Multifaceted Nanocomposites Combining Phosphorylated PVA, MXene, and Cholesteric Liquid Crystal: Design and Application Insights
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Fabrication of PVA-P Film (P0), PVA-P/MXene (P1, P2), and PVA-P/MXene/ChLC Composites (P3–P5)
2.3. Methods
2.3.1. FTIR Investigation
2.3.2. Morphology of PVA-P Film, PVA-P/MXene Films, and PVA-P/MXene/ChLC Composites
2.3.3. Optical Microscopy (POM)
2.3.4. Thermogravimetric Analysis (TGA)
2.3.5. Differential Scanning Calorimetry (DSC)
2.3.6. Mechanical Properties
2.3.7. Electrical Properties
3. Results
3.1. FTIR Analysis
3.2. Morphological Characteristics
3.3. Optical Microscopy Observations
3.4. Thermal Stability and Decomposition Behavior
3.5. DSC Analysis
3.6. Mechanical Analysis
3.7. Electrical Analysis
4. Discussion
- FTIR confirmed effective crosslinking in PVA-P and revealed hydrogen bonding and coordination between MXene surface groups and phosphoester moieties. ChLC introduced additional interactions, contributing to a more complex bonding network.
- SEM and POM showed a progression from smooth morphologies (P0–P2) to phase-separated, birefringent structures (P3–P5), driven by ChLC’s poor solubility and chiral organization. These optical features are stable up to 120 °C, making P3–P5 promising for stimuli-responsive and colorimetric applications.
- TGA and DSC analyses demonstrated enhanced thermal stability and higher glass transition and melting points in MXene- and ChLC-containing composites. Residual char and increased Tg suggest improved flame retardancy and restricted chain mobility.
- The composites exhibited tunable mechanical behavior. P3 showed optimal stiffness and strength due to MXene-ChLC synergy, while P4–P5 offered greater flexibility attributed to ChLC’s plasticizing effect—favorable for flexible electronics.
- Dielectric analysis revealed P3′s low losses and P4′s high permittivity, driven by structural order and ChLC domains, respectively.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hassan, M.; Mohanty, A.K.; Wang, T.; Dhakal, H.N.; Misra, M. Current status and future outlook of 4D printing of polymers and composites-A prospective. Compos. Part C 2025, 17, 100602. [Google Scholar] [CrossRef]
- Kamran, F.; Afshar, H.; Shahi, F. Recent Advances and Applications of Sustainable and Recyclable Polymers. Polym. Eng. Sci. 2025. [Google Scholar] [CrossRef]
- Enyan, M.; Bing, Z.; Amu-Darko, J.N.O.; Issaka, E.; Otoo, S.L.; Agyemang, M.F. Advances in smart materials soft actuators on mechanisms, fabrication, materials, and multifaceted applications: A review. J. Thermoplast. Compos. Mater. 2024, 38, 302–370. [Google Scholar] [CrossRef]
- Wegst, U.G.K.; Bai, H.; Saiz, E.; Tomsia, A.P.; Ritchie, R.O. Bioinspired structural materials. Nat. Mater. 2015, 14, 23–36. [Google Scholar] [CrossRef]
- He, L.; Shi, J.; Tian, B.; Zhu, H.; Wu, W. Self-healing materials for flexible and stretchable electronics. Mater. Today Phys. 2024, 44, 101448. [Google Scholar] [CrossRef]
- Rogers, J.A.; Someya, T.; Huang, Y. Materials and Mechanics for Stretchable Electronics. Science 2010, 327, 1603–1607. [Google Scholar] [CrossRef] [PubMed]
- Park, K.; Kim, M.P. Advancements in Flexible and Stretchable Electronics for Resistive Hydrogen Sensing: A Comprehensive Review. Sensors 2024, 24, 6637. [Google Scholar] [CrossRef]
