Crystalline Phase-Dependent Emissivity of MoSi2 Nanomembranes for Extreme Ultraviolet Pellicle Applications
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Fabrication and Analysis
2.2. Heat-Load Test
3. Results and Discussion
3.1. MoSi2 Thin-Film Characteristics According to Annealing Temperature
3.2. Dependence of the MoSi2 Crystalline Phase on the Electrical Characteristics of Materials
3.3. Effects of Carrier Density on the Emissivity of Crystallized MoSi2
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| EUV | Extreme ultraviolet |
| MoSi2 | Molybdenum disilicide |
| KOH | Potassium hydroxide |
| TEM | Transmission electron microscopy |
| XRD | X-ray diffraction |
References
- Mastenbroek, M. EUV Industrialization High Volume Manufacturing with NXE3400B. In Proceedings of the International Conference on Extreme Ultraviolet Lithography 2018, Monterey, CA, USA, 17–20 September 2018; Volume 1080904, pp. 5–20. [Google Scholar] [CrossRef]
- Smeets, C.; Benders, N.; Bornebroek, F.; Carbone, J.; van Es, R.; Minnaert, A.; Salmaso, G.; Young, S. 0.33 NA EUV Systems for High Volume Manufacturing. In Proceedings of the Optical and EUV Nanolithography XXXVI, San Jose, CA, USA, 26 February–2 March 2023; Volume 1249406, pp. 34–42. [Google Scholar] [CrossRef]
- Park, E.-S.; Shamsi, Z.H.; Kim, J.W.; Kim, D.G.; Park, J.G.; Ahn, J.H.; Oh, H.K. Mechanical deflection of a free-standing pellicle for extreme ultraviolet lithography. Microelectron. Eng. 2015, 143, 81–85. [Google Scholar] [CrossRef]
- Pollentier, I.; Lee, J.U.; Timmermans, M.; Adelmann, C.; Zahedmanesh, H.; Huyghebaert, C.; Gallaghert, E.E. Novel Membrane Solutions for the EUV Pellicle: Better or Not? In Proceedings of the Extreme Ultraviolet (EUV) Lithography VIII, San Jose, CA, USA, 26 February–2 March 2017; Volume 101430L, pp. 125–134. [Google Scholar] [CrossRef]
- Kim, J.; Kim, H.; Ahn, J. Impact of residual stress on the deflection of extreme ultraviolet pellicles. J. Micro/Nanopatterning Mater. Metrol. 2021, 20, 024401. [Google Scholar] [CrossRef]
- Modest, M.F.; Mazumder, S. Radiative Heat Transfer; Academic Press: Cambridge, MA, USA, 2021; Volume 02139, pp. 154–196. [Google Scholar]
- Goldfarb, D.L.; Bloomfield, M.O.; Colburn, M. Thermomechanical Behavior of EUV Pellicle Under Dynamic Exposure Conditions. In Proceedings of the Extreme Ultraviolet (EUV) Lithography VII, San Jose, CA, USA, 21–25 February 2016; Volume 977621, pp. 601–611. [Google Scholar] [CrossRef]
- Lafarre, R.; Maas, R. Progress on EUV Pellicle and Pellicle Infrastructure for High Volume Manufacturing. In Proceedings of the Extreme Ultraviolet (EUV) Lithography XII, Online, 22–27 February 2021; Volume 11609, p. 1160912. [Google Scholar] [CrossRef]
- Van Zwol, P.J.; Vles, D.F.; Voorthuijzen, W.P.; Péter, M.; Vermeulen, H.; van der Zande, W.J.; Sturm, J.M.; van de Kruijs, R.W.E.; Bijkerk, F. Emissivity of freestanding membranes with thin metal coatings. J. Appl. Phys. 2015, 118, 213107. [Google Scholar] [CrossRef]
- Van Zwol, P.J.; Nasalevich, M.; Voorthuijzen, W.P.; Kurganova, E.; Notenboom, A.; Vles, D.; Peter, M.; Symens, W.; Giesbers, A.J.M.; Klootwijk, J.H.; et al. Pellicle Films Supporting the Ramp to HVM with EUV. In Proceedings of the Photomask Technology 2017, Monterey, CA, USA, 11–14 September 2017; Volume 104510O, pp. 149–157. [Google Scholar] [CrossRef]
