Bio-Inspired Photocatalytic Nitrogen Fixation: From Nitrogenase Mimicry to Advanced Artificial Systems
Abstract
1. Introduction: Green Ammonia and the Biomimetic Revolution
2. Industrial and Biological Context of Ammonia Synthesis
2.1. Societal and Industrial Applications of Ammonia
2.2. From Haber–Bosch Process to Nitrogenase Catalysis
3. Natural Nitrogenase Systems: Structural and Mechanistic Inspirations
3.1. Structural Insights: FeMoco and P-Cluster Architectures
3.2. Mechanistic Models: From Lowe–Thorneley to New Paradigms
3.3. Role of ATP and Electron Delivery Pathways
3.4. Design Implications for Artificial Systems
4. Bio-Inspired Catalyst Design Strategies for Photocatalytic NRR
4.1. Biomimetic Construction of FeMo-like Active Centers
4.1.1. Bionic Fe–Mo Architectures on Layered Semiconductors
4.1.2. Atomically Precise Fe–Mo–S Motifs on Sulfide Matrices
4.1.3. Synthetic Cubic Fe–Mo–S Clusters Emulating FeMoco Geometry
4.1.4. Design Insights and Structure–Function Correlation
4.2. Mimicking Electron Transfer Pathways of Nitrogenase
4.2.1. Single-Site Heterojunctions for Stepwise Electron Relay
4.2.2. Electron-Confinement Nanozymes for Redox Cycling
4.2.3. Dual-Site Photocathodes for Synergistic H• and e− Delivery
4.2.4. Hybrid Redox Scaffolds with Tandem Charge Flow
4.2.5. Mechanistic Insights and Design Implications
4.3. Artificial Energy Supply Systems: Toward ATP-Free Bio-Inspired Nitrogen Reduction
4.3.1. Coupled Photocatalytic Hydrogen Generation and Nitrogen Reduction
4.3.2. Semiconductor–Nitrogenase Biohybrids: Replacing ATP with Light-Driven Electron Transfer
4.3.3. Purple Membrane–Ceria Hybrids: Membrane-Inspired Electron Guidance
4.3.4. Design Outlook
5. Interface Engineering and Defect Control in Biomimetic Photocatalysts
5.1. Bio-Inspired Structural Motifs: Bridging Atomic Architectures and Photocatalytic Activity
5.1.1. Zr–O Clusters in MOFs: Mimicking MoFe Binding Domains
5.1.2. Light-Switchable Oxygen Vacancies in Bismuth-Based Nanotubes
5.1.3. Mo-Doped Hematite: Electrochemical Analog of FeMo Cofactor
5.1.4. Polysulfide-Based Bimetallic Centers: Synergistic Fe–V Activation
5.1.5. Design Implications
5.2. Interfacial Engineering: Constructing Functional Junctions for Catalytic Enhancement
5.2.1. Biological Membrane–Nanoparticle Hybrid: Interface-Guided Redox Modulation
5.2.2. In-Lattice Heterojunctions: Atomic-Level Carrier Highways
5.2.3. Tandem Interfaces: Hot Electron-Driven Multistage Catalysis
5.2.4. Facet-Dependent Electronic Structures and N2 Adsorption
5.2.5. Summary of Biomimetic Interfacial Strategies
6. Conclusions and Outlook
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Jia, H.P.; Quadrelli, E.A. Mechanistic aspects of dinitrogen cleavage and hydrogenation to produce ammonia in catalysis and organometallic chemistry: Relevance of metal hydride bonds and dihydrogen. Chem. Soc. Rev. 2014, 43, 547–564. [Google Scholar] [CrossRef]
- Li, J.; Chen, R.; Wang, J.; Zhou, Y.; Yang, G.; Dong, F. Subnanometric alkaline-earth oxide clusters for sustainable nitrate to ammonia photosynthesis. Nat. Commun. 2022, 13, 1098. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Wu, F.; Miao, Y.; Zhou, C.; Xu, N.; Shi, R.; Wu, L.Z.; Tang, J.; Zhang, T. Revealing ammonia quantification minefield in photo/electrocatalysis. Angew. Chem. Int. Ed. 2021, 60, 21728. [Google Scholar] [CrossRef]
- Erisman, J.W.; Sutton, M.A.; Galloway, J.; Klimont, Z.; Winiwarter, W. How a century of ammonia synthesis changed the world. Nat. Geosci. 2008, 1, 636–639. [Google Scholar] [CrossRef]
- Li, L.; Jiang, Y.F.; Zhang, T.; Cai, H.; Lin, B.; Lin, X.; Zheng, Y.; Zheng, L.; Wang, X.; Xu, C.Q.; et al. Size sensitivity of supported Ru catalysts for ammonia synthesis: From nanoparticles to subnanometric clusters and atomic clusters. Chem 2022, 8, 749–768. [Google Scholar] [CrossRef]