- Qian, F.; Jia, R.; Cheng, M.; Chaudhary, A.; Melhi, S.; Mekkey, S.D.; Zhu, N.; Wang, C.; Razak, F.; Xu, X.; et al. An overview of polylactic acid (PLA) nanocomposites for sensors. Adv. Compos. Hybrid Mater. 2024, 7, 75. [Google Scholar] [CrossRef]
- Bombieri, N.; Fummi, F.; Gangemi, G.; Grosso, M.; Macii, E.; Poncino, M.; Rinaudo, S. Smart Systems Design Methodologies and Tools. In Material-Integrated Intelligent Systems—Technology and Applications; Wiley-VCH: Weinheim, Germany, 2018; pp. 55–80. [Google Scholar]
- Qi, H.; Jing, X.; Hu, Y.; Wu, P.; Zhang, X.; Li, Y.; Zhao, H.; Ma, Q.; Dong, X.; Mahadevan, C.K. Electrospun green fluorescent-highly anisotropic conductive Janus-type nanoribbon hydrogel array film for multiple stimulus response sensors. Compos. Part B Eng. 2025, 288, 111933. [Google Scholar] [CrossRef]
- Lal, C.; Jain, P.K.; Singh, V.; Singhal, R.K.; Dolia, S.N.; Jain, I.P. Advanced materials for sustainable energy and applications. Environ. Sci. Pollut. Res. 2023, 30, 98537–98539. [Google Scholar] [CrossRef] [PubMed]
- Kumar, V.; Younis, S.A.; Vikrant, K.; Kim, K.-H. Chapter 1—Trends in advanced materials for sustainable environmental remediation. In Advanced Materials for Sustainable Environmental Remediation; Giannakoudakis, D., Meili, L., Anastopoulos, I., Eds.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 1–29. [Google Scholar]
- Gilbertson, L.M.; Eckelman, M.J.; Theis, T.L. Leveraging engineered nanomaterials to support material circularity. Environ. Sci. Nano 2024, 11, 2885–2893. [Google Scholar] [CrossRef]
- Gaaz, T.S.; Sulong, A.B.; Akhtar, M.N.; Kadhum, A.A.H.; Mohamad, A.B.; Al-Amiery, A.A. Properties and Applications of Polyvinyl Alcohol, Halloysite Nanotubes and Their Nanocomposites. Molecules 2015, 20, 22833–22847. [Google Scholar] [CrossRef]
- Ling, Z.; Ren, C.E.; Zhao, M.-Q.; Yang, J.; Giammarco, J.M.; Qiu, J.; Barsoum, M.W.; Gogotsi, Y. Flexible and conductive MXene films and nanocomposites with high capacitance. Proc. Natl. Acad. Sci. USA 2014, 111, 16676–16681. [Google Scholar] [CrossRef]
- Jin, X.; Wang, J.; Dai, L.; Liu, X.; Li, L.; Yang, Y.; Cao, Y.; Wang, W.; Wu, H.; Guo, S. Flame-retardant poly(vinyl alcohol)/MXene multilayered films with outstanding electromagnetic interference shielding and thermal conductive performances. Chem. Eng. J. 2020, 380, 122475. [Google Scholar] [CrossRef]
- Zhang, Z.; Wu, Y.; Wang, Z.; Zou, X.; Zhao, Y.; Sun, L. Fabrication of silver nanoparticles embedded into polyvinyl alcohol (Ag/PVA) composite nanofibrous films through electrospinning for antibacterial and surface-enhanced Raman scattering (SERS) activities. Mater. Sci. Eng. C 2016, 69, 462–469. [Google Scholar] [CrossRef]
- Tommalieh, M.J.; Ibrahium, H.A.; Awwad, N.S.; Menazea, A.A. Gold nanoparticles doped Polyvinyl Alcohol/Chitosan blend via laser ablation for electrical conductivity enhancement. J. Mol. Struct. 2020, 1221, 128814. [Google Scholar] [CrossRef]
- Safarpour, M.; Fathi Majd, N.; Jabbarvand Behrouz, S.; Arefi-Oskoui, S.; Khataee, A. Decoration of carbon nanotubes in the substrate or selective layer of polyvinyl alcohol/polysulfone thin-film composite membrane for nanofiltration applications. Results Chem. 2025, 13, 101917. [Google Scholar] [CrossRef]
