low-dimensional heterostructure-based photonic devices. Adjusting the composition x and thickness d in epitaxially grown films has offered many possibilities of light emission across a wide spectral range, from ultraviolet through visible into near-infrared regions. Optical properties have played important roles in making semiconductor materials useful in electro-optic applications. Despite the efforts to grow InxGa1xN/Sapphire samples, no x- and d-dependent optical studies exist for ultrathin films. Many researchers have used computationally intensive methods to study the electronic band structures Ejk, and subsequently derive optical properties. By including inter-band transitions at critical points from Ejk, we have developed a semiempirical approach to comprehend the optical characteristics of InN, GaN and InxGa1xN. Refractive indices of InxGa1xN and sapphire substrate are meticulously integrated into a transfer matrix method to simulate d- and x-dependent reflectivity RE  and transmission TE spectra of nanostructured InxGa1xN/Sapphire epifilms. Analyses of RE and TE have offered accurate x-dependent shifts of energy gaps for InxGa1xN (x = 0.5, 0.7) in excellent agreement with the experimental data. Full article
(This article belongs to the Section Nanocomposite Materials)
Show Figures

Figure 1

17 pages, 3301 KiB  
Article
Adsorption of Macrolide Antibiotics by Aged Microplastics of Different Sizes: Mechanisms and Effects
by Qi Li, Jingnan Tan, Haichao Sha, Ke Li and Xi Li
Nanomaterials 2025, 15(6), 467; https://doi.org/10.3390/nano15060467 - 19 Mar 2025
Viewed by 432
Abstract
Microplastics (MPs) and antibiotics are widely detected in water bodies. However, the adsorption behavior and mechanism of different particle size polystyrene (PS) MPs on macrolide antibiotics under natural aging remain to be elucidated. In this study, potassium persulfate (K2S2O [...] Read more.
Microplastics (MPs) and antibiotics are widely detected in water bodies. However, the adsorption behavior and mechanism of different particle size polystyrene (PS) MPs on macrolide antibiotics under natural aging remain to be elucidated. In this study, potassium persulfate (K2S2O8) was used to simulate the natural aging process of PS MPs. The adsorption behavior and mechanism of different size PS (80 and 400 μm) toward azithromycin (AZI), clarithromycin (CLA), and erythromycin (ERY) were investigated. Results of SEM showed that the surface roughness of aged PS MPs increased with the appearance of cracks, pits, and pores. XPS and FTIR analyses showed enhanced C=O functional groups in the aging process. The adsorption isotherm models revealed that the aging processes enhanced the AZI, CLA, and ERY adsorption tendency, as evidenced by the highest adsorption capacity for aged-80 μm (645, 665, 184 mg/kg) > original-80 μm (412, 420, 120 mg/kg), and aged-400 μm (280, 330, 110 mg/kg) > original-400 μm (197, 308, 100 mg/kg). Kinetic model fitting revealed that the adsorption process occurred in three stages: rapid, slow, and saturation. Adsorption kinetic curves for original and aged PS MPs conformed to the pseudo-second-order kinetic model. In contrast, the adsorption isotherm data fit the Langmuir model, indicating that the process primarily involved uniform monolayer chemical adsorption. Our findings provide insights into the substantial changes in the interactions between PS and macrolide antibiotics with aging processes. Full article
Show Figures