- Kim, H.N.; Jang, Y.J.; Wi, S.J.; Kim, C.S.; Ahn, J. Mo Silicide EUV Pellicle. In Proceedings of the Extreme Ultraviolet Lithography 2020, Online, 21–25 September 2020; Volume 11517, p. 115170A. [Google Scholar] [CrossRef]
- Qiao, Y.; Zhang, H.; Hong, C.; Zhang, X. Phase stability, electronic structure and mechanical properties of molybdenum disilicide: A first-principles investigation. J. Phys. D Appl. Phys. 2009, 42, 105413. [Google Scholar] [CrossRef]
- Liton, M.; Helal, M.; Khan, M.; Kamruzzaman, M.; Farid Ul Islam, A. Mechanical and opto-electronic properties of α-MoSi2: A DFT scheme with hydrostatic pressure. Ind. J. Phys. 2022, 96, 4155–4172. [Google Scholar] [CrossRef]
- Stover, J.C. Optical Scattering: Measurement and Analysis, 3rd ed.; SPIE Press: Bellingham, WA, USA, 2012. [Google Scholar]
- Ferry, D. Semiconductor Transport; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar]
- Kittel, C.; McEuen, P.; Ferry, D.K. Introduction to Solid State Physics, 9th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2021. [Google Scholar]
- Liu, Z.; Luo, B.; Hu, J.; Xing, C. Transport mechanism in amorphous molybdenum silicide thin films. J. Phys. Chem. Solids 2021, 149, 109818. [Google Scholar] [CrossRef]
- Fishchuk, I.I.; Kadashchuk, A.; Bhoolokam, A.S.; de Jamblinne de Meux, A.; Pourtois, G.; Gavrilyuk, M.M.; Kohler, A.; Bassler, H.; Heremans, P.; Genoe, J. Interplay between hopping and band transport in high-mobility disordered semiconductors at large carrier concentrations: The case of the amorphous oxide InGaZnO. Phys. Rev. B 2016, 93, 195204. [Google Scholar] [CrossRef]
- Howell, J.R.; Mengüç, M.P.; Daun, K.; Siegel, R. Thermal Radiation Heat Transfer; CRC Press: Boca Raton, FL, USA, 2020. [Google Scholar]
- Wooten, F. Optical Properties of Solids; Academic Press: New York, NY, USA, 1972. [Google Scholar]
- Planck, M. The Theory of Heat Radiation; P. Blakiston’s Son & Co.: Philadelphia, PA, USA, 1914. [Google Scholar]
- Ahmed, I.; Khoo, E.H.; Kurniawan, O.; Li, E.P. Modeling and simulation of active plasmonics with the FDTD method by using solid state and Lorentz–Drude dispersive model. J. Opt. Soc. Am. B 2011, 28, 352–359. [Google Scholar] [CrossRef]
- Ding, G.; Clavero, C.; Schweigert, D.; Le, M. Thickness and microstructure effects in the optical and electrical properties of silver thin films. AIP Adv. 2015, 5, 117234. [Google Scholar] [CrossRef]






Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, H.; Kang, Y.W.; Kim, J.; Lee, T.; Ahn, J. Crystalline Phase-Dependent Emissivity of MoSi2 Nanomembranes for Extreme Ultraviolet Pellicle Applications. Nanomaterials 2025, 15, 1488. https://doi.org/10.3390/nano15191488
Kim H, Kang YW, Kim J, Lee T, Ahn J. Crystalline Phase-Dependent Emissivity of MoSi2 Nanomembranes for Extreme Ultraviolet Pellicle Applications. Nanomaterials. 2025; 15(19):1488. https://doi.org/10.3390/nano15191488
Chicago/Turabian StyleKim, Haneul, Young Woo Kang, Jungyeon Kim, Taeho Lee, and Jinho Ahn. 2025. "Crystalline Phase-Dependent Emissivity of MoSi2 Nanomembranes for Extreme Ultraviolet Pellicle Applications" Nanomaterials 15, no. 19: 1488. https://doi.org/10.3390/nano15191488
APA StyleKim, H., Kang, Y. W., Kim, J., Lee, T., & Ahn, J. (2025). Crystalline Phase-Dependent Emissivity of MoSi2 Nanomembranes for Extreme Ultraviolet Pellicle Applications. Nanomaterials, 15(19), 1488. https://doi.org/10.3390/nano15191488