- Anwar, H.; Haseeb, M.; Khalid, M.; Yunas, K. Graphene Reinforced PVA Nanocomposites and Their Applications. In Graphene Based Biopolymer Nanocomposites; Sharma, B., Jain, P., Eds.; Springer: Singapore, 2021; pp. 107–134. [Google Scholar]
- Yao, Y.; Jin, S.; Wang, M.; Gao, F.; Xu, B.; Lv, X.; Shu, Q. MXene hybrid polyvinyl alcohol flexible composite films for electromagnetic interference shielding. Appl. Surf. Sci. 2022, 578, 152007. [Google Scholar] [CrossRef]
- Zagabathuni, A.; Rabeeh, V.P.M.; Pranavi, G.S. Development of MXene-enhanced polyvinyl alcohol nanofibers: A comprehensive study on synthesis and characterization. J. Polym. Res. 2025, 32, 155. [Google Scholar] [CrossRef]
- Jailani, A.; Hidzer, M.H.; Firdaus, A.H.M.; Sapuan, S.M.; Zainudin, E.S.; Atiqah, A.; Wan Jaafar, W.M.; Suryanegara, L. Enhancing polyvinyl alcohol (PVA) nanocomposites: Key Properties, Applications and Challenges in Advanced Engineering. Def. Technol. 2025. [Google Scholar] [CrossRef]
- Serbezeanu, D.; Vlad-Bubulac, T.; Onofrei, M.D.; Doroftei, F.; Hamciuc, C.; Ipate, A.M.; Anisiei, A.; Lisa, G.; Anghel, I.; Şofran, I.E.; et al. Phosphorylated Poly(vinyl alcohol) Electrospun Mats for Protective Equipment Applications. Nanomaterials 2022, 12, 2685. [Google Scholar] [CrossRef]
- Serbezeanu, D.; Hamciuc, C.; Vlad-Bubulac, T.; Ipate, A.-M.; Lisa, G.; Turcan, I.; Olariu, M.A.; Anghel, I.; Preda, D.M. Flame-Resistant Poly(vinyl alcohol) Composites with Improved Ionic Conductivity. Membranes 2023, 13, 636. [Google Scholar] [CrossRef] [PubMed]
- Vlad-Bubulac, T.; Hamciuc, C.; Serbezeanu, D.; Suflet, D.M.; Rusu, D.; Lisa, G.; Anghel, I.; Preda, D.-M.; Todorova, T.; Rîmbu, C.M. Organophosphorus Reinforced Poly(vinyl alcohol) Nanocomposites Doped with Silver-Loaded Zeolite L Nanoparticles as Sustainable Materials for Packaging Applications. Polymers 2023, 15, 2573. [Google Scholar] [CrossRef] [PubMed]
- Vlad-Bubulac, T.; Hamciuc, C.; Rîmbu, C.M.; Aflori, M.; Butnaru, M.; Enache, A.A.; Serbezeanu, D. Fabrication of Poly(vinyl alcohol)/Chitosan Composite Films Strengthened with Titanium Dioxide and Polyphosphonate Additives for Packaging Applications. Gels 2022, 8, 474. [Google Scholar] [CrossRef] [PubMed]
- Hamciuc, C.; Vlad-Bubulac, T.; Serbezeanu, D.; Hamciuc, E.; Aflori, M.; Lisa, G.; Anghel, I.; Şofran, I.-E.; Trofin, A. Tailoring thermal and flame retardant properties via synergistic effect in polyvinyl alcohol nanocomposites based on polyphosphonate and/or SiO2 nanoparticles. Compos. Part C 2020, 3, 100063. [Google Scholar] [CrossRef]
- Sobolčiak, P.; Ali, A.; Hassan, M.K.; Helal, M.I.; Tanvir, A.; Popelka, A.; Al-Maadeed, M.A.; Krupa, I.; Mahmoud, K.A. 2D Ti3C2Tx (MXene)-reinforced polyvinyl alcohol (PVA) nanofibers with enhanced mechanical and electrical properties. PLoS ONE 2017, 12, e0183705. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, L.; Chen, Q.; Li, P.; Zhou, A.; Cao, X.; Hu, Q. Preparation, mechanical and anti-friction performance of MXene/polymer composites. Mater. Des. 2016, 92, 682–689. [Google Scholar] [CrossRef]
- Shyam, R.; Sharma, S.; Pandey, S.S.; Manaka, T.; Prakash, R. Study on the charge transport behaviour of mxene- polymer nanocomposite-based self-assembled floating films at the air-liquid interface. Mater. Today Electron. 2024, 9, 100112. [Google Scholar] [CrossRef]