Figure 1

18 pages, 7168 KiB  
Article
Robust Carbon Nanotube Transistor Ion Sensors with Near-Nernstian Sensitivity for Multi-Ion Detection in Neurological Diseases
by Lidan Yan, Yang Zhang, Zhibiao Zhu, Yuqi Liang and Mengmeng Xiao
Nanomaterials 2025, 15(6), 447; https://doi.org/10.3390/nano15060447 - 15 Mar 2025
Cited by 1 | Viewed by 710
Abstract
Accurate monitoring of sodium and potassium ions in biological fluids is crucial for diseases related to electrolyte imbalance. Low-dimensional materials such as carbon nanotubes can be used to construct biochemical sensors based on high-performance field effect transistor (FET), but they face the problems [...] Read more.
Accurate monitoring of sodium and potassium ions in biological fluids is crucial for diseases related to electrolyte imbalance. Low-dimensional materials such as carbon nanotubes can be used to construct biochemical sensors based on high-performance field effect transistor (FET), but they face the problems of poor device consistency and difficulty in stable and reliable operation. In this work, we mass-produced carbon nanotube (CNT) floating-gate field-effect transistor devices with high uniformity and consistency through micro-/nanofabrication technology to improve the accuracy and reliability of detection without the need for statistical analysis based on machine learning. By introducing waterproof hafnium oxide gate dielectrics on the CNT FET channel, we not only effectively protect the channel area but also significantly improve the stability of the sensor. We have prepared array sensing technology based on CNT FET that can detect potassium, sodium, calcium, and hydrogen ions in artificial cerebrospinal fluid. The detection concentration range is 10 μM–100 mM and pH 3–pH 9, with a sensitivity close to the Nernst limit, and exhibits selective and long-term stable responses. This could help achieve early diagnosis and real-time monitoring of central nervous system diseases, highlighting the potential of this ion-sensing platform for highly sensitive and stable detection of various neurobiological markers. Full article
(This article belongs to the Special Issue Advanced Low-Dimensional Materials for Sensing Applications)
Show Figures

Figure 1

9 pages, 5541 KiB  
Article
Uniform Molecular Alignment on Ag-Doped Nickel Oxide Films
by Dong Wook Lee, Tae-Hyun Kim, Young Kwon Kim and Dae-Shik Seo
Nanomaterials 2025, 15(6), 449; https://doi.org/10.3390/nano15060449 - 15 Mar 2025
Viewed by 563
Abstract
This study presents the uniform alignment of liquid crystal (LC) molecules on silver (Ag)-doped nickel oxide (NiO) films. The films were fabricated using a solution brush coating process, with Ag doping concentrations of 0, 10, and 20 wt%. X-ray photoelectron spectroscopy confirmed the [...] Read more.
This study presents the uniform alignment of liquid crystal (LC) molecules on silver (Ag)-doped nickel oxide (NiO) films. The films were fabricated using a solution brush coating process, with Ag doping concentrations of 0, 10, and 20 wt%. X-ray photoelectron spectroscopy confirmed the successful formation of the films, while atomic force microscopy revealed nano/microgroove anisotropic structures, attributed to brush hair movement during coating. X-ray diffraction analysis indicated the films’ amorphous nature. Optical transmittance measurements demonstrated their suitability for electronic display applications. Polarized optical microscopy verified uniform LC molecular alignment and effective optical control. The fabricated LC cells exhibited increased LC polar anchoring energy, improving device stability. The polar anchoring energy increased by 1159.02% after Ag doping. Additionally, reduced residual charge was observed, suggesting minimized image sticking. These findings indicate that Ag-doped NiO films are a promising alternative for LC alignment layers in functional LC systems. Full article
(This article belongs to the Section Nanoelectronics, Nanosensors and Devices)
Show Figures

