Fabrication of High-Quality MoS2/Graphene Lateral Heterostructure Memristors
Abstract
1. Introduction
2. Materials and Methods
2.1. Substrate Preparation and Graphene Growth
2.2. Amorphous MoS2 Precursor Deposition
2.3. Confined-Space Sulfurization
2.4. Structural and Chemical Characterization
2.5. Device Fabrication and Electrical Testing
3. Results
3.1. Process Scheme and Heterostructure Architecture
3.2. Thickness Calibration and Crystallization of Ultrathin MoS2
3.3. Raman Confirmation of Crystallinity and Spatially Selective Heterostructure Formation
3.4. Surface Morphology and Stoichiometry of the Sulfurized MoS2 Films and the MoS2/Graphene Heterostructure
3.5. Chemical-State Analysis by X-Ray Photoelectron Spectroscopy
3.6. Electrical Transport and Memristive Behavior
3.7. Proposed Switching Mechanism
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lee, C.; Yan, H.; Brus, L.E.; Heinz, T.F.; Hone, J.; Ryu, S. Anomalous lattice vibrations of single- and few-layer MoS2. ACS Nano 2010, 4, 2695–2700. [Google Scholar] [CrossRef]
- Chee, S.; Seo, D.; Kim, H.; Jang, H.; Lee, S.; Moon, S.P.; Lee, K.H.; Kim, S.W.; Choi, H.; Ham, M. Lowering the Schottky Barrier Height by Graphene/Ag Electrodes for High-Mobility MoS2 Field-Effect Transistors. Adv. Mater. 2019, 31, 1804422. [Google Scholar] [CrossRef] [PubMed]
- Wördenweber, H.; Grundmann, A.; Wang, Z.; Hoffmann-Eifert, S.; Kalisch, H.; Vescan, A.; Heuken, M.; Waser, R.; Karthäuser, S. The MoS2-graphene-sapphire heterostructure: Influence of substrate properties on the MoS2 band structure. J. Phys. Chem. C 2023, 127, 10878–10887. [Google Scholar] [CrossRef]
- Bae, S.; Kim, H.; Lee, Y.; Xu, X.; Park, J.-S.; Zheng, Y.; Balakrishnan, J.; Lei, T.; Kim, H.R.; Song, Y.I.; et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol. 2010, 5, 574–578. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Zhong, S.; Bin, Y.; Jiang, X.; Cui, H. Ni-Decorated WS2–WSe2 Heterostructure as a Novel Sensing Candidate upon C2H2 and C2H4 in Oil-Filled Transformers: A First-Principles Investigation. Mol. Phys. 2025, e2492391. [Google Scholar] [CrossRef]
- Di Bartolomeo, A. Graphene Schottky Diodes: An Experimental Review of the Rectifying Graphene/Semiconductor Heterojunction. Phys. Rep. 2016, 606, 1–58. [Google Scholar] [CrossRef]
- Kim, H.-U.; Kim, M.; Jin, Y.; Hyeon, Y.; Kim, K.S.; An, B.-S.; Yang, C.-W.; Kanade, V.; Moon, J.-Y.; Yeom, G.Y.; et al. Low-temperature wafer-scale growth of MoS2–graphene heterostructures. Appl. Surf. Sci. 2019, 470, 129–134. [Google Scholar] [CrossRef]
- Muñoz, R.; López-Elvira, E.; Munuera, C.; Frisenda, R.; Sánchez-Sánchez, C.; Martín-Gago, J.Á.; García-Hernández, M. Direct growth of graphene-MoS2 heterostructure: Tailored interface for advanced devices. Appl. Surf. Sci. 2022, 581, 151858. [Google Scholar] [CrossRef]
- Banszerus, L.; Watanabe, K.; Taniguchi, T.; Beschoten, B.; Stampfer, C. Dry transfer of CVD graphene using MoS2 -based stamps. Phys. Rapid Res. Lett. 2017, 11, 1700136. [Google Scholar] [CrossRef]
- Li, D.; Xiao, Z.; Mu, S.; Wang, F.; Liu, Y.; Song, J.; Huang, X.; Jiang, L.; Xiao, J.; Liu, L.; et al. Space-confined sulphurization strategy for ultrathin MoS2 single crystals. Nano Lett. 2018, 18, 2021–2032. [Google Scholar] [CrossRef]