- Zhou, G.; Wang, X.; Wan, T.; Liu, C.; Chen, W.; Jiang, S.; Han, J.; Yan, Y.; Li, M.; Mei, C. Electrostatic Self-Assembly of Ti3C2Tx MXene/Cellulose Nanofiber Composite Films for Wearable Supercapacitor and Joule Heater. Energy Environ. Mater. 2023, 6, e12454. [Google Scholar] [CrossRef]
- Han, Q.; Wang, L.; Li, J.; Dong, Y.; Ma, Y.; Zhang, J.; Yu, S. Built-in field-driven S-scheme boron-doped nanodiamond/TiO2(101)/MXene photocatalyst for efficient antibiotic elimination: Mechanisms and DFT validation. Chem. Eng. J. 2025, 519, 165290. [Google Scholar] [CrossRef]
- Olariu, M.A.; Vlad-Bubulac, T.; Filip, T.A.; Turcan, I. Dielectric anisotropy in self-assembling MXene-based lyotropic nematic compounds. J. Phys. D Appl. Phys. 2024, 57, 395303. [Google Scholar] [CrossRef]
- Turcan, I.; Filip, T.A.; Vlad-Bubulac, T.; Rusu, D.; Olariu, M.A. Dielectrophoretic direct assembling of Mxene flakes at the level of screen-printed interdigitated microelectrodes and their evaluation in gas sensing applications. 2D Mater. 2024, 11, 045014. [Google Scholar] [CrossRef]
- Li, C.; Wei, H.; Hua, R.; He, X.; Lu, J.; Chen, Q.; Liu, B.; Li, X.; Wu, J. 3D Cu-BTC anchored on 2D MXene nanosheets using surface control approach for urea adsorption to achieve the regeneration of dialysate. Sep. Purif. Technol. 2025, 373, 133594. [Google Scholar] [CrossRef]
- Nesterkina, M.; Vashchenko, O.; Vashchenko, P.; Lisetski, L.; Kravchenko, I.; Hirsch, A.K.H.; Lehr, C.-M. Thermoresponsive cholesteric liquid–crystal systems doped with terpenoids as drug delivery systems for skin applications. Eur. J. Pharm. Biopharm. 2023, 191, 139–149. [Google Scholar] [CrossRef]
- Bagihalli, G.; Ginni, B. Recent Advances in Optical Storage and Display Applications of Cholesteric Liquid Crystals. In Cholesteric Liquid Crystals: Dielectric and Optical Applications; Kumar, P., Sharma, V., Adimule, V., Eds.; Springer Nature: Singapore, 2025; pp. 21–41. [Google Scholar]
- Subacius, D.; Bos, P.J.; Lavrentovich, O.D. Switchable diffractive cholesteric gratings. Appl. Phys. Lett. 1997, 71, 1350–1352. [Google Scholar] [CrossRef]
- Agarwal, S.; Srivastava, S.; Joshi, S.; Tripathi, S.; Singh, B.P.; Pandey, K.K.; Manohar, R. A Comprehensive Review on Polymer-Dispersed Liquid Crystals: Mechanisms, Materials, and Applications. ACS Mater. Au 2024, 5, 88–114. [Google Scholar] [CrossRef] [PubMed]
- Mesloub, A.; Ghosh, A.; Kolsi, L.; Alshenaifi, M. Polymer-Dispersed Liquid Crystal (PDLC) smart switchable windows for less-energy hungry buildings and visual comfort in hot desert climate. J. Build. Eng. 2022, 59, 105101. [Google Scholar] [CrossRef]
- Vlad-Bubulac, T.; Serbezeanu, D.; Oprea, A.-M.; Carja, I.-D.; Hamciuc, C.; Cazacu, M. Preparation and characterization of new hydrogels based on poly(vinyl alcohol)/phosphoester—Chondroitin sulphate. Cent. Eur. J. Chem. 2013, 11, 446–456. [Google Scholar] [CrossRef]
- Alhabeb, M.; Maleski, K.; Anasori, B.; Lelyukh, P.; Clark, L.; Sin, S.; Gogotsi, Y. Guidelines for Synthesis and Processing of Two-Dimensional Titanium Carbide (Ti3C2Tx MXene). Chem. Mater. 2017, 29, 7633–7644. [Google Scholar] [CrossRef]
- ASTM D882-10; Standard Test Method for Tensile Properties of Thin Plastic Sheeting. ASTM: West Conshohocken, PA, USA, 2010.