- Wang, Q.; Lei, Y.; Wang, D.; Li, Y. Defect engineering in earth-abundant electrocatalysts for CO2 and N2 reduction. Energ. Environ. Sci. 2019, 12, 1730–1750. [Google Scholar] [CrossRef]
- Liu, T.T.; Zhai, D.D.; Guan, B.T.; Shi, Z.J. Nitrogen fixation and transformation with main group elements. Chem. Soc. Rev. 2022, 51, 3846–3861. [Google Scholar] [CrossRef]
- Zhang, L.; Hou, S.; Wang, T.; Liu, S.; Gao, X.; Wang, C.; Wang, G. Recent advances in application of graphitic carbon nitride-based catalysts for photocatalytic nitrogen fixation. Small 2022, 18, 2202252. [Google Scholar] [CrossRef]
- Liu, H.; Timoshenko, J.; Bai, L.; Li, Q.; Rüscher, M.; Sun, C.; Cuenya, B.R.; Luo, J. Low-coordination rhodium catalysts for an efficient electrochemical nitrate reduction to ammonia. ACS Catal. 2023, 13, 1513–1521. [Google Scholar] [CrossRef]
- Chen, J.G.; Crooks, R.M.; Seefeldt, L.C.; Bren, K.L.; Bullock, R.M.; Darensbourg, M.Y.; Holland, P.L.; Hoffman, B.; Janik, M.J.; Jones, A.K.; et al. Beyond fossil fuel-driven nitrogen transformations. Science 2018, 360, eaar6611. [Google Scholar] [CrossRef] [PubMed]
- Schrauzer, G.N.; Guth, T.D. Photolysis of water and photoreduction of nitrogen on titanium dioxide. J. Am. Chem. Soc. 1977, 99, 7189–7193. [Google Scholar] [CrossRef]
- de Barros, H.R.; Garcia, I.; Kuttner, C.; Zeballos, N.; Camargo, P.H.C.; de Torresi, S.I.C.; López-Gallego, F.; Liz-Marzán, L.M. Mechanistic insights into the light-driven catalysis of an immobilized lipase on plasmonic nanomaterials. ACS Catal. 2020, 11, 414–423. [Google Scholar] [CrossRef]
- Shang, S.; Xiong, W.; Yang, C.; Johannessen, B.; Liu, R.; Hsu, H.Y.; Gu, Q.; Leung, M.K.H.; Shang, J. Atomically dispersed iron metal site in a porphyrin-based metal-organic framework for photocatalytic nitrogen fixation. ACS Nano 2021, 15, 9670–9678. [Google Scholar] [CrossRef]
- Utomo, W.P.; Leung, M.K.H.; Yin, Z.; Wu, H.; Ng, Y.H. Advancement of bismuth-based materials for electrocatalytic and photo (electro) catalytic ammonia synthesis. Adv. Funct. Mater. 2022, 32, 2106713. [Google Scholar] [CrossRef]
- Huang, Y.; Zhu, Y.; Chen, S.; Xie, X.; Wu, Z.; Zhang, N. Schottky junctions with bi cocatalyst for taming aqueous phase N2 reduction toward enhanced solar ammonia production. Adv. Sci. 2021, 8, 2003626. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhao, J.; Yang, D.; Wang, B.; Zhou, Y.; Wang, J.; Chen, H.; Mei, T.; Ye, S.; Qu, J. A thiolate- bridged FeIVFeIV μ-nitrido complex and its hydrogenation reactivity toward ammonia formation. Nat. Chem. 2022, 14, 46–52. [Google Scholar] [CrossRef]
- Ryu, M.H.; Zhang, J.; Toth, T.; Khokhani, D.; Geddes, B.A.; Mus, F.; Garcia-Costas, A.; Peters, J.W.; Poole, P.S.; AnéJ, M.; et al. Control of nitrogen fixation in bacteria that associate with cereals. Nat. Microbiol. 2020, 5, 314–330. [Google Scholar] [CrossRef]
- Einsle, O.; Rees, D.C. Structural enzymology of nitrogenase enzymes. Chem. Rev. 2020, 120, 4969–5004. [Google Scholar] [CrossRef]
- Jasniewski, A.J.; Lee, C.C.; Ribbe, M.W.; Hu, Y. Reactivity, mechanism, and assembly of the alternative nitrogenases. Chem. Rev. 2020, 120, 5107–5157. [Google Scholar] [CrossRef]
- Lowe, D.J.; Thorneley, R.N. The mechanism of Klebsiella pneumoniae nitrogenase action. Pre- steady-state kinetics of H2 formation. Biochem. J. 1984, 224, 877–886. [Google Scholar] [CrossRef]
- Buscagan, T.M.; Rees, D.C. Rethinking the nitrogenase mechanism: Activating the active site. Joule 2019, 3, 2662–2678. [Google Scholar] [CrossRef] [PubMed]
- Scott, D.J.; May, H.D.; Newton, W.E.; Brigle, K.E.; Dean, D.R. Role for the nitrogenase MoFe protein α-subunit in FeMo-cofactor binding and catalysis. Nature 1990, 343, 188–190. [Google Scholar] [CrossRef] [PubMed]