- Sangwan, V.K.; Lee, H.-S.; Bergeron, H.; Balla, I.; Beck, M.E.; Chen, K.-S.; Hersam, M.C. Multi-terminal memtransistors from polycrystalline monolayer molybdenum disulfide. Nature 2018, 554, 500–504. [Google Scholar] [CrossRef]
- Li, D.; Wu, B.; Zhu, X.; Wang, J.; Ryu, B.; Lu, W.D.; Liang, X. MoS2 memristors exhibiting variable switching characteristics toward biorealistic synaptic emulation. ACS Nano 2018, 12, 9240–9252. [Google Scholar] [CrossRef]
- Bala, A.; Sen, A.; Shim, J.; Gandla, S.; Kim, S. Back-end-of-line compatible large–area molybdenum disulfide grown on flexible substrate. ACS Nano 2023, 17, 13784–13791. [Google Scholar] [CrossRef]
- Lo, C.-L.; Catalano, M.; Smithe, K.K.H.; Wang, L.; Zhang, S.; Pop, E.; Kim, M.J.; Chen, Z. Two-dimensional h-BN and MoS2 as diffusion barriers in Cu interconnects. NPJ 2D Mater. Appl. 2017, 1, 42. [Google Scholar] [CrossRef]
- Zhu, X.; Li, D.; Liang, X.; Lu, W.D. Ionic modulation in MoS2 neuromorphic devices. Nat. Mater. 2019, 18, 141–148. [Google Scholar] [CrossRef] [PubMed]
- Shen, J.; Zhao, M.; Liu, X.; Li, C.; Lin, X.; Zhang, K. Low-consumption two-terminal artificial synapse based on transfer-free single-crystal MoS2 memristor. Nanotechnology 2020, 31, 265202. [Google Scholar] [CrossRef]
- Xiong, X.; Wu, F.; Ouyang, Y.; Liu, Y.; Wang, Z.; Tian, H.; Dong, M. Oxygen-incorporated MoS2 for rectification-mediated resistive switching and artificial neural network. Adv. Funct. Mater. 2023, 33, 2213348. [Google Scholar] [CrossRef]
- Dragoman, M.; Aldrigo, M.; Dragoman, D.; Povey, I.M.; Iordanescu, S.; Dinescu, A.; Di Donato, A.; Modreanu, M. Multifunctionalities of 2D MoS2 self-switching diode as memristor and photodetector. Phys. E 2021, 126, 114451. [Google Scholar] [CrossRef]
- Wang, Y.; Zheng, Y.; Xu, X.; Dubuisson, E.; Bao, Q.; Lu, J.; Loh, K.P. Electrochemical delamination of CVD-grown graphene film: Toward the recyclable use of copper catalyst. ACS Nano 2011, 5, 9927–9933. [Google Scholar] [CrossRef]
- Mihai, C.; Sava, F.; Simandan, I.D.; Galca, A.C.; Burducea, I.; Becherescu, N.; Velea, A. Structural and optical properties of amorphous Si–Ge–Te thin films prepared by combinatorial sputtering. Sci. Rep. 2021, 11, 11845. [Google Scholar] [CrossRef]
- Buruiană, A.T.; Bocirnea, A.E.; Sava, F.; Matei, E.; Tite, T.; Mariana, A.; Simandan, I.D.; Galca, A.C.; Velea, A. Two-step process for the fabrication of direct FLG/MoS2 heterostructures. Mater. Chem. Phys. 2024, 322, 129530. [Google Scholar] [CrossRef]
- Islam, M.S.; Tiong, S.K.; Za’abar, F.I.; Doroody, C.; Zuhdi, A.W.M.; Bahrudin, M.S.; Feng, Z.J.; Cao, W.; Amin, N. Pressure-Dependent Sulfurization of Molybdenum Thin Films for High-Quality MoS2 Formation. IOP Conf. Ser. Earth Environ. Sci. 2025, 1500, 012020. [Google Scholar] [CrossRef]
- Tao, J.; Chai, J.; Lu, X.; Wong, L.M.; Wong, T.I.; Pan, J.; Xiong, Q.; Chi, D.; Wang, S. Growth of Wafer-Scale MoS2 Monolayer by Magnetron Sputtering. Nanoscale 2015, 7, 2497–2503. [Google Scholar] [CrossRef]
- Campbell, P.M.; Perini, C.J.; Chiu, J.; Gupta, A.; Ray, H.S.; Chen, H.; Wenzel, K.; Snyder, E.; Wagner, B.K.; Ready, J.; et al. Plasma-Assisted Synthesis of MoS2. 2D Mater. 2017, 5, 015005. [Google Scholar] [CrossRef]