- Bonakdar, S.; Emami, S.H.; Shokrgozar, M.A.; Farhadi, A.; Ahmadi, S.A.H.; Amanzadeh, A. Preparation and characterization of polyvinyl alcohol hydrogels crosslinked by biodegradable polyurethane for tissue engineering of cartilage. Mater. Sci. Eng. C 2010, 30, 636–643. [Google Scholar] [CrossRef]
- Kusakabe, A.; Hirota, K.; Mizutani, T. Crystallisation of hydroxyapatite in phosphorylated poly(vinyl alcohol) as a synthetic route to tough mechanical hybrid materials. Mater. Sci. Eng. C 2017, 70, 487–493. [Google Scholar] [CrossRef]
- Mani, S. Characterization of PVA Dispersed Cholesteric Liquid Crystal; Investigation of Optical and Dielectric Properties. J. Electr. Syst. 2024, 20, 464–471. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, H.; Chen, Y.; Yu, H. Progress in Fabrication and Applications of Cholesteric Liquid Crystal Microcapsules. Chem.—A Eur. J. 2024, 30, e202303198. [Google Scholar] [CrossRef]
- Mitov, M. Cholesteric liquid crystals in living matter. Soft Matter 2017, 13, 4176–4209. [Google Scholar] [CrossRef]
- Li, L.; Han, L.; Hu, H.; Zhang, R. A review on polymers and their composites for flexible electronics. Mater. Adv. 2023, 4, 726–746. [Google Scholar] [CrossRef]
- Serbezeanu, D.; Vlad-Bubulac, T.; Hamciuc, C.; Hamciuc, E.; Grădinaru, L.M.; Lisa, G.; Anghel, I.; Şofran, I.-E.; Mocioi, I.-A.; Enache, A.A. Poly (vinyl alcohol)-oligophosphonate eco-friendly composites with improved reaction-to-fire properties. Compos. Commun. 2020, 22, 100505. [Google Scholar] [CrossRef]
- Faghihi, K.; Shabanian, M.; Hajibeygi, M.; Mohammadi, Y. Synthesis and characterization of new poly(ether–ester–imide)s as a generation of soluble and thermally stable polymers. Polym. Bull. 2011, 66, 37–49. [Google Scholar] [CrossRef]
- Matsumoto, K.; Iwata, N.; Furumi, S. Cholesteric Liquid Crystals with Thermally Stable Reflection Color from Mixtures of Completely Etherified Ethyl Cellulose Derivative and Methacrylic Acid. Polymers 2024, 16, 401. [Google Scholar] [CrossRef]
- Nagai, H.; Urayama, K. Thermal response of cholesteric liquid crystal elastomers. Phys. Rev. E 2015, 92, 022501. [Google Scholar] [CrossRef] [PubMed]
Sample | PVA-P (mL) 1 | PVA-P (%) 2 | MXene (mg)/% | ChLC (mg)/% |
---|---|---|---|---|
P0 | 5 | 100 | - | - |
P1 | 5 | 96 | 10/4 | - |
P2 | 5 | 92 | 20/8 | - |
P3 | 5 | 92 | 10/4 | 10/4 |
P4 | 5 | 82 | 10/3 | 50/15 |
P5 | 5 | 79 | 20/6 | 50/15 |
Sample Code | TGA Data 1 | DSC Data 2 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
T0 | T10% | T1 | T2 | T3 | T4 | Tmax1 | Tmax2 | % Residue | Tg | Tm | |
P0 | 128 | 223 | 113 | 167 | 210 | – | 336 | 450 | 15.02 | 51 | – |