- Chica, B.; Ruzicka, J.; Kallas, H.; Mulder, D.W.; Brown, K.A.; Peters, J.W.; Seefeldt, L.C.; Dukovic, G.; King, P.W. Defining intermediates of nitrogenase MoFe protein during N2 reduction under photochemical electron delivery from CdS quantum dots. J. Am. Chem. Soc. 2020, 142, 14324–14330. [Google Scholar] [CrossRef]
- Brown, K.A.; Ruzicka, J.; Kallas, H.; Chica, B.; Mulder, D.W.; Peters, J.W.; Seefeldt, L.C.; Dukovic, G.; King, P.W. Excitation-rate determines product stoichiometry in photochemical ammonia production by CdS quantum dot-nitrogenase MoFe protein complexes. ACS Catal. 2020, 10, 11147–11152. [Google Scholar] [CrossRef]
- Ruzicka, J.L.; Pellows, L.M.; Kallas, H.; Shulenberger, K.E.; Zadvornyy, O.A.; Chica, B.; Brown, K.A.; Peters, J.W.; King, P.W.; Seefeldt, L.C.; et al. The kinetics of electron transfer from CdS nanorods to the MoFe protein of nitrogenase. Indian. J. Chem. A 2022, 126, 8425–8435. [Google Scholar] [CrossRef]
- Zander, J.; Timm, J.; Weiss, M.; Marschall, R. Light-induced ammonia generation over defective carbon nitride modified with pyrite. Adv. Energy Mater. 2022, 12, 2202403. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Q.; Yang, S.; Wang, H.; Rao, D.; Chen, T.; Wang, G.; Lu, J.; Zhu, J.; Wei, S.; et al. Tuning the interaction between ruthenium single atoms and the second coordination sphere for efficient nitrogen photofixation. Adv. Funct. Mater. 2022, 32, 2112452. [Google Scholar] [CrossRef]
- Han, T.; Cao, X.; Sun, K.; Peng, Q.; Ye, C.; Huang, A.; Cheong, W.C.; Chen, Z.; Lin, R.; Zhao, D.; et al. Anion-exchange-mediated internal electric field for boosting photogenerated carrier separation and utilization. Nat. Commun. 2021, 12, 4952. [Google Scholar] [CrossRef]
- Wang, G.; Huang, R.; Zhang, J.; Mao, J.; Wang, D.; Li, Y. Synergistic modulation of the separation of photo-generated carriers via engineering of dual atomic sites for promoting photocatalytic performance. Adv. Mater. 2021, 33, 2105904. [Google Scholar] [CrossRef]
- Zhang, F.; Liu, Y.; Liu, J.; Wu, H.; Jiang, Y.; Zhou, H.; Guo, H.; Zheng, K.; Yartsev, A.; Zhou, Y. Engineering bimetallic CuAu to suppress hydrogen evolution and enhance charge transfer for improved photoelectrochemical nitrogen reduction. Appl. Catal. B-Environ. 2025, 26, 125739. [Google Scholar] [CrossRef]
- Chang, F.; Gao, W.; Guo, J.; Chen, P. Emerging materials and methods toward ammonia-based energy storage and conversion. Adv. Mater. 2021, 33, 2005721. [Google Scholar] [CrossRef] [PubMed]
- Fang, Z.; Wu, P.; Qian, Y.; Yu, G. Gel-derived amorphous bismuth-nickel alloy promotes electrocatalytic nitrogen fixation via optimizing nitrogen adsorption and activation. Angew. Chem. Int. Ed. 2021, 60, 4275–4281. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; You, J.; Xue, Y.; Ren, J.; Zhang, K.; Fu, B.; Xue, Q.; Tian, J.; Zhang, H. Structural regulation of three-dimensional bismuth vanadate nanochannels for excellent visible light photocatalytic nitrogen fixation. Appl. Catal. B-Environ. 2025, 363, 124817. [Google Scholar] [CrossRef]
- Lee, C.C.; Kang, W.; Jasniewski, A.J.; Stiebritz, M.T.; Tanifuji, K.; Ribbe, M.W.; Hu, Y. Evidence of substrate binding and product release via belt-sulfur mobilization of the nitrogenase cofactor. Nat. Catal. 2022, 5, 443–454. [Google Scholar] [CrossRef]
- Stappen, C.V.; Decamps, L.; Cutsail III, G.E.; Bjornsson, R.; Henthorn, J.T.; Birrell, J.A.; DeBeer, S. The spectroscopy of nitrogenases. Chem. Rev. 2020, 120, 5005–5081. [Google Scholar] [CrossRef]
- Huang, P.W.; Hatzell, M.C. Prospects and good experimental practices for photocatalytic ammonia synthesis. Nat. Commun. 2022, 13, 7908. [Google Scholar] [CrossRef]