Figure 1

13 pages, 5601 KiB  
Review
Ordering Enhancement of Ion Bombardment-Induced Nanoripple Patterns: A Review
by Ying Liu, Hengbo Li, Chongyu Wang, Gaoyuan Yang, Frank Frost and Yilin Hong
Nanomaterials 2025, 15(6), 438; https://doi.org/10.3390/nano15060438 - 13 Mar 2025
Viewed by 508
Abstract
Low-energy ion bombardment (IB) has emerged as a promising, maskless nanofabrication tool for quasi-periodic nanoripples, marked by a high throughput and low cost. As templates, these IB-induced, self-organized surface nanoripples have shown potential for applications in diverse fields. However, the challenge of tailoring [...] Read more.
Low-energy ion bombardment (IB) has emerged as a promising, maskless nanofabrication tool for quasi-periodic nanoripples, marked by a high throughput and low cost. As templates, these IB-induced, self-organized surface nanoripples have shown potential for applications in diverse fields. However, the challenge of tailoring the ordering of these ripple patterns is preventing the widespread application of IB. Moreover, the enhancement of the ordering of these self-organized nanostructures involves the fundamental academic questions of nanoripple coupling (or superimposition) and guided self-organization. This review first focuses on the experimental progress made in developing representative strategies for the ordering enhancement of IB-induced nanoripples in terms of ion beams and targets. Second, we present our understanding of these developments from the perspectives of ripple superposition and guided self-organization. In particular, the basic conditions for ripple superposition under the non-conservation of mass are deduced based on the common features of the results from rocking bombardments of a single material and the bombardment of bilayer systems, providing insight into the mechanisms at play and deepening our understanding of these experimental observations. Finally, areas for future research are given, with the aim of improving ripple ordering from the viewpoints of ripple superimposition and guided self-organization. All this may re-stimulate interest in this field and will be of importance in advancing the academic research and practical applications of IB-induced nanopatterns. Full article
(This article belongs to the Special Issue Nanomanufacturing Using Ion Beam Technology)
Show Figures

Graphical abstract

16 pages, 9467 KiB  
Article
Atomic-Scale Interfacial Dynamics and Twin Formation in Cu/Al2Cu/Al Layered Composites During Cooling: Insights from Molecular Dynamics Simulations
by Shuang Li, Yunfeng Cui, Wenyan Wang, Jingpei Xie, Aiqin Wang, Feiyang Zhang and Zhiping Mao
Nanomaterials 2025, 15(6), 437; https://doi.org/10.3390/nano15060437 - 13 Mar 2025
Viewed by 602
Abstract
This study investigates the cooling process of the Cu/Al2Cu/Al system following high-temperature diffusion using molecular dynamics (MD) simulations based on an embedded atom method potential. The analysis focused on various characteristics to determine the structural and property changes within the Cu/Al [...] Read more.
This study investigates the cooling process of the Cu/Al2Cu/Al system following high-temperature diffusion using molecular dynamics (MD) simulations based on an embedded atom method potential. The analysis focused on various characteristics to determine the structural and property changes within the Cu/Al2Cu/Al system during cooling. The findings reveal that only a small number of Cu atoms diffused along the Z-axis near the Cu/Al2Cu interface, while significant diffusion of Al atoms occurs in all directions at the Al/Al2Cu interface. Moreover, 673 K is identified as a crucial temperature for the crystal transformation of the Cu/Al2Cu/Al system during cooling. The Cu/Al2Cu interface exhibited migration behavior along the positive Z-axis. Additionally, the growth of Al2Cu towards the Al side resulted in a symmetrical lattice distribution along the Al/Al2Cu interface, leading to the formation of a twin crystal. In the AI layer, locally disordered atoms transform into vacancies under stress, accumulating as the temperature drops, thereby providing favorable conditions for dislocation initiation. Notably, cooling of the Al layer to 650 K led to the initial generation of 1/6<112> Shockley incomplete dislocations. Full article
(This article belongs to the Section Theory and Simulation of Nanostructures)
Show Figures