P1 | 115 | 242 | 108 | 162 | 201 | – | 373 | 448 | 13.53 | 74 | – |
P2 | 129 | 250 | 108 | 166 | 203 | – | 365 | 445 | 17.77 | 66 | – |
P3 | 109 | 216 | 112 | 161 | 205 | 286 | 373 | 446 | 12.25 | 74 | – |
P4 | 108 | 223 | 112 | 157 | 206 | 304 | 360 | 444 | 10.36 | 70 | 112 |
P5 | 108 | 216 | 106 | 157 | 203 | 292 | 364 | 444 | 11.71 | 68 | 113 |
Sample | Y 1 | σult 2 | ԑf 3 | ԑy 4 | σ0.2% 5 | MR 6 | MT 7 | AE 8 | PF 9 |
---|---|---|---|---|---|---|---|---|---|
MPa | MPa | % | % | MPa | kJ/m3 | kJ/m3 | kJ/m3 | N | |
P0 | 4.85 | 40.18 | 49.00 | 8.27 | 33.5 | 168.25 | 1417.92 | 1586.17 | 24.48 |
P1 | 3.57 | 29.96 | 80.04 | 6.38 | 21.07 | 64.55 | 2021.69 | 2086.24 | 40.86 |
P2 | 3.85 | 33.47 | 76.48 | 8.00 | 29.41 | 117.97 | 2252.19 | 2370.16 | 44.59 |
P3 | 5.88 | 46.05 | 42.10 | 7.60 | 47.00 | 201.44 | 1608.01 | 1809.45 | 29.81 |
P4 | 1.63 | 16.96 | 24.11 | 2.00 | 5.65 | 5.85 | 311.31 | 317.76 | 23.31 |
P5 | 2.05 | 18.00 | 21.60 | 7.18 | 13.75 | 48.39 | 250.20 | 298.59 | 29.20 |
Sample | ε′ a | ε″ b | tan (δ) c | σ d [S/cm] |
---|---|---|---|---|
P0 | 11.1 | 5.55 | 0.498 | 5.50 × 10−9 |
P1 | 5.2 | 1.03 | 0.197 | 6.50 × 10−10 |
P2 | 4.8 | 1.14 | 0.236 | 7.23 × 10−10 |
P3 | 3.3 | 0.35 | 0.109 | 2.24 × 10−10 |
P4 | 14.3 | 18.76 | 1.307 | 1.18 × 10−8 |
P5 | 5.7 | 3.06 | 0.538 | 1.93 × 10−9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vlad-Bubulac, T.; Serbezeanu, D.; Perju, E.; Suflet, D.M.; Rusu, D.; Lisa, G.; Filip, T.-A.; Olariu, M.-A. Multifaceted Nanocomposites Combining Phosphorylated PVA, MXene, and Cholesteric Liquid Crystal: Design and Application Insights. Nanomaterials 2025, 15, 1251. https://doi.org/10.3390/nano15161251
Vlad-Bubulac T, Serbezeanu D, Perju E, Suflet DM, Rusu D, Lisa G, Filip T-A, Olariu M-A. Multifaceted Nanocomposites Combining Phosphorylated PVA, MXene, and Cholesteric Liquid Crystal: Design and Application Insights. Nanomaterials. 2025; 15(16):1251. https://doi.org/10.3390/nano15161251
Chicago/Turabian StyleVlad-Bubulac, Tăchiță, Diana Serbezeanu, Elena Perju, Dana Mihaela Suflet, Daniela Rusu, Gabriela Lisa, Tudor-Alexandru Filip, and Marius-Andrei Olariu. 2025. "Multifaceted Nanocomposites Combining Phosphorylated PVA, MXene, and Cholesteric Liquid Crystal: Design and Application Insights" Nanomaterials 15, no. 16: 1251. https://doi.org/10.3390/nano15161251
APA StyleVlad-Bubulac, T., Serbezeanu, D., Perju, E., Suflet, D. M., Rusu, D., Lisa, G., Filip, T.-A., & Olariu, M.-A. (2025). Multifaceted Nanocomposites Combining Phosphorylated PVA, MXene, and Cholesteric Liquid Crystal: Design and Application Insights. Nanomaterials, 15(16), 1251. https://doi.org/10.3390/nano15161251