- Guan, Y.; Wen, H.; Cui, K.; Wang, Q.; Gao, W.; Cai, Y.; Cheng, Z.; Pei, Q.; Li, Z.; Cao, H.; et al. Light-driven ammonia synthesis under mild conditions using lithium hydride. Nat. Chem. 2024, 16, 373. [Google Scholar] [CrossRef]
- Yin, H.; Chen, Z.; Peng, Y.; Xiong, S.; Li, Y.; Yamashita, H.; Li, J. Dual active centers bridged by oxygen vacancies of ruthenium single-atom hybrids supported on molybdenum oxide for photocatalytic ammonia synthesis. Angew. Chem. Int. Ed. 2022, 61, e202114242. [Google Scholar] [CrossRef]
- Mao, C.; Wang, J.; Zou, Y.; Shi, Y.; Viasus, C.J.; Loh, J.Y.Y.; Xia, M.; Ji, S.; Li, M.; Shang, H.; et al. Photochemical acceleration of ammonia production by Pt1-Ptn-TiN reduction and N2 activation. J. Am. Chem. Soc. 2023, 145, 13134. [Google Scholar] [CrossRef]
- Shi, Y.; Zhao, Z.; Yang, D.; Tan, J.; Xin, X.; Liu, Y.; Jiang, Z. Engineering photocatalytic ammonia synthesis. Chem. Soc. Rev. 2023, 52, 6938. [Google Scholar] [CrossRef] [PubMed]
- He, T.; Zhao, Z.; Liu, R.; Liu, X.; Ni, B.; Wei, Y.; Wu, Y.; Yuan, W.; Peng, H.; Jiang, Z.; et al. Porphyrin-based covalent organic frameworks anchoring Au single atoms for photocatalytic nitrogen fixation. J. Am. Chem. Soc. 2023, 145, 6057. [Google Scholar] [CrossRef]
- Ge, X.; Zheng, X.; Zhou, T.; Tian, L.-J.; Wang, W.; Chen, J.-J.; Wang, X. Engineering spin state of atomic iron centers for high-performance photocatalytic nitrogen fixation. Angew. Chem. Int. Ed. 2025. Online ahead of print. [Google Scholar] [CrossRef]
- Li, H.; Gu, S.; Sun, Z.; Guo, F.; Xie, Y.; Tao, B.; He, X.; Zhang, W.; Chang, H. The in-built bionic “MoFe-cofactor” in Fe-doped two-dimensional MoTe2 nanosheets for boostingthe photocatalytic nitrogen reductionperformance. J. Mater. Chem. A 2020, 8, 13038–13048. [Google Scholar] [CrossRef]
- Li, H.; Jian, S.; Tao, B.; Xu, G.; Liu, B.; Gu, S.; Wang, G.; Chang, H. “FeV–cofactor”–inspired bionic Fe–doped BiVO4 photocatalyst decorated with few layer 2D black phosphorus for efficient nitrogen reduction. Inorg. Chem. Front. 2023, 10, 5004–5015. [Google Scholar] [CrossRef]
- Wang, H.; Wang, J.; Zhang, R.; Cheng, C.; Qiu, K.; Yang, Y.; Mao, J.; Liu, H.; Du, M.; Dong, C.; et al. Bionic design of a Mo(lV)-doped FeS, catalyst for electroreduction of dinitrogen to ammonia. ACS Catal. 2020, 10, 4914–4921. [Google Scholar] [CrossRef]
- Zheng, J.; Lu, L.; Lebedev, K.; Wu, S.; Zhao, P.; Pherson, I.J.; Wu, T.; Kato, R.; Li, Y.; Ho, P.; et al. Fe on molecular-layer MoS2 as inorganic Fe-S2-Mo motifs for light-driven nitrogen fixation to ammonia at elevated temperatures. Chem Catal. 2021, 1, 162–182. [Google Scholar] [CrossRef]
- Dong, G.; Qiu, P.; Chen, Q.; Huang, C.; Chen, F.; Liu, X.; Li, Z.; Wang, Y.; Zhao, Y. K+-intercalated carbon nitride with electron storage property for high-efficiency visible light driven nitrogen fixation. Chem. Eng. J. 2022, 433, 133573. [Google Scholar] [CrossRef]
- Ohki, Y.; Munakata, K.; Matsuoka, Y.; Hara, R.; Kachi, M.; Uchida, K.; Tada, M.; Cramer, R.E.; Sameera, W.M.C.; Takayama, T.; et al. Nitrogen reduction by the Fe sites of synthetic [Mo3S4Fe] cubes. Nature 2022, 607, 86–90. [Google Scholar] [CrossRef]
- Kong, Y.; Li, X.; Santiago, A.R.P.; He, T. Nonmetal atom doping induced orbital shifts and charge modulation at the edge of two-dimensional boron carbonitride leading to enhanced photocatalytic nitrogen reduction. J. Am. Chem. Soc. 2024, 146, 5987. [Google Scholar] [CrossRef]
- Yuan, J.; Feng, W.; Zhang, Y.; Xiao, J.; Zhang, X.; Wu, Y.; Ni, W.; Huang, H.; Dai, W. Unraveling synergistic effect of defects and piezoelectric field in breakthrough piezo-photocatalytic N2 reduction. Adv. Mater. 2024, 36, 2303845. [Google Scholar] [CrossRef]