Figure 1

18 pages, 7417 KiB  
Article
Densely Stacked CoCu-MOFs Coated with CuAl/LDH Enhance Sulfamethoxazole Degradation in PMS-Activated Systems
by Xin Zhong, Xiaojun Liu, Meihuan Ji and Fubin Jiang
Nanomaterials 2025, 15(6), 432; https://doi.org/10.3390/nano15060432 - 11 Mar 2025
Viewed by 656
Abstract
As the most promising techniques for refractory antibiotic degradation in wastewater management, sulfate radical-based advanced oxidation processes (SR-AOPs) have attracted considerable attention. However, systematic studies on potassium peroxymonosulfate (PMS) activation by MOF-derived metal oxides coated with LDH materials are still lacking. In this [...] Read more.
As the most promising techniques for refractory antibiotic degradation in wastewater management, sulfate radical-based advanced oxidation processes (SR-AOPs) have attracted considerable attention. However, systematic studies on potassium peroxymonosulfate (PMS) activation by MOF-derived metal oxides coated with LDH materials are still lacking. In this work, a series of catalysts consisting of CoCu-MOFs coated with CuAl/LDH were synthesized for PMS activation in the removal of sulfamethoxazole (SMX). As expected, CoCu-MOFs coated with CuAl/LDH catalyst showed high SMX removal and stability in PMS activation. In the CoCu/LDH/PMS reaction, the SMX removal was nearly 100% after 60 min, and the mineralization reached 53.7%. The catalyst showed excellent catalytic stability and low metal leaching concentrations (Co: 0.013 mg/L, Cu: 0.313 mg/L), as detected by ICP. Sulfate radicals and hydroxyl radicals were identified as the dominant reactive species in the CoCu/LDH/PMS system. Moreover, the presence of 1O2 in the process revealed the coupling of non-radical and radical processes. The XPS results showed that the layered structure of CoCu/LDH promoted the recycling of metal ions (high and low valence), which facilitated heterogeneous PMS activation. The effects of different reaction conditions and reuse cycles were also determined. The SMX oxidation pathways were proposed based on the intermediates identified by LC/MS. The high activity and stability of CoCu/LDH provide a new mechanistic understanding of PMS activation catalysts and their potential utilization in practical wastewater treatment. Full article
(This article belongs to the Section Environmental Nanoscience and Nanotechnology)
Show Figures

Figure 1

30 pages, 7685 KiB  
Review
Recent Developments of Advanced Broadband Photodetectors Based on 2D Materials
by Yan Tian, Hao Liu, Jing Li, Baodan Liu and Fei Liu
Nanomaterials 2025, 15(6), 431; https://doi.org/10.3390/nano15060431 - 11 Mar 2025
Viewed by 1581
Abstract
With the rapid development of high-speed imaging, aerospace, and telecommunications, high-performance photodetectors across a broadband spectrum are urgently demanded. Due to abundant surface configurations and exceptional electronic properties, two-dimensional (2D) materials are considered as ideal candidates for broadband photodetection applications. However, broadband photodetectors [...] Read more.
With the rapid development of high-speed imaging, aerospace, and telecommunications, high-performance photodetectors across a broadband spectrum are urgently demanded. Due to abundant surface configurations and exceptional electronic properties, two-dimensional (2D) materials are considered as ideal candidates for broadband photodetection applications. However, broadband photodetectors with both high responsivity and fast response time remain a challenging issue for all the researchers. This review paper is organized as follows. Introduction introduces the fundamental properties and broadband photodetection performances of transition metal dichalcogenides (TMDCs), perovskites, topological insulators, graphene, and black phosphorus (BP). This section provides an in-depth analysis of their unique optoelectronic properties and probes the intrinsic physical mechanism of broadband detection. In Two-Dimensional Material-Based Broadband Photodetectors, some innovative strategies are given to expand the detection wavelength range of 2D material-based photodetectors and enhance their overall performances. Among them, chemical doping, defect engineering, constructing heterostructures, and strain engineering methods are found to be more effective for improving their photodetection performances. The last section addresses the challenges and future prospects of 2D material-based broadband photodetectors. Furthermore, to meet the practical requirements for very large-scale integration (VLSI) applications, their work reliability, production cost and compatibility with planar technology should be paid much attention. Full article
Show Figures

