Highly Selective Isotropic Etching of Si to SiGe Using CF4/O2/N2 Plasma for Advanced GAA Nanosheet Transistor
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mertens, H.; Ritzenthaler, R.; Hikavyy, A.; Kim, M.S.; Tao, Z.; Wostyn, K.; Chew, S.A.; Keersgieter, A.D.; Mannaert, G.; Rosseel, E.; et al. Gate-All-Around MOSFETs Based on Vertically Stacked Horizontal Si Nanowires in a Replacement Metal Gate Process on Bulk Si Substrates. In Proceedings of the IEEE Symposium on VLSI Technology, Honolulu, HI, USA, 14–16 June 2016; pp. 1–2. [Google Scholar]
- Wu, S.Y.; Lin, C.Y.; Chiang, M.C.; Liaw, J.J.; Cheng, J.Y.; Yang, S.H.; Liang, M.; Miyashita, T.; Tsai, C.H.; Hsu, B.C.; et al. A 16nm FinFET CMOS technology for mobile SoC and computing applications. In Proceedings of the 2013 IEEE International Electron Devices Meeting, Washington, DC, USA, 9–11 December 2013; pp. 9.1.1–9.1.4. [Google Scholar]
- Wu, S.Y.; Lin, C.Y.; Chiang, M.C.; Liaw, J.J.; Cheng, J.Y.; Yang, S.H.; Tsai, C.H.; Chen, P.N.; Miyashita, T.; Chang, C.H.; et al. A 7 nm CMOS platform technology featuring 4th generation FinFET transistors with a 0. In 027 um2 high density 6-T SRAM cell for mobile SoC applications. In Proceedings of the 2016 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 3–7 December 2016; pp. 2.6.1.–2.6.4. [Google Scholar]
- Zhang, J.; Ando, T.; Yeung, C.W.; Wang, M.; Kwon, O.; Galatage, R.; Chao, R.; Loubet, N.; Moon, B.K.; Bao, R.; et al. High-k metal gate fundamental learning and multi-Vt options for stacked nanosheet gate-all-around transistor. In Proceedings of the 2017 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 2–6 December 2017; pp. 22.1.1–22.1.4. [Google Scholar]
- Loubet, N.; Hook, T.; Montanini, P.; Yeung, C.W.; Kanakasabapathy, S.; Guillom, M.; Yamashita, T.; Zhang, J.; Miao, X.; Wang, J.; et al. Stacked nanosheet gate-all-around transistor to enable scaling beyond FinFET. In Proceedings of the 2017 Symposium on VLSI Technology, Kyoto, Japan, 5–8 June 2017; pp. T230–T231. [Google Scholar]
- Mertens, H.; Ritzenthaler, R.; Pena, V.; Santoro, G.; Kenis, K.; Schulze, A.; Litta, E.D.; Chew, S.A.; Devriendt, K.; Chiarella, R.; et al. Vertically stacked gate-all-around Si nanowire transistors: Key Process Optimizations and Ring Oscillator Demonstration. In Proceedings of the 2017 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 2–6 December 2017; pp. 37.4.1–37.4.4. [Google Scholar]
- Ritzenthaler, R.; Mertens, H.; Pena, V.; Santoro, G.; Chasin, A.; Kenis, K.; Devriendt, K.; Mannaert, G.; Dekkers, H.; Dangol, A.; et al. Vertically Stacked Gate-All-Around Si Nanowire CMOS Transistors with Reduced Vertical Nanowires Separation, New Work Function Metal Gate Solutions, and DC/AC Performance Optimization. In Proceedings of the 2018 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 1–5 December 2018; pp. 21.5.1–21.5.4. [Google Scholar]
- Liu, T.; Wang, D.; Pan, Z.; Chen, K.; Yang, J.; Wu, C.; Xu, S.; Wang, C.; Xu, M.; Zhang, D.W. Novel Postgate Single Diffusion Break Integration in Gate-All-Around Nanosheet Transistors to Achieve Remarkable Channel Stress for N/P Current Matching. IEEE Trans. Electron Devices 2022, 69, 1497–1502. [Google Scholar] [CrossRef]