- Wu, R.; Gao, S.; Jones, C.; Sun, M.; Guo, M.; Tai, R.; Chen, S.; Wang, Q. Bi/BSO heterojunctions via vacancy engineering for efficient photocatalytic nitrogen fixation. Adv. Funct. Mater. 2024, 34, 2314051. [Google Scholar] [CrossRef]
- Xiong, Y.; Li, B.; Gu, Y.; Yan, T.; Ni, Z.; Li, S.; Zuo, J.L.; Ma, J.; Jin, Z. Photocatalytic nitrogen fixation under an ambient atmosphere using a porous coordination polymer with bridging dinitrogen anions. Nat. Chem. 2023, 15, 286. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Zhang, J.; Deng, X.; Wang, Y.; Meng, G.; Liu, R.; Huang, J.; Tu, M.; Xu, C.; Peng, Y.; et al. Structure and defect engineering synergistically boost high solar-to-chemical conversion efficiency of cerium oxide/Au hollow nanomushrooms for nitrogen photofixation. Angew. Chem. Int. Ed. 2024, 63, e202316384. [Google Scholar] [CrossRef]
- Yuan, Y.J.; Lu, N.; Bao, L.; Tang, R.; Zhang, F.G.; Guan, J.; Wang, H.D.; Liu, Q.Y.; Cheng, Q.; Yu, Z.T.; et al. SiP nanosheets: A metal-free two-dimensional photocatalyst for visible-light photocatalytic H2 production and nitrogen fixation. ACS Nano 2022, 16, 12174. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Zhang, J.; Zong, M.; Xu, J.; Wang, D.; Bu, X. Energy level engineering: Ru single atom anchored on Mo-MOF with a [Mo8O26(im)2]4- structure acts as a biomimetic photocatalyst. ACS Catal. 2022, 12, 7960–7974. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, Z.H.; Lin, X.; Gao, X.; Wang, Q.; Huang, R.; Ruan, Y.; Xu, H.; Tian, L.; Ling, C.; et al. Mn-Ce symbiosis: Nanozymes with multiple active sites Facilitate scavenging of reactive oxygen species (ROS) basedon electron transfer and confinement anchoring. Angew. Chem. Int. Ed. 2025, 64, e202416686. [Google Scholar] [CrossRef]
- Zhou, X.; Wu, W.; Xu, D.; Liu, C.; Zhang, Z. Bioinspired dual-site photocathode with atomic molybdenum and alkynyl networks for scalable solar ammonia synthesis. ACS Nano 2025, 19, 19417–19428. [Google Scholar] [CrossRef]
- Tang, Y.; Liu, Z.; Jia, J.; Zeng, H.; Rui, Z. Accelerating electron transfer dynamics for efficient nitrogen photoreduction on nitrogenase-mimicking metal-organic framework/Fe-dispersed MXene. Appl. Catal. B-Environ. 2024, 358, 124426. [Google Scholar] [CrossRef]
- Dong, X.; Cui, Z.; Shi, X.; Yan, P.; Wang, Z.; Co, A.C.; Dong, F. Insights into dynamic surface bromide sites in Bi4O5Br2 for sustainable N2 photofixation. Angew. Chem. Int. Ed. 2022, 61, e202200937. [Google Scholar] [CrossRef]
- Li, X.H.; Li, H.; Jiang, S.L.; Yang, L.; Li, H.Y.; Liu, Q.L.; Bai, W.; Zhang, Q.; Xiao, C.; Xie, Y. Constructing mimic-enzyme catalyst: Polyoxometalates regulating carrier dynamics of metal–organic frameworks to promote photocatalytic nitrogen fixation. ACS Catal. 2023, 13, 7189. [Google Scholar] [CrossRef]
- Li, X.; Dong, Q.; Wang, J.; Liang, X.; Robertson, P.K.J.; Li, F.; Guo, M.; Choi, W.; Wang, C. Molecular engineering of active Fe center in metalloporphyrin coupled with polyoxometalates for efficient photochemical nitrogen fixation: Synergistic effect of multiactive sites strengthening metal-N-N* interactions. Adv. Funct. Mater. 2025, 35, 2424128. [Google Scholar] [CrossRef]
- Wang, X.; Fan, G.; Guo, S.; Gao, R.; Guo, Y.; Han, C.; Gao, Y.; Zhang, J.; Gu, X.; Wu, L. Regulated dual defects of bridging organic and terminal inorganic ligands in iron-based metal-organic framework nodes for efficient photocatalytic ammonia synthesis. Angew. Chem. Int. Ed. 2024, 63, e202404258. [Google Scholar] [CrossRef]
- Wang, X.; Gao, R.; Fan, G.; Guo, Y.; Han, C.; Gao, Y.; Shen, A.; Wu, L.; Gu, X. Dual defects-induced iron single atoms immobilized in metal–organic framework-derived hollow BiOBr microtubes for low-barrier photocatalytic nitrogen reduction. Angew. Chem. Int. Ed. 2025, 64, e202501297. [Google Scholar] [CrossRef]