Figure 1

15 pages, 2527 KiB  
Article
The Chemical Deformation of a Thermally Cured Polyimide Film Surface into Neutral 1,2,4,5-Benzentetracarbonyliron and 4,4′-Oxydianiline to Remarkably Enhance the Chemical–Mechanical Planarization Polishing Rate
by Man-Hyup Han, Hyun-Sung Koh, Il-Haeng Heo, Myung-Hoe Kim, Pil-Su Kim, Min-Uk Jeon, Min-Ji Kim, Woo-Hyun Jin, Kyoo-Chul Cho, Jinsub Park and Jea-Gun Park
Nanomaterials 2025, 15(6), 425; https://doi.org/10.3390/nano15060425 - 10 Mar 2025
Viewed by 1138
Abstract
The rapid advancement of 3D packaging technology has emerged as a key solution to overcome the scaling-down limitation of advanced memory and logic devices. Redistribution layer (RDL) fabrication, a critical process in 3D packaging, requires the use of polyimide (PI) films with thicknesses [...] Read more.
The rapid advancement of 3D packaging technology has emerged as a key solution to overcome the scaling-down limitation of advanced memory and logic devices. Redistribution layer (RDL) fabrication, a critical process in 3D packaging, requires the use of polyimide (PI) films with thicknesses in the micrometer range. However, these polyimide films present surface topography variations in the range of hundreds of nanometers, necessitating chemical–mechanical planarization (CMP) to achieve nanometer-level surface flatness. Polyimide films, composed of copolymers of pyromellitimide and diphenyl ether, possess strong covalent bonds such as C–C, C–O, C=O, and C–N, leading to inherently low polishing rates during CMP. To address this challenge, the introduction of Fe(NO3)3 into CMP slurries has been proposed as a polishing rate accelerator. During CMP, this Fe(NO3)3 deformed the surface of a polyimide film into strongly positively charged 1,2,4,5-benzenetetracarbonyliron and weakly negatively charged 4,4′-oxydianiline (ODA). The chemically dominant polishing rate enhanced with the concentration of the Fe(NO3)3 due to accelerated surface interactions. However, higher Fe(NO3)3 concentrations reduce the attractive electrostatic force between the positively charged wet ceria abrasives and the negatively charged deformed surface of the polyimide film, thereby decreasing the mechanically dominant polishing rate. A comprehensive investigation of the chemical and mechanical polishing rate dynamics revealed that the optimal Fe(NO3)3 concentration to achieve the maximum polyimide film removal rate was 0.05 wt%. Full article
(This article belongs to the Section Synthesis, Interfaces and Nanostructures)
Show Figures