- Agrawal, A.; Chouksey, S.S.; Rachmady, W.; Vishwanath, S.; Ghose, S.; Mehta, M.; Torres, J.; Oni, A.A.; Weng, X.; Li, H.; et al. Gate-All-Around Strained Si0.4Ge0.6 Nanosheet PMOS on Strain Relaxed Buffer for High Performance Low Power Logic Application. In Proceedings of the 2020 IEEE International Electron Devices Meeting, San Francisco, CA, USA, 12–18 December 2020. [Google Scholar]
- Arimura, H.; Capogreco, E.; Vohra, A.; Porret, C.; Loo, R.; Rosseel, E.; Hikavyy, A.; Cott, D.; Boccardi, G.; Witters, L.; et al. Toward high-performance and reliable Ge channel devices for 2 nm node and beyond. In Proceedings of the 2020 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 12–18 December 2020; pp. 2.1.1–2.1.4. [Google Scholar]
- Friedrich, S. High-mobility Si and Ge structures. Semicond. Sci. Technol. 1997, 12, 1515. [Google Scholar] [CrossRef]
- Loo, R.; Hikavyy, A.Y.; Witters, L.; Schulze, A.; Arimura, H.; Cott, D.; Mitard, J.; Porret, C.; Mertens, H.; Ryan, P.; et al. Processing Technologies for Advanced Ge Devices. ECS J. Solid State Sci. Technol. 2017, 6, P14. [Google Scholar] [CrossRef]
- Yeap, G.; Lin, S.S.; Chen, Y.M.; Shang, H.L.; Wang, P.W.; Lin, H.C.; Peng, Y.C.; Sheu, J.Y.; Wang, M.; Chen, X.; et al. 5 nm CMOS Production Technology Platform featuring full-fledged EUV, and High Mobility Channel FinFETs with densest 0.021 µm2 SRAM cells for Mobile SoC and High Performance Computing Applications. In Proceedings of the 2019 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 7–11 December 2019; pp. 36.7.1–36.7.4. [Google Scholar]
- Mochizuki, S.; Bhuiyan, M.; Zhou, H.; Zhang, J.; Stuckert, E.; Li, J.; Zhao, K.; Wang, M.; Basker, V.; Loubet, N.; et al. Stacked Gate-All-Around Nanosheet pFET with Highly Compressive Strained Si1-xGex Channel. In Proceedings of the 2020 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 12–18 December 2020; pp. 2.3.1–2.3.4. [Google Scholar]
- Guo, D.; Karve, G.; Tsutsui, G.; Lim, K.Y.; Robison, R.; Hook, T.; Vega, R.; Liu, D.; Bedell, S.; Mochizuki, S.; et al. FINFET technology featuring high mobility SiGe channel for 10nm and beyond. In Proceedings of the 2016 IEEE Symposium on VLSI Technology, Honolulu, HI, USA, 14–16 June 2016; pp. 1–2. [Google Scholar]
- Bae, D.; Bae, G.; Bhuwalka, K.K.; Lee, S.H.; Song, M.G.; Jeon, T.; Kim, C.; Kim, W.; Park, J.; Kim, S.; et al. A novel tensile Si (n) and compressive SiGe (p) dual-channel CMOS FinFET co-integration scheme for 5nm logic applications and beyond. In Proceedings of the 2016 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 3–7 December 2016; pp. 28.1.1–28.1.4. [Google Scholar]
- Loubet, N.; Kal, S.; Alix, C.; Pancharatnam, S.; Zhou, H.; Durfee, C.; Belyansky, M.; Haller, N.; Watanabe, K.; Devarajan, T.; et al. A Novel Dry Selective Etch of SiGe for the Enablement of High Performance Logic Stacked Gate-All-Around NanoSheet Devices. In Proceedings of the 2019 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 7–11 December 2019; pp. 11.4.1–11.4.4. [Google Scholar]
- Eyben, P.; Ritzenthaler, R.; Keersgieter, A.D.; Celano, U.; Chiarella, T.; Veloso, A.; Mertens, H.; Pena, V.; Santoro, G.; Machillot, J.; et al. 3D-carrier Profiling and Parasitic Resistance Analysis in Vertically Stacked Gate-All-Around Si Nanowire CMOS Transistors. In Proceedings of the 2019 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 7–11 December 2019; pp. 11.3.1–11.3.4. [Google Scholar]