- Bo, Y.; Wang, H.; Lin, Y.; Yang, T.; Ye, R.; Li, Y.; Hu, C.; Du, P.; Hu, Y.; Liu, Z.; et al. Altering hydrogenation pathways in photocatalytic nitrogen fixation by tuning local electronic structure of oxygen vacancy with dopant. Angew. Chem. Int. Ed. 2021, 60, 16085. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Sun, W.; Zhang, Y.; Feng, Y.; Dai, B.; Deng, Y. Photocatalytic hydrogen production from alcohols to in-situ hydrogenation of nitrogen to ammonia by a dual-catalyst system. Appl. Catal. B-Environ. 2024, 358, 124429. [Google Scholar] [CrossRef]
- Jang, J.; Liu, Y.; Gosztola, D.J.; Kuzmenko, I.; Niklas, J.; Poluektov, O.G.; Lee, B.; Rozhkova, E.A. Photosynthetic biohybrid system for enhanced abiotic N2-to-NH3 conversion under ambient conditions. J. Am. Chem. Soc. 2025. Online ahead of print. [Google Scholar] [CrossRef] [PubMed]
- An, K.; Ren, H.; Yang, D.; Zhao, Z.; Gao, Y.; Chen, Y.; Tan, J.; Wang, W.; Jiang, Z. Nitrogenase-inspired bimetallic metal organic frameworks for visible-light-driven nitrogen fixation. Appl. Catal. B-Environ. 2021, 292, 120167. [Google Scholar] [CrossRef]
- Brown, K.A.; Harris, D.F.; Wilker, M.B.; Rasmussen, A.; Khadka, N.; Hamby, H.; Keable, S.; Dukovic, G.; Peters, J.W.; Seefeldt, L.C.; et al. Light-driven dinitrogen reduction catalyzed by a CdS:nitrogenase MoFe protein biohybrid. Science 2016, 352, 448–450. [Google Scholar] [CrossRef]
- Kang, W.; Lee, C.C.; Jasniewski, A.J.; Ribbe, M.W.; Hu, Y. Structural evidence for a dynamic metallocofactor during N2 reduction by Mo-nitrogenase. Science 2020, 368, 1381–1385. [Google Scholar] [CrossRef]
- Dong, G.; Huang, X.; Bi, Y. Anchoring black phosphorus quantum dots on Fe-Doped W18O49 nanowires for efficient photocatalytic nitrogen fixation. Angew. Chem. Int. Ed. 2022, 61, e202204271. [Google Scholar] [CrossRef]
- Di, J.; Chen, C.; Wu, Y.; Zhao, Y.; Zhu, C.; Zhang, Y.; Wang, C.; Chen, H.; Xiong, J.; Xu, M.; et al. Polarized Cu–Bi site pairs for non-covalent to covalent interaction tuning toward N2 photoreduction. Adv.; Mater. 2022, 34, 2204959. [Google Scholar] [CrossRef]
- Sun, Y.; Ji, H.; Sun, Y.; Zhang, G.; Zhou, H.; Cao, S.; Liu, S.; Zhang, L.; Li, W.; Zhu, X.; et al. Synergistic effect of oxygen vacancy and high porosity of nano MIL-125(Ti) for enhanced photocatalytic nitrogen fixation. Angew. Chem. Int. Ed. 2024, 63, e202316973. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zhang, C.; Bao, T.; Xi, Y.; Yuan, L.; Zou, Y.; Bi, Y.; Liu, C.; Yu, C. Dual near-infrared-response S-scheme heterojunction with asymmetric adsorption sites for enhanced nitrogen photoreduction. Adv. Mater. 2025, 37, 2416210. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zhao, Y.; Wu, X.; Zhang, B.; Tian, J.; Wong, W.Y.; Zhang, F. Achieving photocatalytic overall nitrogen fixation via an enzymatic pathway on a distorted CoP4 configuration. Angew. Chem. Int. Ed. 2025, 137, e202420327. [Google Scholar] [CrossRef]
- Wang, J.; Ran, G.; Gao, J.; Li, D.; Waterhouse, G.I.N.; Shi, R.; Zhang, W.; Tang, J.; Wu, L.Z.; Zhao, Y.; et al. Solar-driven conversion of nitrogen and water to solid fertilizer in an outdoor 1 m2 panel reactor. Adv. Mater. 2025, 37, 2420199. [Google Scholar] [CrossRef]
- Sun, B.; Lu, S.; Qian, Y.; Zhang, X.; Tian, J. Recent progress in research and design concepts for the characterization, testing, and photocatalysts for nitrogen reduction reaction. Carbon Energy 2023, 5, e305. [Google Scholar] [CrossRef]
- Guo, B.; Cheng, X.; Tang, Y.; Guo, W.; Deng, S.; Wu, L.; Fu, X. Dehydrated UiO-66(SH)2: The Zr-O cluster and its photocatalytic role mimicking the biological nitrogen fixation. Angew. Chem. Int. Ed. 2022, 61, e202117244. [Google Scholar] [CrossRef]