Figure 1

14 pages, 2249 KiB  
Article
Comparative Assessment of the Impacts of Wildland–Urban Interface Fire Ash on Growth of the Diatom Thalassiosira weissflogii
by Talal Alshehri, Amar Yasser Jassim, Bo Cai, Tammi L. Richardson and Mohammed Baalousha
Nanomaterials 2025, 15(6), 422; https://doi.org/10.3390/nano15060422 - 9 Mar 2025
Viewed by 751
Abstract
Fires at the wildland–urban interface (WUI) result in the release of ash into the atmosphere that can be transported for long distances and deposited on land and in oceans. Wildfire ash has the potential to increase phytoplankton biomass in the open ocean by [...] Read more.
Fires at the wildland–urban interface (WUI) result in the release of ash into the atmosphere that can be transported for long distances and deposited on land and in oceans. Wildfire ash has the potential to increase phytoplankton biomass in the open ocean by providing both major nutrients and trace metals. However, fires that originate at the WUI contain potentially toxic concentrations of metals such as Ti, Cr, Cu, Pb, and Zn, especially in coastal oceans close to WUI fires, where ash deposition rates are high. Here, we investigated the impact of fire ash from different sources originating from vegetation, structures, and vehicles on growth of the diatom Thalassiosira weissflogii (T. weissflogii). The diatom was exposed to ash suspensions containing equimolar concentrations of 10 and 50 µM Fe. The concentration of potentially toxic metals (e.g., Ti, Cu, and Zn) in the exposure suspensions decreased following the order vehicle ash suspension > structural ash suspension > vegetation ash suspension. Growth rates (GR) of T. weissflogii were between 0.44 d−1 and 0.52 d−1 in the controls, and varied with ash types, following the order vegetation (GR = 0.40 d−1 to 0.48 d−1) > vehicle (GR = 0.06 d−1 to 0.46 d−1) > structure (GR = 0.02 d−1 to 0.31 d−1) ash. Two ash samples (A 131 and A136) completely inhibited the growth of T. weissflogii, possibly due to high Ti, Cu, and Zn concentrations in the form of (nano)particles. Overall, this study showed that structural and vehicle ash, with high concentrations of potentially toxic metals, significantly suppress the growth of T. weissflogii, whereas vegetation ash with high concentrations of Fe and Mn but low concentrations of potentially toxic metals had no significant beneficial or suppressive effect. High concentrations of the metals Ti, Cu, and Zn in the form of nano(particles) in structural and vehicle ash are possible sources of toxicity to diatom growth. This study provides valuable insights into the potential impacts of WUI fires on aquatic ecosystems and can inform management strategies aimed at reducing these impacts. Full article
(This article belongs to the Section Environmental Nanoscience and Nanotechnology)
Show Figures

Graphical abstract

18 pages, 6287 KiB  
Article
Folic Acid-Conjugated Magnetic Oleoyl-Chitosan Nanoparticles for Controlled Release of Doxorubicin in Cancer Therapy
by Banendu Sunder Dash, Yi-Chian Lai and Jyh-Ping Chen
Nanomaterials 2025, 15(6), 415; https://doi.org/10.3390/nano15060415 - 7 Mar 2025
Cited by 2 | Viewed by 1186
Abstract
To develop an efficient drug delivery system, we co-entrapped superparamagnetic Fe3O4 and the chemotherapeutic drug doxorubicin (DOX) in oleoyl-chitosan (OC) to prepare DOX-entrapped magnetic OC (DOX-MOC) nanoparticles (NPs) through ionic gelation of OC with sodium tripolyphosphate (TPP). The NPs provide [...] Read more.
To develop an efficient drug delivery system, we co-entrapped superparamagnetic Fe3O4 and the chemotherapeutic drug doxorubicin (DOX) in oleoyl-chitosan (OC) to prepare DOX-entrapped magnetic OC (DOX-MOC) nanoparticles (NPs) through ionic gelation of OC with sodium tripolyphosphate (TPP). The NPs provide magnetically targeted delivery of DOX in cancer therapy. Using folic acid (FA)-grafted OC, FA-conjugated DOX-entrapped magnetic OC (FA-DOX-MOC) NPs were prepared similarly for FA-mediated active targeting of cancer cells with overexpressed folate receptors. Considering DOX loading and release, the best conditions for preparing DOX-MOC NPs were an OC:TPP mass ratio = 1:4 and OC concentration = 0.2%. These spherical NPs had a particle size of ~250 nm, 87.9% Fe3O4 content, 53.1 emu/g saturation magnetization, 83.1% drug encapsulation efficacy, and 2.81% drug loading efficiency. FA did not significantly change the physico-chemical characteristics of FA-DOX-MOC compared to DOX-MOC, and both NPs showed pH-dependent drug release behaviors, with much faster release of DOX at acidic pH values found in endosomes. However, FA could enhance the intracellular uptake of the NPs and DOX accumulation in the nucleus. This active targeting effect led to significantly higher cytotoxicity towards U87 cancer cells. These results suggest that FA-DOX-MOC NPs can efficiently deliver DOX for controlled drug release in cancer therapy. Full article
(This article belongs to the Section Biology and Medicines)
Show Figures

Figure 1

Back to TopTop