- Barraud, S.; Previtali, B.; Lapras, V.; Vizioz, C.; Hartmann, J.M.; Martinie, S.; Lacord, J.; Cassé, M.; Dourthe, L.; Loup, V.; et al. Tunability of Parasitic Channel in Gate-All-Around Stacked Nanosheets. In Proceedings of the 2018 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 1–5 December 2018; pp. 21.3.1–21.3.4. [Google Scholar]
- Bae, G.; Bae, D.I.; Kang, M.; Hwang, S.M.; Kim, S.S.; Seo, B.; Kwon, T.Y.; Lee, T.J.; Moon, C.; Choi, Y.M.; et al. 3nm GAA Technology featuring Multi-Bridge-Channel FET for Low Power and High Performance Applications. In Proceedings of the 2018 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 1–5 December 2018; pp. 28.7.1–28.7.4. [Google Scholar]
- Lee, Y.M.; Na, M.H.; Chu, A.; Young, A.; Hook, T.; Liebmann, L.; Nowak, E.J.; Baek, S.H.; Sengupta, R.; Trombley, H.; et al. Accurate performance evaluation for the horizontal nanosheet standard-cell design space beyond 7nm technology. In Proceedings of the 2017 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 2–6 December 2017; pp. 29.3.1–29.3.4. [Google Scholar]
- Salvetat, T.; Destefanis, V.; Borel, S.; Hartmann, J.-M.; Kermarrec, O.; Campidelli, Y. Comparison Between Three Si1-xGex versus Si Selective Etching Processes. ECS Trans. 2008, 16, 439. [Google Scholar] [CrossRef]
- Borel, S.; Caubet, V.; Bilde, J.; Cherif, A.; Arvet, C.; Vizioz, C.; Hartmann, J.-M.; Rabille, G.; Billon, T. Isotropic Etching of Si1-xGex Buried Layers Selectively to Si for the Realization of Advanced Devices. ECS Trans. 2006, 3, 627. [Google Scholar] [CrossRef]
- Tsai, Y.-H.; Wang, M. Fundamental study on the selective etching of SiGe and Si in ClF3 gas for nanosheet gate-all-around transistor manufacturing: A first principle study. J. Vac. Sci. Technol. B 2021, 40, 013201. [Google Scholar] [CrossRef]
- Durfee, C.; Kal, S.; Pancharatnam, S.; Bhuiyan, M.; Iv, I.O.; Flaugh, M.; Smith, J.; Chanemougame, D.; Alix, C.; Zhou, H.; et al. Highly Selective SiGe Dry Etch Process for the Enablement of Stacked Nanosheet Gate-All-Around Transistors. ECS Trans. 2021, 104, 217. [Google Scholar] [CrossRef]
- Borel, S.; Arvet, C.; Bilde, J.; Harrison, S.; Louis, D. Isotropic etching of SiGe alloys with high selectivity to similar materials. Microelectron. Eng. 2004, 73–74, 301–305. [Google Scholar] [CrossRef]
- Pargon, E.; Petit-Etienne, C.; Youssef, L.; Thomachot, G.; David, S. New route for selective etching in remote plasma source: Application to the fabrication of horizontal stacked Si nanowires for gate all around devices. J. Vac. Sci. Technol. A 2019, 37, 040601. [Google Scholar] [CrossRef]
- Sun, X.; Li, J.; Qian, L.; Wang, D.; Huang, Z.; Guo, X.; Liu, T.; Xu, S.; Wang, L.; Xu, M.; et al. A Comprehensive Study of NF3-Based Selective Etching Processes: Application to the Fabrication of Vertically Stacked Horizontal Gate-All-around Si Nanosheet Transistors. Nanomaterials 2024, 14, 928. [Google Scholar] [CrossRef] [PubMed]
- Caubet, V.; Beylier, C.; Borel, S.; Renault, O. Mechanisms of isotropic and selective etching between SiGe and Sia. J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Process. Meas. Phenom. 2006, 24, 2748–2754. [Google Scholar]