- Wang, S.; Hai, X.; Ding, X.; Chang, K.; Xiang, Y.; Meng, X.; Yang, Z.; Chen, H.; Ye, J. Light-switchable oxygen vacancies in ultrafine Bi5O7Br nanotubes for boosting solar-driven nitrogen fixation in pure water. Adv. Mater. 2017, 29, 1701774. [Google Scholar] [CrossRef]
- Niu, Z.; Jiao, L.; Zhang, T.; Zhao, X.; Wang, X.; Tan, Z.; Liu, L.; Chen, S.; Song, X. Boosting electrocatalytic ammonia synthesis of bio-inspired porous Mo-doped hematite via nitrogen Activation. ACS Appl. Mater. Interfaces 2022, 14, 55559–55567. [Google Scholar] [CrossRef]
- Cai, W.; Li, K.; Wen, J.; Zhang, Z.; Zhong, Q.; Qu, H. The construction of a vanadium-doped polysulfide iron bimetallic active center for enhanced photocatalytic nitrogen fixation. Catal. Sci. Technol. 2023, 13, 5567–5575. [Google Scholar] [CrossRef]
- Chen, T.Y.; Ying, Y.R.; Wu, J.; Liu, X.H.; Huang, H. Fe-N4-anchored carbon layer patched TiO2 cavities to construct an “in-lattice heterojunction” for enhanced photocatalytic nitrogen reduction reactions. Angew. Chem. 2025. Online ahead of print. [Google Scholar] [CrossRef]
- Guan, R.; Cheng, X.; Chen, Y.; Wu, Z.; Zhao, Z.; Shang, Q.; Sun, Y.; Sun, Z. Wettability control of defective TiO2 with alkyl acid for highly efficient photocatalytic ammonia synthesis. Nano Res. 2023, 16, 10770. [Google Scholar] [CrossRef]
- Liu, C.; Hao, D.; Ye, J.; Ye, S.; Zhou, F.; Xie, H.; Qin, G.; Xu, J.; Liu, J.; Li, S.; et al. Knowledge-driven design and lab-based evaluation of B-doped TiO2 photocatalysts for ammonia synthesis. Adv. Energy Mater. 2023, 13, 2204126. [Google Scholar] [CrossRef]
- Ren, G.; Zhao, J.; Zhao, Z.; Li, Z.; Wang, L.; Zhang, Z.; Li, C.; Meng, X. Defects-induced single-atom anchoring on metal–organic frameworks for high-efficiency photocatalytic nitrogen reduction. Angew. Chem. Int. Ed. 2023, 63, e202314408. [Google Scholar] [CrossRef] [PubMed]
- Yuan, L.; Tang, C.; Du, P.; Li, J.; Zhang, C.; Xi, Y.; Bi, Y.; Bao, T.; Du, A.; Liu, C.; et al. Nanoporous heterojunction photocatalysts with engineered interfacial sites for efficient photocatalytic nitrogen fixation. Angew. Chem. Int. Ed. 2024, 63, e202412340. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Nian, Y.; Shi, J.; Xin, X.; Huang, X.; Shi, Y.; Tan, J.; Zhang, Y.; Han, Y.; Yang, D.; et al. Engineering reaction pathway to harmonize the competition between NRR and HER for efficient photocatalytic ammonia synthesis. ACS Catal. 2024, 14, 11626. [Google Scholar] [CrossRef]
- Li, X.; Hai, G.; Liu, J.; Zhao, F.; Peng, Z.; Liu, H.; Leung, M.K.H.; Wang, H. Bio-inspired NiCoP/CoMoP/Co(Mo3Se4)4@C/NF multi-heterojunction nanoflowers: Effective catalytic nitrogen reduction by driving electron transfer. Appl. Catal. B-Environ. 2022, 314, 121531. [Google Scholar] [CrossRef]
- Yang, J.; Guo, Y.; Jiang, R.; Qin, F.; Zhang, H.; Lu, W.; Wang, J.; Yu, J.C. High-efficiency “working-in-tandem” nitrogen photofixation achieved by assembling plasmonic gold nanocrystals on ultrathin titania nanosheets. J. Am. Chem. Soc. 2018, 140, 8497–8508. [Google Scholar] [CrossRef]
- Gayatri, S.; Sabiha, S.; Kulamani, P. Constructing a novel surfactant-free MoS2 nanosheet modified MgIn2S4 marigold microflower: An efficient visible-light driven 2D-2D p-n heterojunction photocatalyst toward HER and pH regulated NRR. ACS. Sustain. Chem. Eng. 2020, 12, 4848–4862. [Google Scholar]
- Gao, N.; Yang, H.; Dong, D.; Dou, D.; Liu, Y.; Zhou, W.; Gao, F.; Nan, C.; Liang, Z.; Yang, D. Bi2S3 quantum dots in situ grown on MoS2 nanoflowers: An efficient electron-rich interface for photoelectrochemical N2 reduction. J. Colloid Interf. Sci. 2022, 611, 294–305. [Google Scholar] [CrossRef]