- Roy, K.; Padmanabhan, M.; Goswami, S.; Sai, T.P.; Ramalingam, G.; Raghavan, S.; Ghosh, A. Graphene–MoS2 hybrid structures for multifunctional photo-responsive memory devices. Nat. Nanotechnol. 2013, 8, 826–830. [Google Scholar] [CrossRef]
- Jariwala, D.; Sangwan, V.K.; Lauhon, L.J.; Marks, T.J.; Hersam, M.C. Emerging device applications for semiconducting two-dimensional transition-metal dichalcogenides. ACS Nano 2014, 8, 1102–1120. [Google Scholar] [CrossRef]
- Jung, Y.; Shen, J.; Liu, Y.; Woods, J.M.; Sun, Y.; Cha, J.J. Metal seed-layer-thickness-induced transition from vertical to horizontal growth of MoS2 and WS2. Nano Lett. 2014, 14, 6842–6849. [Google Scholar] [CrossRef]
- Frey, G.L.; Tenne, R.; Matthews, M.J.; Dresselhaus, M.S.; Dresselhaus, G. Raman and resonance Raman investigation of MoS2 nanoparticles. Phys. Rev. B 1999, 60, 2883–2892. [Google Scholar] [CrossRef]
- Gołasa, K.; Grzeszczyk, M.; Faugeras, C.; Leszczyński, P.; Wysmołek, A.; Potemski, M.; Babiński, A. Multiphonon resonant Raman scattering in MoS2. Appl. Phys. Lett. 2014, 104, 092106. [Google Scholar] [CrossRef]
- Cançado, L.G.; Luo, Z.; Ferreira, E.H.M.; Elias, D.C.; Rodriguez, B.J.; Takai, K.; Jorio, A.; Magalhães-Paniago, R.; Dresselhaus, M.S.; Terrones, M.; et al. Quantifying defects in graphene via Raman spectroscopy at different excitation energies. Nano Lett. 2011, 11, 3190–3196. [Google Scholar] [CrossRef]
- Buruiana, A.T.; Bocirnea, A.E.; Kuncser, A.C.; Tite, T.; Matei, E.; Mihai, C.; Zawadzka, N.; Olkowska-Pucko, K.; Kipczak, Ł.; Babiński, A.; et al. Layered SnSe Nanoflakes with Anharmonic Phonon Properties and Memristive Characteristics. Appl. Surf. Sci. 2022, 599, 153983. [Google Scholar] [CrossRef]
- Kim, I.S.; Sangwan, V.K.; Jariwala, D.; Wood, J.D.; Park, S.; Chen, K.-S.; Shi, F.; Ruiz-Zepeda, F.; Ponce, A.; Jose-Yacaman, M.; et al. Influence of Stoichiometry on the Optical and Electrical Properties of Chemical Vapor Deposition Derived MoS2. ACS Nano 2014, 8, 10551–10558. [Google Scholar] [CrossRef]
- Ling, H.; Koutsouras, D.A.; Kazemzadeh, S.; van de Burgt, Y.; Yan, F.; Gkoupidenis, P. Electrolyte-gated transistors for synaptic electronics, neuromorphic computing and adaptable bio-interfacing. Small 2020, 16, 1902797. [Google Scholar] [CrossRef]
- Padilha, J.E.; Pontes, R.B.; da Silva, A.J.R.; Fazzio, A. Vacancy-induced gap states in MoS2: Electronic structure and transport. Appl. Phys. Lett. 2014, 105, 022105. [Google Scholar] [CrossRef]
- Banerjee, A.; Das, B.; Chaudhuri, P.R. A comprehensive modelling on MoS2 interface and defect engineering in CZTS thin-film solar cells. Sol. Energy Mater. Sol. Cells 2020, 210, 110580. [Google Scholar] [CrossRef]
- Abo El-Ezz, A.; Shawky, A.; Abdel-Rahim, M. MoS2 thin-film hetero-interface as effective back-surface field in CZTS-based solar cells. Appl. Surf. Sci. 2022, 592, 152802. [Google Scholar] [CrossRef]
- Sangwan, V.K.; Jariwala, D.; Kim, I.S.; Lauhon, L.J.; Marks, T.J.; Hersam, M.C. Gate-Tunable Memristive Phenomena Mediated by Grain Boundaries in Single-Layer MoS2. Nat. Nanotechnol. 2015, 10, 403–406. [Google Scholar] [CrossRef]
- Hus, S.M.; Ge, R.; Chen, P.-A.; Liang, L.; Donnelly, G.E.; Ko, W.; Huang, F.; Chiang, M.-H.; Li, A.-P.; Akinwande, D. Observation of Single-Defect Memristor in an MoS2 Atomic Sheet. Nat. Nanotechnol. 2021, 16, 58–62. [Google Scholar] [CrossRef] [PubMed]