- Christopher, C.; Nicholas, J.; Christopher, T.; Shyam, S.; Sergey, V.; Peter, B.; Alok, R. Peculiarities of selective isotropic Si etch to SiGe for nanowire and GAA transistors. Proc. SPIE 2019, 10963, 72–82. [Google Scholar]
- Oehrlein, G.S.; Bestwick, T.D.; Jones, P.L.; Corbett, J.W. Selective dry etching of silicon with respect to germanium. Appl. Phys. Lett. 1990, 56, 1436–1438. [Google Scholar] [CrossRef]
- Rachidi, S.; Campo, A.; Loup, V.; Vizioz, C.; Hartmann, J.-M.; Barnola, S.; Posseme, N. Isotropic dry etching of Si selectively to Si0.7Ge0.3 for CMOS sub-10 nm applications. J. Vac. Sci. Technol. A 2020, 38, 033002. [Google Scholar] [CrossRef]
- Sun, X.; Wang, D.; Qian, L.; Liu, T.; Yang, J.; Chen, K.; Wang, L.; Huang, Z.; Xu, M.; Wang, C.; et al. A Novel Si Nanosheet Channel Release Process for the Fabrication of Gate-All-Around Transistors and Its Mechanism Investigation. Nanomaterials 2023, 13, 504. [Google Scholar] [CrossRef] [PubMed]
- Reboh, S.; Coquand, R.; Loubet, N.; Bernier, N.; Augendre, E.; Chao, R.; Li, J.; Zhang, J.; Muthinti, R.; Boureau, V.; et al. Imaging, Modeling and Engineering of Strain in Gate-All-Around Nanosheet Transitors. In Proceedings of the 2019 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 7–11 December 2019; pp. 11.5.1–11.5.4. [Google Scholar]
- Reboh, S.; Coquand, R.; Barraud, S.; Loubet, N.; Bernier, N.; Audoit, G.; Rouviere, J.-L.; Augendre, E.; Li, J.; Gaudiello, J.; et al. Strain, stress, and mechanical relaxation in fin-patterned Si/SiGe multilayers for sub-7 nm nanosheet gate-all-around device technology. Appl. Phys. Lett. 2018, 112, 051901. [Google Scholar] [CrossRef]
- Murray, C.E.; Yan, H.; Lavoie, C.; Jordan-Sweet, J.; Pattammattel, A.; Reuter, K.; Hasanuzzaman, M.; Lanzillo, N.; Robison, R.; Loubet, N. Mapping of the mechanical response in Si/SiGe nanosheet device geometries. Commun. Eng. 2022, 1, 11. [Google Scholar] [CrossRef]
- Chauhan, A.K.S.; Khan, I.A.; Kunal; Raju, H.; Manhas, S.K. Global Stress Analysis in Fin Patterned Si/SiGe Multilayer Nanosheets for Nanosheet-Based CMOS Device Technology. In Proceedings of the 2025 9th IEEE Electron Devices Technology & Manufacturing Conference (EDTM), Hong Kong, China, 9–12 March 2025; pp. 1–3. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Sun, X.; Huang, Z.; Zhang, D.W. Highly Selective Isotropic Etching of Si to SiGe Using CF4/O2/N2 Plasma for Advanced GAA Nanosheet Transistor. Nanomaterials 2025, 15, 1469. https://doi.org/10.3390/nano15191469
Li J, Sun X, Huang Z, Zhang DW. Highly Selective Isotropic Etching of Si to SiGe Using CF4/O2/N2 Plasma for Advanced GAA Nanosheet Transistor. Nanomaterials. 2025; 15(19):1469. https://doi.org/10.3390/nano15191469
Chicago/Turabian StyleLi, Jiayang, Xin Sun, Ziqiang Huang, and David Wei Zhang. 2025. "Highly Selective Isotropic Etching of Si to SiGe Using CF4/O2/N2 Plasma for Advanced GAA Nanosheet Transistor" Nanomaterials 15, no. 19: 1469. https://doi.org/10.3390/nano15191469
APA StyleLi, J., Sun, X., Huang, Z., & Zhang, D. W. (2025). Highly Selective Isotropic Etching of Si to SiGe Using CF4/O2/N2 Plasma for Advanced GAA Nanosheet Transistor. Nanomaterials, 15(19), 1469. https://doi.org/10.3390/nano15191469