- Gong, X.; Chong, B.; Xia, M.; Li, H.; Ou, H.; Yang, G. Fluorinated phosphonium ionic liquid boosts the N2-adsorbing ability of TiO2 for efficient photocatalytic NH3 synthesis. Catal. Sci. Technol. 2024, 14, 343. [Google Scholar] [CrossRef]
- Rafieerad, A.; Amiri, A.; Yan, W.; Eshghi, H.; Dhingra, S. Conversion of 2D MXene to multi-low-dimensional GerMXene superlattice heterostructure. Adv. Funct. Mater. 2022, 32, 2108495. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Seemakurthi, R.R.; Chen, G.F.; Strauss, V.; Savateev, O.; Hai, G.; Ding, L.; López, N.; Wang, H.; Antonietti, M. Laser-induced nitrogen fixation. Nat. Commun. 2023, 14, 5668. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Wang, M.; Ji, H.; Zhang, L.; Ni, J.; Li, N.; Qian, T.; Yan, C.; Lu, J. Solvent-in-gas system for promoted photocatalytic ammonia synthesis on porous framework materials. Adv. Mater. 2023, 35, 2211730. [Google Scholar] [CrossRef] [PubMed]
Parameter | Haber–Bosch | Bio-Inspired Photocatalysis |
---|---|---|
Typical operating conditions | 400–500 °C, 150–300 bar | Ambient temperature and pressure |
Yield scale | 1500–2000 tons NH3 per day | μmol–mmol NH3 g−1 h−1 |
Energy cost | 8–12 MWh per ton NH3 | Mainly solar input |
CO2 emissions | 1.6–2.0 tons CO2 per ton NH3 | Near-zero (if powered by renewables) |
Cost per ton (USD) | 300–600 (fossil-based H2) | Currently not scalable; projected competitive if ≥1–2% solar-to-ammonia efficiency is reached |
System | Rate/Efficiency | Conditions | Advantages | Limitations |
---|---|---|---|---|
Nitrogenase (MoFe protein) | ~10–20 NH3 s−1 per enzyme (~10−2 mmol g−1 h−1); Faradaic efficiency ~ 60–70% | Ambient T, P; ATP-driven | Operates under mild conditions, high selectivity | Requires 16 ATP per N2, slow compared to industrial process |
Haber–Bosch | >1000 mmol gcat−1 h−1 (industrial scale); ~10–15% energy efficiency | 400–500 °C, 150–300 atm, Fe/Co catalysts | Scalable, mature, >150 Mt NH3 annually | Enormous energy input, CO2 emissions |
Artificial photocatalysts (recent) | 10–500 μmol g−1 h−1; quantum efficiency up to 2% | Ambient T, P, solar-driven | Mild, renewable-driven, tunable selectivity | 3–5 orders slower than Haber–Bosch; stability challenges |
Design Element | Biological Counterpart | Artificial Mimic |
---|---|---|
Stepwise redox sites | P-cluster → FeMoco | Ruδ+–Mo5+ pairs in MOFs [55] |
Redox cycling via metal valence | Protein-based switching | Ce3+/Ce4+–Mn2+/Mn3+ relay [56] |
Directional H•/e− supply | Proton-coupled electron relay | HsGDY–Mo1 dual site [57] |
Tandem charge transport | Ferredoxin to FeMoco | UiO-66/Fe–MXene relay [58] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xia, W.; Zhang, K.; Hou, J.; Fu, H.; Gao, M.; Huang, H.-Z.; Chen, L.; Han, S.; Pak, Y.L.; Mou, H.; et al. Bio-Inspired Photocatalytic Nitrogen Fixation: From Nitrogenase Mimicry to Advanced Artificial Systems. Nanomaterials 2025, 15, 1485. https://doi.org/10.3390/nano15191485
Xia W, Zhang K, Hou J, Fu H, Gao M, Huang H-Z, Chen L, Han S, Pak YL, Mou H, et al. Bio-Inspired Photocatalytic Nitrogen Fixation: From Nitrogenase Mimicry to Advanced Artificial Systems. Nanomaterials. 2025; 15(19):1485. https://doi.org/10.3390/nano15191485
Chicago/Turabian StyleXia, Wenpin, Kaiyang Zhang, Jiewen Hou, Huaiyu Fu, Mingming Gao, Hui-Zi Huang, Liwei Chen, Suqin Han, Yen Leng Pak, Hongyu Mou, and et al. 2025. "Bio-Inspired Photocatalytic Nitrogen Fixation: From Nitrogenase Mimicry to Advanced Artificial Systems" Nanomaterials 15, no. 19: 1485. https://doi.org/10.3390/nano15191485
APA StyleXia, W., Zhang, K., Hou, J., Fu, H., Gao, M., Huang, H.-Z., Chen, L., Han, S., Pak, Y. L., Mou, H., Gao, X., & Guo, Z. (2025). Bio-Inspired Photocatalytic Nitrogen Fixation: From Nitrogenase Mimicry to Advanced Artificial Systems. Nanomaterials, 15(19), 1485. https://doi.org/10.3390/nano15191485