- Song, S.H.; Joo, M.-K.; Neumann, M.; Kim, H.; Lee, Y.H. Probing Defect Dynamics in Monolayer MoS2 via Noise Nanospectroscopy. Nat. Commun. 2017, 8, 2121. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, B.; Matte, H.S.S.R.; Sood, A.K.; Rao, C.N.R. Layer-Dependent Resonant Raman Scattering of a Few-Layer MoS2. J. Raman Spectrosc. 2013, 44, 92–96. [Google Scholar] [CrossRef]
- Kim, J.H.; Lee, J.; Kim, J.H.; Hwang, C.C.; Lee, C.; Park, J.Y. Work Function Variation of MoS2 Atomic Layers Grown with Chemical Vapor Deposition: The Effects of Thickness and the Adsorption of Water/Oxygen Molecules. Appl. Phys. Lett. 2015, 106, 251606. [Google Scholar] [CrossRef]
- Rajput, M.; Mallik, S.K.; Chatterjee, S.; Shukla, A.; Hwang, S.; Sahoo, S.; Kumar, G.V.P.; Rahman, A. Defect-engineered monolayer MoS2 with enhanced memristive and synaptic functionality. Commun. Mater. 2024, 5, 190. [Google Scholar] [CrossRef]
- Krishnaprasad, A.; Dev, D.; Shawkat, M.S.; Martinez-Martinez, R.; Islam, M.M.; Chung, H.-S.; Bae, T.-S.; Jung, Y.; Roy, T. Graphene/MoS2/SiOx memristive synapses for linear weight update. NPJ 2D Mater. Appl. 2023, 7, 22. [Google Scholar] [CrossRef]
- Daus, A.; Vaziri, S.; Chen, V.; Köroğlu, Ç.; Grady, R.W.; Bailey, C.S.; Lee, H.R.; Schauble, K.; Brenner, K.; Pop, E. High-Performance Flexible Nanoscale Transistors Based on Transition Metal Dichalcogenides. Nat. Electron. 2021, 4, 495–501. [Google Scholar] [CrossRef]
1 nm MoS2 Sulfurized | 0.8 nm MoS2 Sulfurized | |
---|---|---|
S:Mo | 1.95 | 1.5 |
Mo6+ (%) | 22 | 14 |
B.E. Mo 3d (eV) | 229 | 228.8 |
B.E. S 2p (eV) | 161.7 | 161.6 |
Device Architecture | tMoS2 (nm) | VSET/VRESET (V) | ON/OFF Ratio | Mechanism | Ref. |
---|---|---|---|---|---|
Ti/Au/monolayer MoS2/Ti/Au | ≈0.7 | +6/−5 | ≈2.0 | Schottky-barrier narrowing by S-vacancy redistribution | [16] |
TiN/O-doped 3 L MoS2/TiN | ≈1.8 | +5.4/−4.8 | ≈2–3 | Oxygen-induced trap filling/interface dipole | [17] |
Au/4 L MoS2/graphene/Au | ≈2 | +6/−6 | ≈2.1 | Interface vacancy drift/barrier modulation | this work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mihai, C.; Simandan, I.-D.; Sava, F.; Tite, T.; Bocirnea, A.; Vaduva, M.; Zaki, M.Y.; Baibarac, M.; Velea, A. Fabrication of High-Quality MoS2/Graphene Lateral Heterostructure Memristors. Nanomaterials 2025, 15, 1239. https://doi.org/10.3390/nano15161239
Mihai C, Simandan I-D, Sava F, Tite T, Bocirnea A, Vaduva M, Zaki MY, Baibarac M, Velea A. Fabrication of High-Quality MoS2/Graphene Lateral Heterostructure Memristors. Nanomaterials. 2025; 15(16):1239. https://doi.org/10.3390/nano15161239
Chicago/Turabian StyleMihai, Claudia, Iosif-Daniel Simandan, Florinel Sava, Teddy Tite, Amelia Bocirnea, Mirela Vaduva, Mohamed Yassine Zaki, Mihaela Baibarac, and Alin Velea. 2025. "Fabrication of High-Quality MoS2/Graphene Lateral Heterostructure Memristors" Nanomaterials 15, no. 16: 1239. https://doi.org/10.3390/nano15161239
APA StyleMihai, C., Simandan, I.-D., Sava, F., Tite, T., Bocirnea, A., Vaduva, M., Zaki, M. Y., Baibarac, M., & Velea, A. (2025). Fabrication of High-Quality MoS2/Graphene Lateral Heterostructure Memristors. Nanomaterials, 15(16), 1239. https://doi.org/10.3390/nano15161239